add improved files from vfd driver proect

This commit is contained in:
King Kévin 2016-01-28 21:21:50 +01:00
parent 2eff94979e
commit ebab5e223b
6 changed files with 665 additions and 37 deletions

View File

@ -18,7 +18,7 @@
# be silent per default, but 'make V=1' will show all compiler calls.
ifneq ($(V),1)
Q := @
NULL := 2> /dev/null
NULL := 1> /dev/null 2> /dev/null
endif
# the final binary name (without extension)
@ -94,6 +94,9 @@ OOCD ?= openocd
OOCD_INTERFACE ?= stlink-v2
OOCD_TARGET ?= stm32f1x
# which USB CDC ACM port is used bu the device, so we can reset it
ACMPORT = /dev/ttyACM0
# board specific USB DFU bootloader
BOOTLOADERS = STM32duino-bootloader
BOOTLOADER = $(BOOTLOADERS)/STM32F1/binaries/generic_boot20_pa1.bin
@ -129,12 +132,12 @@ list: $(BINARY).list
%.map: %.elf
@# it's generated along with the elf
%.elf: $(OBJ) $(LDSCRIPT) $(LIB_DIR)/lib$(LIBNAME).a
%.elf: $(LDSCRIPT) $(LIB_DIR)/lib$(LIBNAME).a $(OBJ)
$(info compiling $(@))
$(Q)$(LD) $(LDFLAGS) $(ARCH_FLAGS) $(OBJ) $(LDLIBS) -o $(@)
$(Q)size $(@)
%.o: %.c
@#printf " CC $(*).c\n"
$(Q)$(CC) $(CFLAGS) $(ARCH_FLAGS) -o $(@) -c $(<)
clean:
@ -155,9 +158,14 @@ flash-swd: $(BINARY).hex
$(info flashing $(<) using SWD)
$(Q)$(OOCD) --file interface/$(OOCD_INTERFACE).cfg --file target/$(OOCD_TARGET).cfg --command "init" --command "reset init" --command "flash write_image erase $(<)" --command "reset" --command "shutdown" $(NULL)
flash-dfu: $(BINARY).bin
# reset device by setting the data width to 5 bis on the USB CDC ACM port
reset:
$(Q)stty --file /dev/ttyACM0 115200 raw cs5
$(Q)sleep 0.5
flash-dfu: $(BINARY).bin reset
$(info flashing $(<) using DFU)
$(Q)dfu-util --device 1eaf:0003 --cfg 1 --intf 0 --alt 2 --reset --download $(<)
$(Q)dfu-util --device 1eaf:0003 --cfg 1 --intf 0 --alt 2 --reset --download $(<) $(NULL)
.PHONY: clean elf bin hex srec list bootloader flash flash-swd flash-dfu
.SECONDARY:

View File

@ -14,6 +14,12 @@
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* get the length of an array */
#define LENGTH(x) (sizeof(x) / sizeof((x)[0]))
/* system clock frequency in Hz */
#define SYSTEM_CLOCK_FREQ 72000000
/* LED is on pin 11/PA1 */
#define LED_RCC RCC_GPIOA
#define LED_PORT GPIOA
@ -21,3 +27,4 @@
/* default output (i.e. for printf) */
int _write(int file, char *ptr, int len);

View File

@ -24,20 +24,23 @@
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include <libopencm3/cm3/scb.h> // reset utilities
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/usb/usbd.h> // USB library
#include <libopencm3/usb/cdc.h> // USB CDC library
#include "usb_cdcacm.h" // USB CDC ACM header and definitions
/* USB descriptor */
/* USB devices descriptor
* as defined in USB CDC specification section 5
*/
static const struct usb_device_descriptor device_descriptor = {
.bLength = USB_DT_DEVICE_SIZE, // the size of this header in bytes, 18
.bDescriptorType = USB_DT_DEVICE, // a value of 1 indicates that this is a device descriptor
.bcdUSB = 0x0200, // this device supports USB 2.0
.bDeviceClass = USB_CLASS_CDC, // use the CDC device class
.bDeviceSubClass = USB_CDC_SUBCLASS_ACM, // use the ACM sub-class
.bDeviceProtocol = USB_CDC_PROTOCOL_NONE, // use no specific protocol
.bDeviceSubClass = 0, // unused
.bDeviceProtocol = 0, // unused
.bMaxPacketSize0 = 64, // packet size for endpoint zero in bytes
.idVendor = 0xc440, // Vendor ID (CuVo...)
