stm32f1/application.c

921 lines
41 KiB
C
Raw Normal View History

2016-01-17 14:54:54 +01:00
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** STM32F1 BusVoodoo application
2017-08-02 13:46:20 +02:00
* @file application.c
2016-08-14 21:02:38 +02:00
* @author King Kévin <kingkevin@cuvoodoo.info>
2017-04-19 16:24:07 +02:00
* @date 2016-2017
2016-08-14 21:02:38 +02:00
*/
2016-01-17 14:54:54 +01:00
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // standard utilities
2016-08-14 21:02:38 +02:00
#include <string.h> // string utilities
#include <math.h> // math utilities
2016-01-17 14:54:54 +01:00
/* STM32 (including CM3) libraries */
2016-01-18 16:23:35 +01:00
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
2016-10-23 17:42:27 +02:00
#include <libopencm3/cm3/scb.h> // vector table definition
2016-01-29 11:25:30 +01:00
#include <libopencm3/cm3/nvic.h> // interrupt utilities
2016-10-23 17:42:27 +02:00
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
2016-01-29 11:25:30 +01:00
#include <libopencm3/stm32/exti.h> // external interrupt utilities
2016-10-23 17:42:27 +02:00
#include <libopencm3/stm32/iwdg.h> // independent watchdog utilities
#include <libopencm3/stm32/dbgmcu.h> // debug utilities
#include <libopencm3/stm32/flash.h> // flash utilities
#include <libopencm3/stm32/desig.h> // design utilities
#include <libopencm3/stm32/adc.h> // ADC utilities
#include <libopencm3/stm32/dac.h> // DAC utilities
2016-01-17 14:54:54 +01:00
/* own libraries */
#include "global.h" // board definitions
2017-04-03 13:32:45 +02:00
#include "print.h" // printing utilities
2017-12-16 13:37:35 +01:00
#include "uart.h" // USART utilities
2016-01-18 16:23:35 +01:00
#include "usb_cdcacm.h" // USB CDC ACM utilities
2016-01-17 14:54:54 +01:00
//#include "rs485.h" // RS-485 utilities
//#include "rs232.h" // RS-232 utilities
//#include "i2c_master.h" // I2C utilities
2016-10-23 17:42:27 +02:00
#define WATCHDOG_PERIOD 10000 /**< watchdog period in ms */
/** @defgroup busvoodoo_peripherals peripheral pin definitions
* @{
*/
#define BUSVOODOO_5VPULLUP_PORT B /**< 5V pull-up enable pin (active low) */
#define BUSVOODOO_5VPULLUP_PIN 4 /**< 5V pull-up enable pin (active low) */
#define BUSVOODOO_OEPULLUP_PORT A /**< bus switch output enable pin to enable embedded pull-ups (active low) */
#define BUSVOODOO_OEPULLUP_PIN 15 /**< bus switch output enable pin to enable embedded pull-ups (active low) */
#define BUSVOODOO_XVEN_PORT A /**< xV enable pin (active high) */
#define BUSVOODOO_XVEN_PIN 6 /**< xV enable pin (active high) */
#define BUSVOODOO_12VEN_PORT A /**< 12V enable pin (active low) */
#define BUSVOODOO_12VEN_PIN 7 /**< 12V enable pin (active low) */
#define BUSVOODOO_VOUTEN_PORT B /**< voltage output (5V and 3.3V) enable pin (active low) */
#define BUSVOODOO_VOUTEN_PIN 3 /**< voltage output (5V and 3.3V) enable pin (active low) */
/** @} */
/** @defgroup busvoodoo_adc inputs to measure voltages
2016-08-14 21:02:38 +02:00
* @{
*/
#define BUSVOODOO_3V3_CHANNEL 12 /**< ADC channel to measure 5V rail */
#define BUSVOODOO_5V_CHANNEL 9 /**< ADC channel to measure 3.3V rail */
#define BUSVOODOO_XV_CHANNEL 11 /**< ADC channel to measure xV rail */
#define BUSVOODOO_12V_CHANNEL 15 /**< ADC channel to measure 12V rail */
2016-08-14 21:02:38 +02:00
/** @} */
#define BUSVOOFOO_XVCTL_CHANNEL CHANNEL_1 /**< DAC channel to control xV output voltage */
#define BUSVOODOO_XV_DEFAULT (0.8*(1+30.0/10.0)) /**< default (when not driven) xV voltage regulator output voltage based on R1 and R2 */
#define BUSVOODOO_XV_TEST 2.5 /**< target xV output voltage to test if we can set control the xV voltage regulator */
#define BUSVOODOO_XV_SET(x) ((0.8*(1+30.0/10.0)-x)*(10.0/30.0)+0.8) /**< voltage to output for the DAC to set the desired xV output voltage (based on resistor values on the xV adjust pins and xV voltage reference) */
#define BUSVOOFOO_12VCTL_CHANNEL CHANNEL_2 /**< DAC channel to control 12V output voltage */
#define BUSVOODOO_12V_DEFAULT (1.25*(1+100.0/10.0)) /**< default (when not driven) 12V voltage regulator output voltage based on R1 and R2 */
#define BUSVOODOO_12V_TEST 12.0 /**< target 12V output voltage to test if we can set control the 12V voltage regulator */
#define BUSVOODOO_12V_SET(x) ((1.25*(1+100.0/10.0)-x)*(10.0/100.0)+1.25) /**< voltage to output for the DAC to set the desired
12V output voltage (based on resistor values on the 12V adjust pins and 12V voltage reference) */
/** @defgroup busvoodoo_io I/O pin definitions
* @{
*/
static const char* busvoodoo_io_names[13] = {"I2C_SMBA/SPI_NSS/I2S_WS", "SDIO_CMD", "USART_CTS/SPI_SCK/I2S_CK", "SDIO_D3/UART_RX", "I2C_SDA/USART_RX", "SDIO_D0", "SPI_MOSI/I2S_SD", "SDIO_CK/USART_CK", "I2C_SCL/USART_TX", "SDIO_D1", "I2S_MCK", "USART_RTS/SPI_MISO", "SDIO_D2/UART_TX"}; /**< I/O individual signal names */
static const uint32_t busvoodoo_io_ports[13] = {GPIOB, GPIOD, GPIOB, GPIOC, GPIOB, GPIOC, GPIOB, GPIOC, GPIOB, GPIOC, GPIOC, GPIOB, GPIOC}; /**< port of individual signals */
static const uint32_t busvoodoo_io_pins[13] = {GPIO12, GPIO2, GPIO13, GPIO11, GPIO11, GPIO8, GPIO15, GPIO12, GPIO10, GPIO9, GPIO6, GPIO14, GPIO10}; /**< pin of individual signals */
