espressif_tinyusb/src/portable/renesas/usba/hcd_usba.c

876 lines
25 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Koji Kitayama
* Portions copyrighted (c) 2021 Roland Winistoerfer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUH_ENABLED && ( CFG_TUSB_MCU == OPT_MCU_RX63X || \
CFG_TUSB_MCU == OPT_MCU_RX65X || \
CFG_TUSB_MCU == OPT_MCU_RX72N )
#include "host/hcd.h"
#include "iodefine.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
#define SYSTEM_PRCR_PRC1 (1<<1)
#define SYSTEM_PRCR_PRKEY (0xA5u<<8)
#define USB_DVSTCTR0_LOW (1u)
#define USB_DVSTCTR0_FULL (2u)
#define USB_FIFOSEL_TX ((uint16_t)(1u<<5))
#define USB_FIFOSEL_BIGEND ((uint16_t)(1u<<8))
#define USB_FIFOSEL_MBW_8 ((uint16_t)(0u<<10))
#define USB_FIFOSEL_MBW_16 ((uint16_t)(1u<<10))
#define USB_IS0_CTSQ ((uint16_t)(7u))
#define USB_IS0_DVSQ ((uint16_t)(7u<<4))
#define USB_IS0_VALID ((uint16_t)(1u<<3))
#define USB_IS0_BRDY ((uint16_t)(1u<<8))
#define USB_IS0_NRDY ((uint16_t)(1u<<9))
#define USB_IS0_BEMP ((uint16_t)(1u<<10))
#define USB_IS0_CTRT ((uint16_t)(1u<<11))
#define USB_IS0_DVST ((uint16_t)(1u<<12))
#define USB_IS0_SOFR ((uint16_t)(1u<<13))
#define USB_IS0_RESM ((uint16_t)(1u<<14))
#define USB_IS0_VBINT ((uint16_t)(1u<<15))
#define USB_IS1_SACK ((uint16_t)(1u<<4))
#define USB_IS1_SIGN ((uint16_t)(1u<<5))
#define USB_IS1_EOFERR ((uint16_t)(1u<<6))
#define USB_IS1_ATTCH ((uint16_t)(1u<<11))
#define USB_IS1_DTCH ((uint16_t)(1u<<12))
#define USB_IS1_BCHG ((uint16_t)(1u<<14))
#define USB_IS1_OVRCR ((uint16_t)(1u<<15))
#define USB_IS0_CTSQ_MSK (7u)
#define USB_IS0_CTSQ_SETUP (1u)
#define USB_IS0_DVSQ_DEF (1u<<4)
#define USB_IS0_DVSQ_ADDR (2u<<4)
#define USB_IS0_DVSQ_SUSP0 (4u<<4)
#define USB_IS0_DVSQ_SUSP1 (5u<<4)
#define USB_IS0_DVSQ_SUSP2 (6u<<4)
#define USB_IS0_DVSQ_SUSP3 (7u<<4)
#define USB_PIPECTR_PID_MSK (3u)
#define USB_PIPECTR_PID_NAK (0u)
#define USB_PIPECTR_PID_BUF (1u)
#define USB_PIPECTR_PID_STALL (2u)
#define USB_PIPECTR_CCPL (1u<<2)
#define USB_PIPECTR_SQMON (1u<<6)
#define USB_PIPECTR_SQCLR (1u<<8)
#define USB_PIPECTR_ACLRM (1u<<9)
#define USB_PIPECTR_INBUFM (1u<<14)
#define USB_PIPECTR_BSTS (1u<<15)
#define USB_FIFOCTR_DTLN (0x1FF)
#define USB_FIFOCTR_FRDY (1u<<13)
#define USB_FIFOCTR_BCLR (1u<<14)
#define USB_FIFOCTR_BVAL (1u<<15)
#define USB_PIPECFG_SHTNAK (1u<<7)
#define USB_PIPECFG_DBLB (1u<<9)
#define USB_PIPECFG_BULK (1u<<14)
#define USB_PIPECFG_ISO (3u<<14)
#define USB_PIPECFG_INT (2u<<14)
#define USB_DEVADD_LOW (1u<<6)
#define USB_DEVADD_FULL (2u<<6)
#define FIFO_REQ_CLR (1u)
#define FIFO_COMPLETE (1u<<1)
// Start of definition of packed structs (used by the CCRX toolchain)
TU_ATTR_PACKED_BEGIN
TU_ATTR_BIT_FIELD_ORDER_BEGIN
typedef struct {
union {
struct {
uint16_t : 8;
uint16_t TRCLR: 1;
uint16_t TRENB: 1;
uint16_t : 0;
};
uint16_t TRE;
};
uint16_t TRN;
} reg_pipetre_t;
typedef union {
struct {
volatile uint16_t u8: 8;
volatile uint16_t : 0;
};
volatile uint16_t u16;
} hw_fifo_t;
typedef struct TU_ATTR_PACKED
{
void *buf; /* the start address of a transfer data buffer */
uint16_t length; /* the number of bytes in the buffer */
uint16_t remaining; /* the number of bytes remaining in the buffer */
struct {
uint32_t ep : 8; /* an assigned endpoint address */
uint32_t dev : 8; /* an assigned device address */
uint32_t ff : 1; /* `buf` is TU_FUFO or POD */