.idProduct = 0x0d00, // product ID within the Vendor ID space (...odoo)
@ -77,6 +80,9 @@ static const struct usb_endpoint_descriptor communication_endpoints[] = {{
.bInterval = 255, // the frequency, in number of frames, that we're going to be sending data
}};
/* functional descriptor
* as defined in USB CDC specification section 5.2.3
*/
static const struct {
struct usb_cdc_header_descriptor header;
struct usb_cdc_call_management_descriptor call_mgmt;
@ -90,8 +96,7 @@ static const struct {
.bcdCDC = 0x0110,
},
.call_mgmt = {
.bFunctionLength =
sizeof(struct usb_cdc_call_management_descriptor),
.bFunctionLength = sizeof(struct usb_cdc_call_management_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = USB_CDC_TYPE_CALL_MANAGEMENT,
.bmCapabilities = 0,
@ -112,6 +117,9 @@ static const struct {
},
};
/* communication class interface descriptor
* as defined in USB CDC specification section 5.1.3
*/
static const struct usb_interface_descriptor communication_interface[] = {{
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
@ -129,6 +137,9 @@ static const struct usb_interface_descriptor communication_interface[] = {{
.extralen = sizeof(cdcacm_functional_descriptors),
}};
/* data class interface descriptor
* as defined in USB CDC specification section 5.1.3
*/
static const struct usb_interface_descriptor data_interface[] = {{
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
@ -158,7 +169,7 @@ static const struct usb_config_descriptor config = {
.bNumInterfaces = 2, // the number of interfaces in this configuration
.bConfigurationValue = 1, // the index of this configuration
.iConfiguration = 0, // a string index describing this configuration (zero means not provided)
.bmAttributes = 0x80, // self powered (0<<6), supports remote wakeup (5<<0)
.bmAttributes = 0x80, // self powered (0<<6), supports remote wakeup (0<<5)
.bMaxPower = 0x32, // the maximum amount of current that this device will draw in 2mA units
// end of header
.interface = interfaces, // pointer to an array of interfaces
@ -181,6 +192,9 @@ static usbd_device *usb_device;
static uint8_t rx_buffer[CDCACM_BUFFER] = {0};
static volatile uint8_t rx_i = 0;
static volatile uint8_t rx_used = 0;
static uint8_t tx_buffer[CDCACM_BUFFER] = {0};
static volatile uint8_t tx_i = 0;
static volatile uint8_t tx_used = 0;
/* show the user how much data received over USB is ready */
volatile uint8_t cdcacm_received = 0; // same as rx_used, but since the user can write this variable we don't rely on it
@ -191,30 +205,35 @@ static int cdcacm_control_request(usbd_device *usbd_dev, struct usb_setup_data *
(void)usbd_dev;
switch (req->bRequest) {
case USB_CDC_REQ_SET_CONTROL_LINE_STATE: {
/*
* This Linux cdc_acm driver requires this to be implemented
* even though it's optional in the CDC spec, and we don't
* advertise it in the ACM functional descriptor.
*/
char local_buf[10];
struct usb_cdc_notification *notif = (void *)local_buf;
/* We echo signals back to host as notification. */
notif->bmRequestType = 0xA1;
notif->bNotification = USB_CDC_NOTIFY_SERIAL_STATE;
notif->wValue = 0;
notif->wIndex = 0;
notif->wLength = 2;
local_buf[8] = req->wValue & 3;
local_buf[9] = 0;
// usbd_ep_write_packet(0x83, buf, 10);
return 1;
case USB_CDC_REQ_SET_CONTROL_LINE_STATE: {
/*
bool dtr = (req->wValue & (1 << 0)) ? true : false;
bool rts = (req->wValue & (1 << 1)) ? true : false;
*/
/* this Linux cdc_acm driver requires this to be implemented
* even though it's optional in the CDC spec, and we don't
* advertise it in the ACM functional descriptor.