static const uint8_t busvoodoo_io_groups[13] = {6, 6, 4, 4, 1, 1, 5, 5, 2, 2, 3, 3, 3}; /**< which I/O pin (group) does the signal belong to */
/** @} */
2017-04-03 13:32:45 +02:00
size_t putc(char c)
2016-01-17 14:54:54 +01:00
{
2017-04-03 13:32:45 +02:00
size_t length = 0; // number of characters printed
static char newline = 0; // to remember on which character we sent the newline
if (0==c) {
length = 0; // don't print string termination character
} else if ('\r' == c || '\n' == c) { // send CR+LF newline for most carriage return and line feed combination
if (0==newline || c==newline) { // send newline only if not already send (and only once on \r\n or \n\r)
2017-12-16 13:37:35 +01:00
uart_putchar_nonblocking('\r'); // send CR over USART
2017-04-19 16:24:07 +02:00
usb_cdcacm_putchar('\r'); // send CR over USB
2017-12-16 13:37:35 +01:00
uart_putchar_nonblocking('\n'); // send LF over USART
2017-04-19 16:24:07 +02:00
usb_cdcacm_putchar('\n'); // send LF over USB
2017-04-03 13:32:45 +02:00
length += 2; // remember we printed 2 characters
newline = c; // remember on which character we sent the newline
} else {
length = 0; // the \r or \n of \n\r or \r\n has already been printed
2016-01-17 14:54:54 +01:00
}
2017-04-03 13:32:45 +02:00
} else {
2017-12-16 13:37:35 +01:00
uart_putchar_nonblocking(c); // send byte over USART
2017-04-19 16:24:07 +02:00
usb_cdcacm_putchar(c); // send byte over USB
2017-04-03 13:32:45 +02:00
newline = 0; // clear new line
length++; // remember we printed 1 character
2016-01-17 14:54:54 +01:00
}
2017-04-03 13:32:45 +02:00
return length; // return number of characters printed
2016-01-17 14:54:54 +01:00
}
static bool wait_space(void)
{
// disable watchdog when waiting for user input
printf("press space to continue, or any other key to abort\n");
2017-12-16 13:37:35 +01:00
while (!uart_received && !usb_cdcacm_received) { // wait for user input
__WFI(); // go to sleep
}
char c = 0;
2017-12-16 13:37:35 +01:00
if (uart_received) {
c = uart_getchar(); // read user input from UART
} else if (usb_cdcacm_received) {
c = usb_cdcacm_getchar(); // read user input from USB
} else {
return false; // this should not happen
}
if (' '==c) { // space entered
return true;
} else { // something else entered
return false;
}
}
/** set safe state by disabling all outputs */
static void safe_state(void)
{
// disable voltage outputs
gpio_set(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO(BUSVOODOO_VOUTEN_PIN)); // disable 5V and 3.3V output on connector
gpio_set_mode(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO(BUSVOODOO_VOUTEN_PIN)); // set pin as output (open-drain pulled high to disable the pMOS)
gpio_clear(GPIO(BUSVOODOO_XVEN_PORT), GPIO(BUSVOODOO_XVEN_PIN)); // disable xV voltage regulator
gpio_set_mode(GPIO(BUSVOODOO_XVEN_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(BUSVOODOO_XVEN_PIN)); // set pin as output (push-pull, pulled low for safety)
gpio_set(GPIO(BUSVOODOO_12VEN_PORT), GPIO(BUSVOODOO_12VEN_PIN)); // disable 12V voltage regulator
gpio_set_mode(GPIO(BUSVOODOO_12VEN_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO(BUSVOODOO_12VEN_PIN)); // set pin as output (open-drain pulled high to disable the pMOS)
// disable embedded pull-ups
gpio_primary_remap(AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW_ON, 0); // disable JTAG (but keep SWD) so to use the underlying GPIOs (PA15, PB3, PB4)
gpio_set(GPIO(BUSVOODOO_5VPULLUP_PORT), GPIO(BUSVOODOO_5VPULLUP_PIN)); // set pin high to disable 5V embedded pull-up
gpio_set_mode(GPIO(BUSVOODOO_5VPULLUP_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO(BUSVOODOO_5VPULLUP_PIN)); // set pin as output (open-drain pulled high to disable the pMOS)
gpio_set(GPIO(BUSVOODOO_OEPULLUP_PORT), GPIO(BUSVOODOO_OEPULLUP_PIN)); // set pin high to disable embedded pull-up bus switch
gpio_set_mode(GPIO(BUSVOODOO_OEPULLUP_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO(BUSVOODOO_OEPULLUP_PIN)); // set pin as output (open-drain pulled high to disable the bus switch)
// disable all signal I/O outputs
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins); pin++) {
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, busvoodoo_io_pins[pin]); // set pin back to input (floating)
}
}
/** read power rail voltage
* @param[in] channel which ADC channel to read voltage from
* @return voltage of NaN if channel is invalid
*/
static float rail_voltage(uint8_t channel)
{
if (channel!=BUSVOODOO_5V_CHANNEL && channel!=BUSVOODOO_3V3_CHANNEL && channel!=BUSVOODOO_XV_CHANNEL && channel!=BUSVOODOO_12V_CHANNEL) { // check channel
return NAN;
}
uint16_t channels[5] = {0}; // to start converted values: internal reference 1.2V, 5V rail, 3.3V rail, xV rail, 12V rail
adc_start_conversion_regular(ADC1); // start conversion to get first voltage
for (uint8_t channel_i=0; channel_i<LENGTH(channels); channel_i++) { // get all conversions
while (!adc_eoc(ADC1)); // wait until conversion finished
channels[channel_i] = adc_read_regular(ADC1); // read voltage value (clears flag)
}
float to_return = NAN; // voltage to return
switch (channel) { // get converter value and calculate according to the voltage divider on this channel
case BUSVOODOO_5V_CHANNEL:
to_return = channels[1]/(10.0/(10.0+10.0));
break;
case BUSVOODOO_3V3_CHANNEL:
to_return = channels[2]/(10.0/(10.0+10.0));
break;
case BUSVOODOO_XV_CHANNEL:
to_return = channels[3]/(10.0/(10.0+10.0));
break;
case BUSVOODOO_12V_CHANNEL:
to_return = channels[4]/(1.5/(10.0+1.5));
break;
default: // unknown channel
to_return = NAN;
break;
}
if (!isnan(to_return)) {
to_return *= 1.2/channels[0]; // calculate voltage from converted values using internal 1.2V voltage reference
}
return to_return;
}
/** perform self tests
* @return if self tests passed
*/
static bool test_self(void)
{
bool to_return = false; // success of the self-test
safe_state(); // start from a safe state
// get device information
// get device identifier (DEV_ID)
// 0x412: low-density, 16-32 kB flash
// 0x410: medium-density, 64-128 kB flash
// 0x414: high-density, 256-512 kB flash
// 0x430: XL-density, 768-1024 kB flash
// 0x418: connectivity
if (0x414!=(DBGMCU_IDCODE&DBGMCU_IDCODE_DEV_ID_MASK)) {
printf("this is not a high-density device: a wrong micro-controller might have been used\n");
#if DEBUG
#else
goto error;
#endif
}
// ensure flash size is ok
if (0xffff==DESIG_FLASH_SIZE) {
printf("unknown flash size: this is probably a defective micro-controller\n");
#if DEBUG
#else
goto error;
#endif
}
// check 5V power rail
float voltage = rail_voltage(BUSVOODOO_5V_CHANNEL); // get 5V power rail voltage
if (voltage<4.0) {
printf("5V power rail voltage is too low: %.2fV, check USB port\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>5.5) {
printf("5V power rail voltage is too high: %.2fV, check USB port\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
// check 3.3V power rail
voltage = rail_voltage(BUSVOODOO_3V3_CHANNEL); // get 3.3V power rail voltage
if (voltage<3.0) {
printf("3.3V power rail voltage is too low: %.2fV, check OLED connector and voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>3.6) {
printf("3.3V power rail voltage is too high: %.2fV, check OLED connector and voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
// check xV voltage regulator
gpio_clear(GPIO(BUSVOODOO_XVEN_PORT), GPIO(BUSVOODOO_XVEN_PIN)); // disable xV voltage regulator
sleep_ms(1); // let voltage settle
voltage = rail_voltage(BUSVOODOO_XV_CHANNEL); // get xV voltage
if (voltage>0.2) { // ensure the output is at 0V when the regulator is not enabled
printf("xV voltage is not 0V when the regulator is disabled: %.2fV, check xV voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
gpio_set(GPIO(BUSVOODOO_XVEN_PORT), GPIO(BUSVOODOO_XVEN_PIN)); // enable xV voltage regulator
sleep_ms(1); // let the voltage regulator start and voltage settle
voltage = rail_voltage(BUSVOODOO_XV_CHANNEL); // get xV voltage
// without being driven it should be around the default voltage
if (voltage<BUSVOODOO_XV_DEFAULT-0.2) {
printf("xV voltage is lower than expected when the regulator is enabled: %.2fV, check xV voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>BUSVOODOO_XV_DEFAULT+0.2) {
printf("xV voltage is too high when the regulator is enabled: %.2fV, check xV voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
// check if we can control xV
voltage = rail_voltage(BUSVOODOO_3V3_CHANNEL); // get reference voltage
if (isnan(voltage)) {
printf("can get 3V3 rail voltage");
goto error;
}
uint16_t dac_set = BUSVOODOO_XV_SET(BUSVOODOO_XV_TEST)/voltage*4095; // DAC value corresponding to the voltage
dac_load_data_buffer_single(dac_set, RIGHT12, BUSVOOFOO_XVCTL_CHANNEL); // set output so the voltage regulator is set to 2.5V
dac_software_trigger(BUSVOOFOO_XVCTL_CHANNEL); // transfer the value to the DAC
dac_enable(BUSVOOFOO_XVCTL_CHANNEL); // enable DAC
sleep_ms(5); // let voltage settle
voltage = rail_voltage(BUSVOODOO_XV_CHANNEL); // get xV voltage
// check if it matched desired voltage
if (voltage<-BUSVOODOO_XV_TEST-0.2) {
printf("xV voltage is too low when regulator is controlled: %.2fV, check xV voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>BUSVOODOO_XV_TEST+0.2) {
printf("xV voltage is too high when regulator is controlled: %.2fV, check xV voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
dac_disable(BUSVOOFOO_XVCTL_CHANNEL); // disable xV control
gpio_clear(GPIO(BUSVOODOO_XVEN_PORT), GPIO(BUSVOODOO_XVEN_PIN)); // disable xV voltage regulator
sleep_ms(1); // let voltage settle
// check 12V voltage regulator
gpio_set(GPIO(BUSVOODOO_12VEN_PORT), GPIO(BUSVOODOO_12VEN_PIN)); // disable 12V voltage regulator
sleep_ms(1); // let voltage settle
voltage = rail_voltage(BUSVOODOO_12V_CHANNEL); // get 12V voltage
if (voltage>0.2) { // ensure the output is at 0V when the regulator is not enabled
printf("12V voltage is not 0V when the regulator is disabled: %.2fV, check 12V voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
gpio_clear(GPIO(BUSVOODOO_12VEN_PORT), GPIO(BUSVOODOO_12VEN_PIN)); // enable 12V voltage regulator
sleep_ms(1); // let the voltage regulator start and voltage settle
voltage = rail_voltage(BUSVOODOO_12V_CHANNEL); // get 12V voltage
// without being driven it should be around the default voltage
if (voltage<BUSVOODOO_12V_DEFAULT-0.3) {