uint32_t : 0;
};
} pipe_state_t;
TU_ATTR_PACKED_END // End of definition of packed structs (used by the CCRX toolchain)
TU_ATTR_BIT_FIELD_ORDER_END
typedef struct
{
bool need_reset; /* The device has not been reset after connection. */
pipe_state_t pipe[10];
uint8_t ep[4][2][15]; /* a lookup table for a pipe index from an endpoint address */
uint8_t ctl_mps[5]; /* EP0 max packet size for each device */
} hcd_data_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static hcd_data_t _hcd;
static uint32_t disable_interrupt(void)
{
uint32_t pswi;
#if defined(__CCRX__)
pswi = get_psw() & 0x010000;
clrpsw_i();
#else
pswi = __builtin_rx_mvfc(0) & 0x010000;
__builtin_rx_clrpsw('I');
#endif
return pswi;
}
static void enable_interrupt(uint32_t pswi)
{
#if defined(__CCRX__)
set_psw(get_psw() | pswi);
#else
__builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi);
#endif
}
static unsigned find_pipe(unsigned xfer)
{
switch (xfer) {
case TUSB_XFER_ISOCHRONOUS:
for (int i = 1; i <= 2; ++i) {
if (0 == _hcd.pipe[i].ep) return i;
}
break;
case TUSB_XFER_BULK:
for (int i = 3; i <= 5; ++i) {
if (0 == _hcd.pipe[i].ep) return i;
}
for (int i = 1; i <= 1; ++i) {
if (0 == _hcd.pipe[i].ep) return i;
}
break;
case TUSB_XFER_INTERRUPT:
for (int i = 6; i <= 9; ++i) {
if (0 == _hcd.pipe[i].ep) return i;
}
break;
default:
/* No support for control transfer */
break;
}
return 0;
}
static volatile uint16_t* get_pipectr(unsigned num)
{
volatile uint16_t *ctr = NULL;
if (num) {
ctr = (volatile uint16_t*)&USB0.PIPE1CTR.WORD;
ctr += num - 1;
} else {
ctr = (volatile uint16_t*)&USB0.DCPCTR.WORD;
}
return ctr;
}
static volatile reg_pipetre_t* get_pipetre(unsigned num)
{
volatile reg_pipetre_t* tre = NULL;
if ((1 <= num) && (num <= 5)) {
tre = (volatile reg_pipetre_t*)&USB0.PIPE1TRE.WORD;
tre += num - 1;
}
return tre;
}
static volatile uint16_t* addr_to_pipectr(uint8_t dev_addr, unsigned ep_addr)
{
volatile uint16_t *ctr = NULL;
const unsigned epn = tu_edpt_number(ep_addr);
if (epn) {
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned num = _hcd.ep[dev_addr][dir_in][epn - 1];
if (num) {
ctr = (volatile uint16_t*)&USB0.PIPE1CTR.WORD;
ctr += num - 1;
}
} else {
ctr = (volatile uint16_t*)&USB0.DCPCTR.WORD;
}
return ctr;
}
static unsigned edpt0_max_packet_size(void)
{
return USB0.DCPMAXP.BIT.MXPS;
}
static unsigned edpt_max_packet_size(unsigned num)
{
USB0.PIPESEL.WORD = num;
return USB0.PIPEMAXP.BIT.MXPS;
}
static inline void pipe_wait_for_ready(unsigned num)
{
while (USB0.D0FIFOSEL.BIT.CURPIPE != num) ;
while (!USB0.D0FIFOCTR.BIT.FRDY) ;
}
static void pipe_write_packet(void *buf, volatile void *fifo, unsigned len)
{
volatile hw_fifo_t *reg = (volatile hw_fifo_t*)fifo;
uintptr_t addr = (uintptr_t)buf;
while (len >= 2) {
reg->u16 = *(const uint16_t *)addr;
addr += 2;
len -= 2;
}
if (len) {
reg->u8 = *(const uint8_t *)addr;
++addr;
}
}
static void pipe_read_packet(void *buf, volatile void *fifo, unsigned len)
{
uint8_t *p = (uint8_t*)buf;
volatile uint8_t *reg = (volatile uint8_t*)fifo; /* byte access is always at base register address */
while (len--) *p++ = *reg;
}
static bool pipe0_xfer_in(void)
{
pipe_state_t *pipe = &_hcd.pipe[0];
const unsigned rem = pipe->remaining;
const unsigned mps = edpt0_max_packet_size();
const unsigned vld = USB0.CFIFOCTR.BIT.DTLN;