*/
return 1;
}
case USB_CDC_REQ_SET_LINE_CODING:
if (*len < sizeof(struct usb_cdc_line_coding))
case USB_CDC_REQ_SET_LINE_CODING:
// ignore if length is wrong
if (*len < sizeof(struct usb_cdc_line_coding)) {
return 0;
}
// get the line coding
struct usb_cdc_line_coding *coding = (struct usb_cdc_line_coding *)*buf;
/* reset device is the data bits is set to 5
* this is used to allowing rebooting the device in DFU mode for reflashing
* to reset the device from the host you can use stty --file /dev/ttyACM0 115200 raw cs5
*/
if (coding->bDataBits==5) {
scb_reset_system(); // reset device
while (true); // wait for the reset to happen
}
return 1;
default:
return 0;
return 1;
}
return 0;
}
@ -238,13 +257,35 @@ static void cdcacm_data_rx_cb(usbd_device *usbd_dev, uint8_t ep)
}
}
static void cdcacm_data_tx_cb(usbd_device *usbd_dev, uint8_t ep)
{
(void)ep;
(void)usbd_dev;
char usb_data[64] = {0}; // buffer to send data
uint16_t usb_length = 0; // length of transmitted data
/* transmit data */
if (tx_used) { // copy received data
for (usb_length=0; usb_length<sizeof(usb_data) && usb_length<tx_used; usb_length++) { // only until buffer is full
usb_data[usb_length] = tx_buffer[(tx_i+usb_length)%sizeof(tx_buffer)]; // put data in transmit data
}
// this could lead to a lock down
// while(usbd_ep_write_packet(usb_device, 0x82, usb_data, usb_length)==0);
// this is less critical
uint8_t transmitted = usbd_ep_write_packet(usb_device, 0x82, usb_data, usb_length); // try to transmit data
tx_i = (tx_i+transmitted)%sizeof(rx_buffer); // update location on buffer
tx_used -= transmitted; // update used size
}
}
static void cdcacm_set_config(usbd_device *usbd_dev, uint16_t wValue)
{
(void)wValue;
(void)usbd_dev;
usbd_ep_setup(usbd_dev, 0x01, USB_ENDPOINT_ATTR_BULK, 64, cdcacm_data_rx_cb);
usbd_ep_setup(usbd_dev, 0x82, USB_ENDPOINT_ATTR_BULK, 64, NULL);
usbd_ep_setup(usbd_dev, 0x82, USB_ENDPOINT_ATTR_BULK, 64, cdcacm_data_tx_cb);
usbd_ep_setup(usbd_dev, 0x83, USB_ENDPOINT_ATTR_INTERRUPT, 16, NULL);
usbd_register_control_callback( usbd_dev, USB_REQ_TYPE_CLASS | USB_REQ_TYPE_INTERFACE, USB_REQ_TYPE_TYPE | USB_REQ_TYPE_RECIPIENT, cdcacm_control_request);
@ -272,13 +313,16 @@ void cdcacm_setup(void)
rx_i = 0;
rx_used = 0;
cdcacm_received = 0;
/* start sending */
usbd_ep_write_packet(usb_device, 0x82, NULL, 0);
}
/* get character from USB CDC ACM (blocking) */
char cdcacm_getchar(void)
{
while (!rx_used) { // idle until data is available
__WFI(); // sleep until interrupt;
__WFI(); // sleep until interrupt (not sure if it's a good idea here
}
char to_return = rx_buffer[rx_i]; // get the next available character
rx_i = (rx_i+1)%sizeof(rx_buffer); // update used buffer
@ -290,7 +334,14 @@ char cdcacm_getchar(void)
/* put character on USB CDC ACM (blocking) */
void cdcacm_putchar(char c)
{
while(usbd_ep_write_packet(usb_device, 0x82, &c, 1)==0); // sending single characters at a time isn't very optimal, but I didn't find a way to do it USB request based
if (tx_used<sizeof(tx_buffer)) { // buffer not full
tx_buffer[(tx_i+tx_used)%sizeof(tx_buffer)] = c; // put character in buffer
tx_used++; // update used buffer
} else { // buffer full
tx_i = (tx_i+1)%sizeof(tx_buffer); // shift start
tx_buffer[(tx_i+tx_used)%sizeof(tx_buffer)] = c; // overwrite old data
}
usbd_ep_write_packet(usb_device, 0x82, NULL, 0); // trigger tx (not sure why cdcacm_data_tx_cb doesn't work else)
}
void usb_wakeup_isr(void) {

523
lib/vfd_hv518.c Normal file
View File

@ -0,0 +1,523 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library is used to drive the vacuum fluorescent display extracted from a Samsung SER-6500 cash register
* it uses three chained supertex HV518 shift register VFD drivers */
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // general utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/spi.h> // SPI library
#include <libopencm3/stm32/timer.h> // timer library
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include "global.h" // global definitions