printf("12V voltage is lower than expected when regulator is enabled: %.2fV, check 12V voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>BUSVOODOO_12V_DEFAULT+0.3) {
printf("12V voltage is too high when regulator is enabled: %.2V, check 12V voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
// check if we can control 12V voltage regulator
voltage = rail_voltage(BUSVOODOO_3V3_CHANNEL); // get reference voltage
if (isnan(voltage)) {
printf("can get 3V3 rail voltage");
goto error;
}
dac_set = BUSVOODOO_12V_SET(BUSVOODOO_12V_TEST)/voltage*4095; // DAC value corresponding to the voltage
dac_load_data_buffer_single(dac_set, RIGHT12, BUSVOOFOO_12VCTL_CHANNEL); // set output so the voltage regulator is set to desired output voltage
dac_software_trigger(BUSVOOFOO_12VCTL_CHANNEL); // transfer the value to the DAC
dac_enable(BUSVOOFOO_12VCTL_CHANNEL); // enable DAC
sleep_ms(5); // let voltage settle
voltage = rail_voltage(BUSVOODOO_12V_CHANNEL); // get 12V voltage
if (voltage<-BUSVOODOO_12V_TEST-0.3) {
printf("12V voltage is too low when regulator is controlled: %.2fV, check 12V voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>BUSVOODOO_12V_TEST+0.3) {
printf("12V voltage is too high when regulator is controlled: %.2fV, check 12V voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
dac_disable(BUSVOOFOO_12VCTL_CHANNEL); // disable 12V control
gpio_set(GPIO(BUSVOODOO_12VEN_PORT), GPIO(BUSVOODOO_12VEN_PIN)); // disable 12V voltage regulator
sleep_ms(1); // let voltage settle
// pull all pins down and ensure they are low
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins); pin++) {
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_io_pins[pin]); // set pin to input
gpio_clear(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin]); // pull down so it's not floating
}
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins) && pin<LENGTH(busvoodoo_io_names); pin++) {
if (gpio_get(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin])) { // ensure it really is low
printf("signal %s is high although it is pulled low (internal)\n", busvoodoo_io_names[pin]); // warn user about the error
#if DEBUG
while (true);
#else
goto error;
#endif
}
}
// pull all pins up and ensure they are high
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins); pin++) {
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_io_pins[pin]); // set pin to input
gpio_set(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin]); // pull up using internal pull-up
}
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins) && pin<LENGTH(busvoodoo_io_names); pin++) {
if (!gpio_get(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin])) { // ensure it really is high
printf("signal %s is low although it is pulled up\n", busvoodoo_io_names[pin]); // warn user about the error
#if DEBUG
while (true);
#else
goto error;
#endif
}
}
// set individual pin high and ensure only pins in the same group are at the same level
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins); pin++) {
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_io_pins[pin]); // set pin to input
gpio_clear(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin]); // pull down to ensure it is not high by accident
}
for (uint8_t pin1=0; pin1<LENGTH(busvoodoo_io_ports) && pin1<LENGTH(busvoodoo_io_pins) && pin1<LENGTH(busvoodoo_io_groups) && pin1<LENGTH(busvoodoo_io_names); pin1++) {
gpio_set_mode(busvoodoo_io_ports[pin1], GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, busvoodoo_io_pins[pin1]); // set button pin to output
gpio_set(busvoodoo_io_ports[pin1], busvoodoo_io_pins[pin1]); // set pin high
for (uint8_t pin2=0; pin2<LENGTH(busvoodoo_io_ports) && pin2<LENGTH(busvoodoo_io_pins) && pin2<LENGTH(busvoodoo_io_groups) && pin2<LENGTH(busvoodoo_io_names); pin2++) {
if (busvoodoo_io_groups[pin1]==busvoodoo_io_groups[pin2] && !gpio_get(busvoodoo_io_ports[pin2], busvoodoo_io_pins[pin2])) {
printf("signal %s of I/O-%u is low while it should be set high by signal %s of I/O-%u\n", busvoodoo_io_names[pin2], busvoodoo_io_groups[pin2], busvoodoo_io_names[pin1], busvoodoo_io_groups[pin1]); // warn user about the error
goto error;
} else if (busvoodoo_io_groups[pin1]!=busvoodoo_io_groups[pin2] && gpio_get(busvoodoo_io_ports[pin2], busvoodoo_io_pins[pin2])) {
printf("signal %s of I/O-%u is high while it should not be set high by signal %s of I/O-%u\n", busvoodoo_io_names[pin2], busvoodoo_io_groups[pin2], busvoodoo_io_names[pin1], busvoodoo_io_groups[pin1]); // warn user about the error
#if DEBUG
while (true);
#else
goto error;
#endif
}
}
gpio_set_mode(busvoodoo_io_ports[pin1], GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_io_pins[pin1]); // set pin back to input
gpio_clear(busvoodoo_io_ports[pin1], busvoodoo_io_pins[pin1]); // pull pin back down
}
// set individual pin low and ensure only pins in the same group are at the same level
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins); pin++) {
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_io_pins[pin]); // set pin to input
gpio_set(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin]); // pull up to ensure it is not low by accident
}
for (uint8_t pin1=0; pin1<LENGTH(busvoodoo_io_ports) && pin1<LENGTH(busvoodoo_io_pins) && pin1<LENGTH(busvoodoo_io_groups) && pin1<LENGTH(busvoodoo_io_names); pin1++) {