const unsigned len = TU_MIN(TU_MIN(rem, mps), vld);
void *buf = pipe->buf;
if (len) {
USB0.DCPCTR.WORD = USB_PIPECTR_PID_NAK;
pipe_read_packet(buf, (volatile void*)&USB0.CFIFO.WORD, len);
pipe->buf = (uint8_t*)buf + len;
}
if (len < mps) USB0.CFIFOCTR.WORD = USB_FIFOCTR_BCLR;
pipe->remaining = rem - len;
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return true;
}
USB0.DCPCTR.WORD = USB_PIPECTR_PID_BUF;
return false;
}
static bool pipe0_xfer_out(void)
{
pipe_state_t *pipe = &_hcd.pipe[0];
const unsigned rem = pipe->remaining;
if (!rem) {
pipe->buf = NULL;
return true;
}
const unsigned mps = edpt0_max_packet_size();
const unsigned len = TU_MIN(mps, rem);
void *buf = pipe->buf;
if (len) {
pipe_write_packet(buf, (volatile void*)&USB0.CFIFO.WORD, len);
pipe->buf = (uint8_t*)buf + len;
}
if (len < mps) USB0.CFIFOCTR.WORD = USB_FIFOCTR_BVAL;
pipe->remaining = rem - len;
return false;
}
static bool pipe_xfer_in(unsigned num)
{
pipe_state_t *pipe = &_hcd.pipe[num];
const unsigned rem = pipe->remaining;
USB0.D0FIFOSEL.WORD = num | USB_FIFOSEL_MBW_8;
const unsigned mps = edpt_max_packet_size(num);
pipe_wait_for_ready(num);
const unsigned vld = USB0.D0FIFOCTR.BIT.DTLN;
const unsigned len = TU_MIN(TU_MIN(rem, mps), vld);
void *buf = pipe->buf;
if (len) {
pipe_read_packet(buf, (volatile void*)&USB0.D0FIFO.WORD, len);
pipe->buf = (uint8_t*)buf + len;
}
if (len < mps) USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BCLR;
USB0.D0FIFOSEL.WORD = 0;
while (USB0.D0FIFOSEL.BIT.CURPIPE) ; /* if CURPIPE bits changes, check written value */
pipe->remaining = rem - len;
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return NULL != buf;
}
return false;
}
static bool pipe_xfer_out(unsigned num)
{
pipe_state_t *pipe = &_hcd.pipe[num];
const unsigned rem = pipe->remaining;
if (!rem) {
pipe->buf = NULL;
return true;
}
USB0.D0FIFOSEL.WORD = num | USB_FIFOSEL_MBW_16 | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? USB_FIFOSEL_BIGEND : 0);
const unsigned mps = edpt_max_packet_size(num);
pipe_wait_for_ready(num);
const unsigned len = TU_MIN(rem, mps);
void *buf = pipe->buf;
if (len) {
pipe_write_packet(buf, (volatile void*)&USB0.D0FIFO.WORD, len);
pipe->buf = (uint8_t*)buf + len;
}
if (len < mps) USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BVAL;
USB0.D0FIFOSEL.WORD = 0;
while (USB0.D0FIFOSEL.BIT.CURPIPE) ; /* if CURPIPE bits changes, check written value */
pipe->remaining = rem - len;
return false;
}
static bool process_pipe0_xfer(uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen)
{
(void)dev_addr;
const unsigned dir_in = tu_edpt_dir(ep_addr);
/* configure fifo direction and access unit settings */
if (dir_in) { /* IN, a byte */
USB0.CFIFOSEL.WORD = USB_FIFOSEL_MBW_8;
while (USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX) ;
} else { /* OUT, 2 bytes */
USB0.CFIFOSEL.WORD = USB_FIFOSEL_TX | USB_FIFOSEL_MBW_16 | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? USB_FIFOSEL_BIGEND : 0);
while (!(USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX)) ;
}
pipe_state_t *pipe = &_hcd.pipe[0];
pipe->ep = ep_addr;
pipe->length = buflen;
pipe->remaining = buflen;
if (buflen) {
pipe->buf = buffer;
if (!dir_in) { /* OUT */
TU_ASSERT(USB0.DCPCTR.BIT.BSTS && (USB0.USBREQ.WORD & 0x80));
pipe0_xfer_out();
}