#include "vfd_hv518.h" // VFD library API
/* supertex HV518 VFD driver pins */
/* port on which the pins to control the supertex HV518 VFD driver are
* we use port A because of the SPI interface */
#define VFD_PORT GPIOA
#define VFD_PORT_RCC RCC_GPIOA
/* SPI port to use */
#define VFD_SPI SPI1
#if (VFD_SPI==SPI1)
#define VFD_SPI_RCC RCC_SPI1
#define VFD_SPI_IRQ NVIC_SPI1_IRQ
#elif (VFD_SPI==SPI2)
#define VFD_SPI_RCC RCC_SPI2
#define VFD_SPI_IRQ NVIC_SPI2_IRQ
#endif
/* strobe pin to enable high voltage output
* high voltage is output on low
* drive using a GPIO PA6 (normally MISO) */
#define VFD_STR GPIO6
/* latch enable pin
* store the shifted data on low
* output the parallel data on high
* use GPIO (PA4) (NSS does not work as SS) */
#define VFD_NLE GPIO4
/* clock signal
* drive using SPI SCK (PA5) */
#define VFD_CLK GPIO_SPI1_SCK
/* data input, where the data is shifted to
* drive using SPI MOSI (PA7) */
#define VFD_DIN GPIO_SPI1_MOSI
/* timer for automatic refresh */
#define VFD_TIMER TIM2
#if (VFD_TIMER==TIM2)
#define VFD_TIMER_RCC RCC_TIM2
#define VFD_TIMER_IRQ NVIC_TIM2_IRQ
#elif (VFD_TIMER==TIM3)
#define VFD_TIMER_RCC RCC_TIM3
#define VFD_TIMER_IRQ NVIC_TIM3_IRQ
#elif (VFD_TIMER==TIM4)
#define VFD_TIMER_RCC RCC_TIM4
#define VFD_TIMER_IRQ NVIC_TIM4_IRQ
#elif (VFD_TIMER==TIM5)
#define VFD_TIMER_RCC RCC_TIM5
#define VFD_TIMER_IRQ NVIC_TIM5_IRQ
#endif
/* ASCII characters encoded for 7 segments display
* starts with space
*/
static const uint8_t ascii_7segments[] = {
0b00000000, // space
0b00110000, // ! (I)
0b00100010, // "
0b01011100, // # (o)
0b01101101, // $ (s)
0b01010010, // % (/)
0b01111101, // & (6)
0b00100000, // '
0b00111001, // ( ([)
0b00001111, // )
0b01110000, // *
0b01000110, // +
0b00010000, // ,
0b01000000, // -
0b00010000, // . (,)
0b01010010, // /
0b00111111, // 0
0b00000110, // 1
0b01011011, // 2
0b01001111, // 3
0b01100110, // 4
0b01101101, // 5
0b01111101, // 6
0b00000111, // 7
0b01111111, // 8
0b01101111, // 9
0b01001000, // : (=)
0b01001000, // ; (=)
0b01011000, // <
0b01001000, // =
0b01001100, // >
0b01010011, // ?
0b01111011, // @
0b01110111, // A
0b01111111, // B
0b00111001, // C
0b01011110, // D
0b01111001, // E
0b01110001, // F
0b00111101, // G
0b01110110, // H
0b00110000, // I
0b00011110, // J
0b01110110, // K
0b00111000, // L
0b00110111, // M
0b00110111, // N
0b00111111, // O
0b01110011, // P
0b01101011, // Q
0b00110011, // R
0b01101101, // S
0b01111000, // T
0b00111110, // U
0b00111110, // V (U)
0b00111110, // W (U)
0b01110110, // X (H)
0b01101110, // Y
0b01011011, // Z
0b00111001, // [
0b01100100, // '\'
0b00001111, // /
0b00100011, // ^
0b00001000, // _
0b00000010, // `
0b01011111, // a
0b01111100, // b
0b01011000, // c
0b01011110, // d
0b01111011, // e
0b01110001, // f
0b01101111, // g
0b01110100, // h
0b00010000, // i
0b00001100, // j
0b01110110, // k
0b00110000, // l
0b01010100, // m
0b01010100, // n
0b01011100, // o
0b01110011, // p
0b01100111, // q
0b01010000, // r
0b01101101, // s
0b01111000, // t
0b00011100, // u
0b00011100, // v (u)
0b00011100, // w (u)
0b01110110, // x
0b01101110, // y
0b01011011, // z
0b00111001, // { ([)
0b00110000, // |
0b00001111, // } ([)
0b01000000, // ~
};
/* font for the 5x7 dot matrix display
* from http://sunge.awardspace.com/glcd-sd/node4.html
* first value is left-most line
* LSB is top dot, MSB is not used
*/
static const uint8_t font5x7[][5] = {
{0x00, 0x00, 0x00, 0x00, 0x00}, // (space)
{0x00, 0x00, 0x5F, 0x00, 0x00}, // !
{0x00, 0x07, 0x00, 0x07, 0x00}, // "
{0x14, 0x7F, 0x14, 0x7F, 0x14}, // #
{0x24, 0x2A, 0x7F, 0x2A, 0x12}, // $
{0x23, 0x13, 0x08, 0x64, 0x62}, // %
{0x36, 0x49, 0x55, 0x22, 0x50}, // &
{0x00, 0x05, 0x03, 0x00, 0x00}, // '
{0x00, 0x1C, 0x22, 0x41, 0x00}, // (
{0x00, 0x41, 0x22, 0x1C, 0x00}, // )
{0x08, 0x2A, 0x1C, 0x2A, 0x08}, // *
{0x08, 0x08, 0x3E, 0x08, 0x08}, // +
{0x00, 0x50, 0x30, 0x00, 0x00}, // ,
{0x08, 0x08, 0x08, 0x08, 0x08}, // -
{0x00, 0x60, 0x60, 0x00, 0x00}, // .