gpio_set_mode(busvoodoo_io_ports[pin1], GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, busvoodoo_io_pins[pin1]); // set button pin to output
gpio_clear(busvoodoo_io_ports[pin1], busvoodoo_io_pins[pin1]); // set pin low
for (uint8_t pin2=0; pin2<LENGTH(busvoodoo_io_ports) && pin2<LENGTH(busvoodoo_io_pins) && pin2<LENGTH(busvoodoo_io_groups) && pin2<LENGTH(busvoodoo_io_names); pin2++) {
if (busvoodoo_io_groups[pin1]==busvoodoo_io_groups[pin2] && gpio_get(busvoodoo_io_ports[pin2], busvoodoo_io_pins[pin2])) {
printf("signal %s of I/O-%u is high while it should be set low by signal %s of I/O-%u\n", busvoodoo_io_names[pin2], busvoodoo_io_groups[pin2], busvoodoo_io_names[pin1], busvoodoo_io_groups[pin1]); // warn user about the error
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (busvoodoo_io_groups[pin1]!=busvoodoo_io_groups[pin2] && !gpio_get(busvoodoo_io_ports[pin2], busvoodoo_io_pins[pin2])) {
printf("signal %s of I/O-%u is low while it should not be set low by signal %s of I/O-%u\n", busvoodoo_io_names[pin2], busvoodoo_io_groups[pin2], busvoodoo_io_names[pin1], busvoodoo_io_groups[pin1]); // warn user about the error
#if DEBUG
while (true);
#else
goto error;
#endif
}
}
gpio_set_mode(busvoodoo_io_ports[pin1], GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_io_pins[pin1]); // set pin back to input
gpio_set(busvoodoo_io_ports[pin1], busvoodoo_io_pins[pin1]); // pull pin back up
}
// test 5V pull-up
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins); pin++) {
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_io_pins[pin]); // set pin to input
gpio_clear(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin]); // pull down to ensure it is not high by accident
}
gpio_clear(GPIO(BUSVOODOO_5VPULLUP_PORT), GPIO(BUSVOODOO_5VPULLUP_PIN)); // enable 5V pull-up
gpio_clear(GPIO(BUSVOODOO_OEPULLUP_PORT), GPIO(BUSVOODOO_OEPULLUP_PIN)); // switch on embedded pull-ups
sleep_ms(1); // wait a bit for voltage to settle
voltage = rail_voltage(BUSVOODOO_5V_CHANNEL); // get 5V power rail voltage
if (voltage<4.0) {
printf("5V power rail voltage is too low: %.2fV, check for shorts on I/O connector\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>5.5) {
printf("5V power rail voltage is too high: %.2fV, check USB port\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins) && pin<LENGTH(busvoodoo_io_names); pin++) {
if (!gpio_get(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin])) { // ensure it really is high
printf("signal %s is low although it is pulled up by 5V\n", busvoodoo_io_names[pin]); // warn user about the error
#if DEBUG
while (true);
#else
goto error;
#endif
}
}
gpio_set(GPIO(BUSVOODOO_5VPULLUP_PORT), GPIO(BUSVOODOO_5VPULLUP_PIN)); // disable 5V pull-up
gpio_set(GPIO(BUSVOODOO_OEPULLUP_PORT), GPIO(BUSVOODOO_OEPULLUP_PIN)); // switch off embedded pull-up
// test xV pull-up set to 3.3V
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins); pin++) {
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_io_pins[pin]); // set pin to input
gpio_clear(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin]); // pull down to ensure it is not high by accident
}
gpio_set(GPIO(BUSVOODOO_XVEN_PORT), GPIO(BUSVOODOO_XVEN_PIN)); // enable xV voltage regulator
gpio_clear(GPIO(BUSVOODOO_OEPULLUP_PORT), GPIO(BUSVOODOO_OEPULLUP_PIN)); // switch in embedded pull-up
sleep_ms(1); // let the voltage regulator start and voltage settle
voltage = rail_voltage(BUSVOODOO_XV_CHANNEL); // get xV voltage (without being driven it should be around 3.2V)
if (voltage<BUSVOODOO_XV_DEFAULT-0.2) {
printf("xV voltage is lower than expected: %.2fV, check xV voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>BUSVOODOO_XV_DEFAULT+0.2) {
printf("xV voltage is too high: %.2fV, check xV voltage regulator\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins) && pin<LENGTH(busvoodoo_io_names); pin++) {
if (!gpio_get(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin])) { // ensure it really is high
printf("signal %s is low although it is pulled up by xV\n", busvoodoo_io_names[pin]); // warn user about the error
#if DEBUG
while (true);
#else
goto error;
#endif
}
}
gpio_set(GPIO(BUSVOODOO_OEPULLUP_PORT), GPIO(BUSVOODOO_OEPULLUP_PIN)); // switch off embedded pull-up
gpio_clear(GPIO(BUSVOODOO_XVEN_PORT), GPIO(BUSVOODOO_XVEN_PIN)); // disable xV voltage regulator
// test 5V and 3.3V outputs
gpio_clear(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO(BUSVOODOO_VOUTEN_PIN)); // enable Vout
sleep_ms(1); // wait a bit for voltage to settle
voltage = rail_voltage(BUSVOODOO_5V_CHANNEL); // get 5V power rail voltage
if (voltage<4.0) {
printf("5V power rail voltage is too low: %.2fV, check pin 2 on I/O connector\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>5.5) {
printf("5V power rail voltage is too high: %.2fV, check pin 2 on I/O connector\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
voltage = rail_voltage(BUSVOODOO_3V3_CHANNEL); // get 3.3V power rail voltage
if (voltage<3.0) {
printf("3.3V power rail voltage is too low: %.2fV, check pin 3 on I/O connector\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
} else if (voltage>3.6) {
printf("3.3V power rail voltage is too high: %.2fV, check pin 3 on I/O connector\n", voltage);
#if DEBUG
while (true);
#else
goto error;
#endif
}
gpio_set(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO(BUSVOODOO_VOUTEN_PIN)); // disable Vout
to_return = true; // all tests are successful
error:
safe_state(); // set back to safe state
if (!to_return) {
printf("the test procedure has been interrupted for safety reasons\n");
}
return to_return;
}
/** perform tests using external user */
static void test_external(void)
{
safe_state(); // start from safe state with all outputs switched off
// test 5V output on pin 2
printf("check pin 2 on I/O connector to verify 5V output, it should be switched off\n");
if (!wait_space()) {
goto end;
}
gpio_clear(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO(BUSVOODOO_VOUTEN_PIN)); // enable Vout
printf("check pin 2 on I/O connector to verify 5V output, it should be switched on\n");
if (!wait_space()) {
goto end;
}
gpio_set(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO(BUSVOODOO_VOUTEN_PIN)); // disable Vout
// test 3.3V output on pin 3
printf("check pin 3 on I/O connector to verify 3.3V output, it should be switched off\n");
if (!wait_space()) {
goto end;
}
gpio_clear(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO(BUSVOODOO_VOUTEN_PIN)); // enable Vout
printf("check pin 3 on I/O connector to verify 3.3V output, it should be switched on\n");
if (!wait_space()) {
goto end;
}
gpio_set(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO(BUSVOODOO_VOUTEN_PIN)); // disable Vout
// test xV output on pin 4
printf("check pin 4 on I/O connector to verify xV output, it should be switched off\n");
if (!wait_space()) {
goto end;
}
gpio_set(GPIO(BUSVOODOO_XVEN_PORT), GPIO(BUSVOODOO_XVEN_PIN)); // enable xV voltage regulator
printf("check pin 4 on I/O connector to verify xV output, it should be switched at %d.%dV\n", (int32_t)BUSVOODOO_XV_DEFAULT, (uint32_t)((BUSVOODOO_XV_DEFAULT-(int32_t)BUSVOODOO_XV_DEFAULT)*10));
if (!wait_space()) {
goto end;
}
gpio_clear(GPIO(BUSVOODOO_XVEN_PORT), GPIO(BUSVOODOO_XVEN_PIN)); // disable xV voltage regulator
// test I/O pins
for (uint8_t io=1; io<=6; io++) { // test each I/O pin
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins) && pin<LENGTH(busvoodoo_io_groups); pin++) { // look for a pin mapped on this I/O
if (busvoodoo_io_groups[pin]==io) {
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, busvoodoo_io_pins[pin]); // set pin to output
gpio_clear(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin]); // set pin low
printf("check pin %u on I/O connector to verify output, it should be low\n", 4+io);
if (!wait_space()) {
goto end;
}
gpio_set(busvoodoo_io_ports[pin], busvoodoo_io_pins[pin]); // set pin high
printf("check pin %u on I/O connector to verify output, it should be high\n", 4+io);
if (!wait_space()) {
goto end;
}
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, busvoodoo_io_pins[pin]); // set pin back to input
break; // stop looking for pin
}
}
}
// test 12V output on RS/CAN pin 1
printf("check pin 1 on RS/CAN connector to verify 12V output, it should be switched off\n");
if (!wait_space()) {
goto end;
}
gpio_clear(GPIO(BUSVOODOO_12VEN_PORT), GPIO(BUSVOODOO_12VEN_PIN)); // enable 12V voltage regulator
printf("check pin 1 on RS/CAN connector to verify 12V output, it should be switched at %d.%dV\n", (int32_t)BUSVOODOO_12V_DEFAULT, (uint32_t)((BUSVOODOO_12V_DEFAULT-(int32_t)BUSVOODOO_12V_DEFAULT)*10));
if (!wait_space()) {
goto end;
}
gpio_set(GPIO(BUSVOODOO_12VEN_PORT), GPIO(BUSVOODOO_12VEN_PIN)); // disable 12V voltage regulator
end:
safe_state(); // go back to safe state
}
2016-10-23 17:42:27 +02:00
/** user input command */
static char command[32] = {0};
/** user input command index */
uint8_t command_i = 0;
2016-01-17 14:54:54 +01:00
2016-08-14 21:02:38 +02:00
/** process user command
* @param[in] str user command string (\0 ended)
*/
static void process_command(char* str)
2016-01-17 14:54:54 +01:00
{
2016-08-14 21:02:38 +02:00
// split command
const char* delimiter = " ";
char* word = strtok(str,delimiter);
if (!word) {
goto error;
}
// parse command
2017-04-19 16:24:07 +02:00
if (0==strcmp(word,"h") || 0==strcmp(word,"help") || 0==strcmp(word,"?")) {
printf("unit ID: 0x%08x%08x%08x\n", DESIG_UNIQUE_ID0, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID2);
2016-08-14 21:02:38 +02:00
printf("available commands:\n");
printf("led [on|off|toggle]\n");
2017-04-19 16:24:07 +02:00
} else if (0==strcmp(word,"l") || 0==strcmp(word,"led")) {
2016-08-14 21:02:38 +02:00
word = strtok(NULL,delimiter);
if (!word) {
2017-04-19 16:24:07 +02:00
printf("LED is ");
if (gpio_get(GPIO(LED_PORT), GPIO(LED_PIN))) {
printf("on\n");
} else {
printf("off\n");
}
2016-08-14 21:02:38 +02:00
} else if (0==strcmp(word,"on")) {
led_on(); // switch LED on
printf("LED switched on\n"); // notify user
} else if (0==strcmp(word,"off")) {
led_off(); // switch LED off
printf("LED switched off\n"); // notify user
} else if (0==strcmp(word,"toggle")) {
led_toggle(); // toggle LED
printf("LED toggled\n"); // notify user
} else {
goto error;
}
} else {