{0x20, 0x10, 0x08, 0x04, 0x02}, // /
{0x3E, 0x51, 0x49, 0x45, 0x3E}, // 0
{0x00, 0x42, 0x7F, 0x40, 0x00}, // 1
{0x42, 0x61, 0x51, 0x49, 0x46}, // 2
{0x21, 0x41, 0x45, 0x4B, 0x31}, // 3
{0x18, 0x14, 0x12, 0x7F, 0x10}, // 4
{0x27, 0x45, 0x45, 0x45, 0x39}, // 5
{0x3C, 0x4A, 0x49, 0x49, 0x30}, // 6
{0x01, 0x71, 0x09, 0x05, 0x03}, // 7
{0x36, 0x49, 0x49, 0x49, 0x36}, // 8
{0x06, 0x49, 0x49, 0x29, 0x1E}, // 9
{0x00, 0x36, 0x36, 0x00, 0x00}, // :
{0x00, 0x56, 0x36, 0x00, 0x00}, // ;
{0x00, 0x08, 0x14, 0x22, 0x41}, // <
{0x14, 0x14, 0x14, 0x14, 0x14}, // =
{0x41, 0x22, 0x14, 0x08, 0x00}, // >
{0x02, 0x01, 0x51, 0x09, 0x06}, // ?
{0x32, 0x49, 0x79, 0x41, 0x3E}, // @
{0x7E, 0x11, 0x11, 0x11, 0x7E}, // A
{0x7F, 0x49, 0x49, 0x49, 0x36}, // B
{0x3E, 0x41, 0x41, 0x41, 0x22}, // C
{0x7F, 0x41, 0x41, 0x22, 0x1C}, // D
{0x7F, 0x49, 0x49, 0x49, 0x41}, // E
{0x7F, 0x09, 0x09, 0x01, 0x01}, // F
{0x3E, 0x41, 0x41, 0x51, 0x32}, // G
{0x7F, 0x08, 0x08, 0x08, 0x7F}, // H
{0x00, 0x41, 0x7F, 0x41, 0x00}, // I
{0x20, 0x40, 0x41, 0x3F, 0x01}, // J
{0x7F, 0x08, 0x14, 0x22, 0x41}, // K
{0x7F, 0x40, 0x40, 0x40, 0x40}, // L
{0x7F, 0x02, 0x04, 0x02, 0x7F}, // M
{0x7F, 0x04, 0x08, 0x10, 0x7F}, // N
{0x3E, 0x41, 0x41, 0x41, 0x3E}, // O
{0x7F, 0x09, 0x09, 0x09, 0x06}, // P
{0x3E, 0x41, 0x51, 0x21, 0x5E}, // Q
{0x7F, 0x09, 0x19, 0x29, 0x46}, // R
{0x46, 0x49, 0x49, 0x49, 0x31}, // S
{0x01, 0x01, 0x7F, 0x01, 0x01}, // T
{0x3F, 0x40, 0x40, 0x40, 0x3F}, // U
{0x1F, 0x20, 0x40, 0x20, 0x1F}, // V
{0x7F, 0x20, 0x18, 0x20, 0x7F}, // W
{0x63, 0x14, 0x08, 0x14, 0x63}, // X
{0x03, 0x04, 0x78, 0x04, 0x03}, // Y
{0x61, 0x51, 0x49, 0x45, 0x43}, // Z
{0x00, 0x00, 0x7F, 0x41, 0x41}, // [
{0x02, 0x04, 0x08, 0x10, 0x20}, // '\'
{0x41, 0x41, 0x7F, 0x00, 0x00}, // ]
{0x04, 0x02, 0x01, 0x02, 0x04}, // ^
{0x40, 0x40, 0x40, 0x40, 0x40}, // _
{0x00, 0x01, 0x02, 0x04, 0x00}, // `
{0x20, 0x54, 0x54, 0x54, 0x78}, // a
{0x7F, 0x48, 0x44, 0x44, 0x38}, // b
{0x38, 0x44, 0x44, 0x44, 0x20}, // c
{0x38, 0x44, 0x44, 0x48, 0x7F}, // d
{0x38, 0x54, 0x54, 0x54, 0x18}, // e
{0x08, 0x7E, 0x09, 0x01, 0x02}, // f
{0x08, 0x14, 0x54, 0x54, 0x3C}, // g
{0x7F, 0x08, 0x04, 0x04, 0x78}, // h
{0x00, 0x44, 0x7D, 0x40, 0x00}, // i
{0x20, 0x40, 0x44, 0x3D, 0x00}, // j
{0x00, 0x7F, 0x10, 0x28, 0x44}, // k
{0x00, 0x41, 0x7F, 0x40, 0x00}, // l
{0x7C, 0x04, 0x18, 0x04, 0x78}, // m
{0x7C, 0x08, 0x04, 0x04, 0x78}, // n
{0x38, 0x44, 0x44, 0x44, 0x38}, // o
{0x7C, 0x14, 0x14, 0x14, 0x08}, // p
{0x08, 0x14, 0x14, 0x18, 0x7C}, // q
{0x7C, 0x08, 0x04, 0x04, 0x08}, // r
{0x48, 0x54, 0x54, 0x54, 0x20}, // s
{0x04, 0x3F, 0x44, 0x40, 0x20}, // t
{0x3C, 0x40, 0x40, 0x20, 0x7C}, // u
{0x1C, 0x20, 0x40, 0x20, 0x1C}, // v
{0x3C, 0x40, 0x30, 0x40, 0x3C}, // w
{0x44, 0x28, 0x10, 0x28, 0x44}, // x
{0x0C, 0x50, 0x50, 0x50, 0x3C}, // y
{0x44, 0x64, 0x54, 0x4C, 0x44}, // z
{0x00, 0x08, 0x36, 0x41, 0x00}, // {
{0x00, 0x00, 0x7F, 0x00, 0x00}, // |
{0x00, 0x41, 0x36, 0x08, 0x00}, // }
{0b00001000, 0b00000100, 0b00001100, 0b00001000, 0b00000100} // ~
};
/* pictures for the 5x7 dot matrix display
* first value is left-most line
* LSB is top dot, MSB is not used
*/
static const uint8_t pict5x7[][5] = {
{0x08, 0x08, 0x2A, 0x1C, 0x08}, // ->
{0x08, 0x1C, 0x2A, 0x08, 0x08}, // <-
{0b01110000, 0b01110000, 0b01111010, 0b01111100, 0b01011000}, // bunny side 1