goto error;
}
return; // command successfully processed
error:
printf("command not recognized. enter help to list commands\n");
2016-10-23 17:42:27 +02:00
return;
2016-01-17 14:54:54 +01:00
}
2016-08-14 21:02:38 +02:00
/** program entry point
* this is the firmware function started by the micro-controller
*/
2016-10-23 17:42:27 +02:00
void main(void);
void main(void)
{
2016-01-29 00:24:49 +01:00
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
2016-08-14 21:02:38 +02:00
2016-10-23 17:42:27 +02:00
#if DEBUG
2017-01-30 09:44:51 +01:00
// enable functionalities for easier debug
2016-10-23 17:42:27 +02:00
DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered)
DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered)
DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered)
2017-02-06 17:40:28 +01:00
#else
2017-01-30 09:44:51 +01:00
// setup watchdog to reset in case we get stuck (i.e. when an error occurred)
iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period
iwdg_start(); // start independent watchdog
2016-10-23 17:42:27 +02:00
#endif
2017-04-03 13:32:45 +02:00
board_setup(); // setup board
2017-12-16 13:37:35 +01:00
uart_setup(); // setup USART (for printing)
2017-04-19 16:26:40 +02:00
usb_cdcacm_setup(); // setup USB CDC ACM (for printing)
led_blink(0, 1); // switch blue LED on to show firmware is working
printf("\nwelcome to BusVoodoo\n"); // print welcome message
2016-01-29 00:24:49 +01:00
2017-01-30 09:44:51 +01:00
#if !(DEBUG)
// show watchdog information
printf("watchdog set to (%.2fs)\n",WATCHDOG_PERIOD/1000.0);
if (FLASH_OBR&FLASH_OBR_OPTERR) {
printf("option bytes not set in flash: software wachtdog used (not started at reset)\n");
} else if (FLASH_OBR&FLASH_OBR_WDG_SW) {
printf("software wachtdog used (not started at reset)\n");
} else {
printf("hardware wachtdog used (started at reset)\n");
}
#endif
// enable all GPIO domains since we use pins on all ports
rcc_periph_clock_enable(RCC_GPIOA); // enable clock for all GPIO domains
rcc_periph_clock_enable(RCC_GPIOB); // enable clock for all GPIO domains
rcc_periph_clock_enable(RCC_GPIOC); // enable clock for all GPIO domains
rcc_periph_clock_enable(RCC_GPIOD); // enable clock for all GPIO domains
safe_state(); // switch off all outputs
// setup ADC to measure the 5V, 3.3V, xV, and 12V power rails voltages
rcc_periph_clock_enable(RCC_ADC12_IN(BUSVOODOO_5V_CHANNEL)); // enable clock for GPIO domain for 5V channel
gpio_set_mode(ADC12_IN_PORT(BUSVOODOO_5V_CHANNEL), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, ADC12_IN_PIN(BUSVOODOO_5V_CHANNEL)); // set 5V channel as analogue input for the ADC
rcc_periph_clock_enable(RCC_ADC12_IN(BUSVOODOO_3V3_CHANNEL)); // enable clock for GPIO domain for 3.3V channel
gpio_set_mode(ADC12_IN_PORT(BUSVOODOO_3V3_CHANNEL), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, ADC12_IN_PIN(BUSVOODOO_3V3_CHANNEL)); // set 3.3V channel as analogue input for the ADC
rcc_periph_clock_enable(RCC_ADC12_IN(BUSVOODOO_XV_CHANNEL)); // enable clock for GPIO domain for xV channel
gpio_set_mode(ADC12_IN_PORT(BUSVOODOO_XV_CHANNEL), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, ADC12_IN_PIN(BUSVOODOO_XV_CHANNEL)); // set xV channel as analogue input for the ADC
rcc_periph_clock_enable(RCC_ADC12_IN(BUSVOODOO_12V_CHANNEL)); // enable clock for GPIO domain for 12V channel
gpio_set_mode(ADC12_IN_PORT(BUSVOODOO_12V_CHANNEL), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, ADC12_IN_PIN(BUSVOODOO_12V_CHANNEL)); // set 12V channel as analogue input for the ADC
rcc_periph_clock_enable(RCC_ADC1); // enable clock for ADC domain
adc_off(ADC1); // switch off ADC while configuring it
adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_28DOT5CYC); // use 28.5 cycles to sample (long enough to be stable)
adc_enable_temperature_sensor(ADC1); // enable internal voltage reference
adc_enable_external_trigger_regular(ADC1, ADC_CR2_EXTSEL_SWSTART); // use software trigger to start conversion
uint8_t channels[] = {ADC_CHANNEL17, ADC_CHANNEL(BUSVOODOO_5V_CHANNEL), ADC_CHANNEL(BUSVOODOO_3V3_CHANNEL), ADC_CHANNEL(BUSVOODOO_XV_CHANNEL), ADC_CHANNEL(BUSVOODOO_12V_CHANNEL)}; // voltages to convert: internal, 5V, 3.3V, xV, 12V
adc_set_regular_sequence(ADC1, LENGTH(channels), channels); // set channels to convert
adc_enable_discontinuous_mode_regular(ADC1, LENGTH(channels)); // convert all channels
adc_power_on(ADC1); // switch on ADC
sleep_us(1); // wait t_stab for the ADC to stabilize
adc_reset_calibration(ADC1); // remove previous non-calibration
adc_calibration(ADC1); // calibrate ADC for less accuracy errors
// setup DAC to control xV and 12V voltage outputs
gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO4); // set both DAC channels as analog
gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO5); // set both DAC channels as analog
rcc_periph_clock_enable(RCC_DAC); // enable clock for DAC domain
dac_disable(BUSVOOFOO_XVCTL_CHANNEL); // disable output to configure it properly
dac_disable(BUSVOOFOO_12VCTL_CHANNEL); // disable output to configure it properly
dac_buffer_enable(BUSVOOFOO_XVCTL_CHANNEL); // enable output buffer to be able to drive larger loads (should be per default)