{0b00100000, 0b01110000, 0b01110010, 0b01111100, 0b01011000}, // bunny side 2
{0b00111110, 0b01001001, 0b01010110, 0b01001001, 0b00111110}, // bunny face 1
{0b00111110, 0b01010001, 0b01100110, 0b01010001, 0b00111110}, // bunny face 2
{0b00111000, 0b01010111, 0b01100100, 0b01010111, 0b00111000}, // bunny face 3
{0b00111000, 0b01001111, 0b01010100, 0b01001111, 0b00111000}, // bunny face 4
{0b00111000, 0b01011110, 0b01101000, 0b01011110, 0b00111000}, // bunny face 5
{0b01000001, 0b00110110, 0b00001000, 0b00110110, 0b01000001}, // cross 1
{~0b01000001, ~0b00110110, ~0b00001000, ~0b00110110, ~0b01000001}, // cross 1 negated
{0b00100010, 0b00010100, 0b00001000, 0b00010100, 0b00100010}, // cross 2
{~0b00100010, ~0b00010100, ~0b00001000, ~0b00010100, ~0b00100010}, // cross 2 negated
{0x00, 0x00, 0x00, 0x00, 0x00} // nothing
};
/* the 32 bits values to be shifted out to the VFD driver
* split into 16 bit for SPI transfer
* since the bits for digits and matrix are independent, they can be combined
* we have more matrix (12) than digits (10)
*/
static uint16_t driver_data[VFD_MATRIX][VFD_DRIVERS*2] = {0};
static volatile uint8_t spi_i = 0; // which driver data is being transmitted
static volatile uint8_t vfd_grid = 0; // which grid/part to activate (single digits and matrix can be combined)
static const uint32_t digit_mask = 0x00fffff0; // the bits used for selecting then digit and 7 segment anodes (for the second driver)
/* set digit <nb> to ASCII character <c>
* use the MSB of <c> to enable the dot */
void vfd_digit(uint8_t nb, char c)
{
if (!(nb<VFD_DIGITS)) { // check the digit exists
return;
}
uint32_t digit_data = 0; // the data to be shifted out for the driver (for the second driver)
digit_data = 1<<(4+(9-nb)); // select digit
/* encode segment
* here the bit order (classic 7 segment + underline and dot)
* 3_
* 8|9_|4
* 7|6_|5.1
* 0_2,
* */
if (false) { // add the underline (not encoded)
digit_data |= (1<<(14));
}
if (c&0x80) { // add the dot (encoded in the 8th bit)
digit_data |= (1<<(15));
}
if (false) { // add the comma (not encoded)
digit_data |= (1<<(16));
}
c &= 0x7f; // only take the ASCII part
if (c>=' ') { // only take printable characters
uint8_t i = c-' '; // get index for character
if (i<LENGTH(ascii_7segments)) {
digit_data |= (ascii_7segments[i]<<(17)); // add encoded segments to memory
}
}
digit_data &= digit_mask; // be sure only the bits for the digit are used
digit_data |= (driver_data[nb][2]+(driver_data[nb][3]<<16))&~digit_mask; // get the existing data and add the bits for the digit
driver_data[nb][2] = digit_data; // write back data (least significant half)
driver_data[nb][3] = (digit_data>>16); // write back data (most significant half)
}
/* set dot matrix <nb> to ASCII character <c>
* non ASCII characters are used for pictures */
void vfd_matrix(uint8_t nb, char c)
{
// check the matrix exists
if (!(nb<VFD_MATRIX)) {
return;
}
uint32_t matrix_data[VFD_DRIVERS] = {0}; // the data to be shifted out for the driver
// select matrix
if (nb<4) {
matrix_data[1] = 1<<(3-nb);
} else {
matrix_data[0] = 1<<(35-nb);
}
if ((c<0x80) && (c>=' ')) { // only take printable characters
uint8_t i = c-' '; // get index for character
if (i<LENGTH(font5x7)) {
matrix_data[1] |= font5x7[i][0]<<24;
matrix_data[2] |= font5x7[i][1]<<0;
matrix_data[2] |= font5x7[i][2]<<8;
matrix_data[2] |= font5x7[i][3]<<16;