dac_buffer_enable(BUSVOOFOO_12VCTL_CHANNEL); // enable output buffer to be able to drive larger loads (should be per default)
dac_set_trigger_source(DAC_CR_TSEL1_SW); // use software to trigger the voltage change
dac_set_trigger_source(DAC_CR_TSEL2_SW); // use software to trigger the voltage change
// perform tests
printf("performing self-test, please remove all cables from connector\n");
if (!test_self()) { // perform self-test
printf("self-test failed\n"); // notify user
led_blink(0.5, 0.5); // show error on LEDs
} else {
printf("self-test succeeded\n"); // notify user
}
/*
printf("testing RS-485 port\n");
rs485_setup();
*/
/*
printf("testing RS-232 port\n");
rs232_setup();
*/
/*
printf("testing OLED screen\n");
i2c_master_setup(false);
const uint8_t oled_set_mux_ratio[] = {0x00, 0xa8, 0x3f};
i2c_master_write(0x3c, oled_set_mux_ratio, LENGTH(oled_set_mux_ratio), NULL, 0);
const uint8_t oled_set_display_offset[] = {0x00, 0xd3, 0x00};
i2c_master_write(0x3c, oled_set_display_offset, LENGTH(oled_set_display_offset), NULL, 0);
const uint8_t oled_set_start_line[] = {0x80, 0x40};
i2c_master_write(0x3c, oled_set_start_line, LENGTH(oled_set_start_line), NULL, 0);
const uint8_t oled_set_segment_remap[] = {0x80, 0xa0};
i2c_master_write(0x3c, oled_set_segment_remap, LENGTH(oled_set_segment_remap), NULL, 0);
const uint8_t oled_set_com_output_scan_direction[] = {0x80, 0xc0};
i2c_master_write(0x3c, oled_set_com_output_scan_direction, LENGTH(oled_set_com_output_scan_direction), NULL, 0);
const uint8_t oled_set_com_pins_hardware_configuration[] = {0x00, 0xda, 0x02};
i2c_master_write(0x3c, oled_set_com_pins_hardware_configuration, LENGTH(oled_set_com_pins_hardware_configuration), NULL, 0);
const uint8_t oled_set_contrast_control[] = {0x00, 0x81, 0x7f};
i2c_master_write(0x3c, oled_set_contrast_control, LENGTH(oled_set_contrast_control), NULL, 0);
const uint8_t oled_entire_display_on[] = {0x80, 0xa5};
i2c_master_write(0x3c, oled_entire_display_on, LENGTH(oled_entire_display_on), NULL, 0);
const uint8_t oled_normal_display[] = {0x80, 0xa6};
i2c_master_write(0x3c, oled_normal_display, LENGTH(oled_normal_display), NULL, 0);
const uint8_t oled_set_osc_frequency[] = {0x00, 0xd5, 0x80};
i2c_master_write(0x3c, oled_set_osc_frequency, LENGTH(oled_set_osc_frequency), NULL, 0);
const uint8_t oled_enable_charge_pump_regulator[] = {0x00, 0x8d, 0x14};
i2c_master_write(0x3c, oled_enable_charge_pump_regulator, LENGTH(oled_enable_charge_pump_regulator), NULL, 0);
const uint8_t oled_display_on[] = {0x80, 0xaf};
i2c_master_write(0x3c, oled_display_on, LENGTH(oled_display_on), NULL, 0);
*/
2016-08-14 21:02:38 +02:00
printf("performing external test, please follow instructions\n");
test_external(); // perform external test
2016-10-23 17:42:27 +02:00
2016-08-14 21:02:38 +02:00
// main loop
printf("command input: ready\n");
bool action = false; // if an action has been performed don't go to sleep
button_flag = false; // reset button flag
2016-10-23 17:42:27 +02:00
char c = '\0'; // to store received character
2016-08-14 21:02:38 +02:00
bool char_flag = false; // a new character has been received
2016-01-29 00:24:49 +01:00
while (true) { // infinite loop
2016-10-23 17:42:27 +02:00
iwdg_reset(); // kick the dog
2017-12-16 13:37:35 +01:00
while (uart_received) { // data received over UART
action = true; // action has been performed
2016-01-29 00:24:49 +01:00
led_toggle(); // toggle LED
2017-12-16 13:37:35 +01:00
c = uart_getchar(); // store receive character
2016-08-14 21:02:38 +02:00
char_flag = true; // notify character has been received
}
2017-04-19 16:24:07 +02:00
while (usb_cdcacm_received) { // data received over USB
action = true; // action has been performed
2016-01-29 00:24:49 +01:00
led_toggle(); // toggle LED
2017-04-19 16:24:07 +02:00
c = usb_cdcacm_getchar(); // store receive character
2016-08-14 21:02:38 +02:00
char_flag = true; // notify character has been received
2016-01-18 16:23:35 +01:00
}
2016-08-14 21:02:38 +02:00
while (char_flag) { // user data received
char_flag = false; // reset flag
action = true; // action has been performed
2017-12-16 13:37:35 +01:00
//printf("%c",c); // echo receive character
printf("%02x\n",c);
2016-08-14 21:02:38 +02:00
if (c=='\r' || c=='\n') { // end of command received
if (command_i>0) { // there is a command to process
command[command_i] = 0; // end string
command_i = 0; // prepare for next command
process_command(command); // process user command
}
} else { // user command input
command[command_i] = c; // save command input
if (command_i<LENGTH(command)-2) { // verify if there is place to save next character
command_i++; // save next character
}
}
}
while (button_flag) { // user pressed button
action = true; // action has been performed
printf("button pressed\n");
led_toggle(); // toggle LED
2016-08-14 21:02:38 +02:00
for (uint32_t i=0; i<1000000; i++) { // wait a bit to remove noise and double trigger
__asm__("nop");
}
button_flag = false; // reset flag
}
2016-08-14 21:02:38 +02:00
if (action) { // go to sleep if nothing had to be done, else recheck for activity
action = false;
} else {
__WFI(); // go to sleep
}
2016-10-23 17:42:27 +02:00
} // main loop
2016-01-17 14:54:54 +01:00
}