matrix_data[2] |= font5x7[i][4]<<24;
}
} else if (c>0x7f) { // the non ASCII character are used for pictures
uint8_t i = c-0x80; // get index for character
if (i<LENGTH(pict5x7)) {
matrix_data[1] |= pict5x7[i][0]<<24;
matrix_data[2] |= pict5x7[i][1]<<0;
matrix_data[2] |= pict5x7[i][2]<<8;
matrix_data[2] |= pict5x7[i][3]<<16;
matrix_data[2] |= pict5x7[i][4]<<24;
}
}
matrix_data[1] &= ~digit_mask; // be sure only the bits for the matrix are used
matrix_data[1] |= (driver_data[nb][2]+(driver_data[nb][3]<<16))&digit_mask; // get the existing data for the digit
// prepare the data for SPI to shift it out
for (uint8_t i=0; i<LENGTH(matrix_data); i++) {
driver_data[nb][i*2] = matrix_data[i];
driver_data[nb][i*2+1] = matrix_data[i]>>16;
}
}
/* clear VFD display */
void vfd_clear(void)
{
for (uint8_t i=0; i<LENGTH(driver_data); i++) {
for (uint8_t j=0; j<LENGTH(driver_data[0]); j++) {
driver_data[i][j] = 0;
}
}
}
/* test VFD display (light up all anodes) */
void vfd_test(void)
{
for (uint8_t i=0; i<LENGTH(driver_data); i++) {
for (uint8_t j=0; j<LENGTH(driver_data[0]); j++) {
driver_data[i][j] = ~0;
}
}
}
/* switch VFD display on */
void vfd_on(void)
{
gpio_clear(VFD_PORT, VFD_STR); // enable HV output
timer_enable_counter(VFD_TIMER); // start timer to periodically output that to the parts
}
/* switch VFD display off */
void vfd_off(void)
{
gpio_set(VFD_PORT, VFD_STR); // disable HV output
timer_disable_counter(VFD_TIMER); // stop timer to periodically output that to the parts
}
/* setup VFD */
void vfd_setup(void)
{
/* setup GPIO to control the VFD */
rcc_periph_clock_enable(VFD_PORT_RCC); // enable clock for VFD GPIO
gpio_set_mode(VFD_PORT, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, VFD_STR); // set VFD pin to output push-pull
gpio_set_mode(VFD_PORT, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, VFD_NLE); // set VFD pin to output push-pull
gpio_set(VFD_PORT, VFD_STR); // disable HV output
gpio_clear(VFD_PORT, VFD_NLE); // do not output latched data
/* setup SPI to transmit data */
rcc_periph_clock_enable(VFD_SPI_RCC); // enable SPI clock
gpio_set_mode(VFD_PORT, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, VFD_CLK); // set VFD pin to alternative function push-pull
gpio_set_mode(VFD_PORT, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, VFD_DIN); // set VFD pin to alternative function push-pull
spi_reset(VFD_SPI); // clear SPI values
/* set SPI:
* - use VFD_SPI port
* - divide clock by 8 for generating the baudrate (F_PCLK1 is 36MHz, max HV518 is 6MHz)
* - clock idle high polarity
* - data is valid on rising edge (second clock phase)
* - send 16 bits at a time
* - send least significant bit first (that's how I coded the data)
*/
spi_init_master(VFD_SPI, SPI_CR1_BAUDRATE_FPCLK_DIV_8, SPI_CR1_CPOL_CLK_TO_1_WHEN_IDLE, SPI_CR1_CPHA_CLK_TRANSITION_2, SPI_CR1_DFF_16BIT, SPI_CR1_LSBFIRST);
//spi_set_bidirectional_transmit_only_mode(VFD_SPI); // only use MOSI to transmit
spi_set_unidirectional_mode(VFD_SPI); // MISO is unused
/* set NSS high to enable transmission
* the NSS in STM32 can not be used as hardware slave select
* RM0008 reference manual 25.3.1 is misleading
* when hardware NSS is used and output is enabled NSS never goes up after transmission, even if SPI is disabled
* when software NSS is used, NSS can not be set high again, even when writing to the register
* the slave select must be done manually using GPIO */
spi_enable_software_slave_management(VFD_SPI);
spi_set_nss_high(VFD_SPI); // set NSS high
nvic_enable_irq(VFD_SPI_IRQ); // enable SPI interrupt
spi_enable(VFD_SPI); // enable SPI (the tx empty interrupt will trigger)
/* setup timer to refresh display */
rcc_periph_clock_enable(VFD_TIMER_RCC); // enable clock for timer block
timer_reset(VFD_TIMER); // reset timer state
timer_set_mode(VFD_TIMER, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock,edge alignment (simple count), and count up
timer_set_prescaler(VFD_TIMER, (SYSTEM_CLOCK_FREQ/(1<<16))-1); // set the prescaler so this 16 bits timer overflows at 1Hz
timer_set_period(VFD_TIMER, 0xffff/LENGTH(driver_data)/100); // set the refresh frequency
timer_enable_irq(VFD_TIMER, TIM_DIER_UIE); // enable interrupt for timer
nvic_enable_irq(VFD_TIMER_IRQ); // allow interrupt for timer
vfd_clear(); // initialize values
}
#if (VFD_SPI==SPI1)
void spi1_isr(void)
#elif (VFD_SPI==SPI2)
void spi2_isr(void)
#endif
{
if (SPI_SR(VFD_SPI) & SPI_SR_TXE) { // transmission buffer empty
if (spi_i<LENGTH(driver_data[0])) { // check if data is available
gpio_clear(VFD_PORT, VFD_NLE); // slave select to latch data
spi_send(VFD_SPI, driver_data[vfd_grid][spi_i++]); // send next data
} else { // all data transmitted
spi_disable_tx_buffer_empty_interrupt(VFD_SPI); // no need to wait for new data
while (SPI_SR(VFD_SPI) & SPI_SR_BSY); // wait for data to be shifted out
spi_disable_tx_buffer_empty_interrupt(VFD_SPI); // no need to wait for new data
gpio_set(VFD_PORT, VFD_NLE); // output latched data
}
}
}
#if (VFD_TIMER==TIM2)
void tim2_isr(void)
#elif (VFD_TIMER==TIM3)
void tim3_isr(void)
#elif (VFD_TIMER==TIM4)
void tim4_isr(void)
#elif (VFD_TIMER==TIM5)
void tim5_isr(void)
#endif
{
if (timer_get_flag(VFD_TIMER, TIM_SR_UIF)) { // overflow even happened
timer_clear_flag(VFD_TIMER, TIM_SR_UIF); // clear flag
spi_i = 0; // set the register to shift out
spi_enable_tx_buffer_empty_interrupt(VFD_SPI); // enable TX empty interrupt
vfd_grid = (vfd_grid+1)%LENGTH(driver_data); // got to next segment
}
}

39
lib/vfd_hv518.h Normal file
View File

@ -0,0 +1,39 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library is used to drive the vacuum fluorescent display extracted from a Samsung SER-6500 cash register
* it uses three chained supertex HV518 shift register VFD drivers */
/* the number of blocks available on the VFD */
#define VFD_DRIVERS 3
#define VFD_DIGITS 10
#define VFD_MATRIX 12
/* set digit <nb> to ASCII character <c>
* use the MSB of <c> to enable the dot */
void vfd_digit(uint8_t nb, char c);
/* set dot matrix <nb> to ASCII character <c>
* non ASCII characters are used for pictures */
void vfd_matrix(uint8_t nb, char c);
/* clear VFD display */
void vfd_clear(void);
/* test VFD display (light up all anodes) */
void vfd_test(void);
/* transmit every digit and matrix */
void vfd_on(void);
/* switch VFD display off */
void vfd_off(void);
/* setup VFD */
void vfd_setup(void);

2
main.c
View File

@ -28,7 +28,7 @@
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
/* own libraries */
#include "main.h" // board definitions
#include "global.h" // board definitions
#include "usart.h" // USART utilities
#include "usb_cdcacm.h" // USB CDC ACM utilities