} else { /* ZLP */
pipe->buf = NULL;
if (!dir_in) { /* OUT */
USB0.CFIFOCTR.WORD = USB_FIFOCTR_BVAL;
}
if (dir_in == USB0.DCPCFG.BIT.DIR) {
TU_ASSERT(USB_PIPECTR_PID_NAK == USB0.DCPCTR.BIT.PID);
USB0.DCPCTR.BIT.SQSET = 1;
USB0.DCPCFG.BIT.DIR = dir_in ^ 1;
}
}
USB0.DCPCTR.WORD = USB_PIPECTR_PID_BUF;
return true;
}
static bool process_pipe_xfer(uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen)
{
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned num = _hcd.ep[dev_addr - 1][dir_in][epn - 1];
TU_ASSERT(num);
pipe_state_t *pipe = &_hcd.pipe[num];
pipe->buf = buffer;
pipe->length = buflen;
pipe->remaining = buflen;
if (!dir_in) { /* OUT */
if (buflen) {
pipe_xfer_out(num);
} else { /* ZLP */
USB0.D0FIFOSEL.WORD = num;
pipe_wait_for_ready(num);
USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BVAL;
USB0.D0FIFOSEL.WORD = 0;
while (USB0.D0FIFOSEL.BIT.CURPIPE) ; /* if CURPIPE bits changes, check written value */
}
} else {
volatile uint16_t *ctr = get_pipectr(num);
volatile reg_pipetre_t *pt = get_pipetre(num);
if (pt) {
const unsigned mps = edpt_max_packet_size(num);
if (*ctr & 0x3) *ctr = USB_PIPECTR_PID_NAK;
pt->TRE = TU_BIT(8);
pt->TRN = (buflen + mps - 1) / mps;
pt->TRENB = 1;
}
*ctr = USB_PIPECTR_PID_BUF;
}
return true;
}
static bool process_edpt_xfer(uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen)
{
const unsigned epn = tu_edpt_number(ep_addr);
if (0 == epn) {
return process_pipe0_xfer(dev_addr, ep_addr, buffer, buflen);
} else {
return process_pipe_xfer(dev_addr, ep_addr, buffer, buflen);
}
}
static void process_pipe0_bemp(uint8_t rhport)
{
(void)rhport;
bool completed = pipe0_xfer_out();
if (completed) {
pipe_state_t *pipe = &_hcd.pipe[0];
hcd_event_xfer_complete(pipe->dev,
tu_edpt_addr(0, TUSB_DIR_OUT),
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
}
}
static void process_pipe_nrdy(uint8_t rhport, unsigned num)
{
(void)rhport;
unsigned result;
uint16_t volatile *ctr = get_pipectr(num);
// TU_LOG1("NRDY %d %x\n", num, *ctr);
switch (*ctr & USB_PIPECTR_PID_MSK) {
default: return;
case USB_PIPECTR_PID_STALL: result = XFER_RESULT_STALLED; break;
case USB_PIPECTR_PID_NAK: result = XFER_RESULT_FAILED; break;
}
pipe_state_t *pipe = &_hcd.pipe[num];
hcd_event_xfer_complete(pipe->dev, pipe->ep,
pipe->length - pipe->remaining,
result, true);
}
static void process_pipe_brdy(uint8_t rhport, unsigned num)
{
(void)rhport;
pipe_state_t *pipe = &_hcd.pipe[num];
const unsigned dir_in = tu_edpt_dir(pipe->ep);
bool completed;
if (dir_in) { /* IN */
if (num) {
completed = pipe_xfer_in(num);
} else {
completed = pipe0_xfer_in();
}
} else {
completed = pipe_xfer_out(num);
}
if (completed) {
hcd_event_xfer_complete(pipe->dev, pipe->ep,
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
// TU_LOG1("C %d %d\r\n", num, pipe->length - pipe->remaining);
}
}
/*------------------------------------------------------------------*/
/* Host API
*------------------------------------------------------------------*/
bool hcd_init(uint8_t rhport)
{
(void)rhport;
/* Enable USB0 */
uint32_t pswi = disable_interrupt();
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY | SYSTEM_PRCR_PRC1;
MSTP(USB0) = 0;
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY;
enable_interrupt(pswi);
USB0.SYSCFG.BIT.SCKE = 1;
while (!USB0.SYSCFG.BIT.SCKE) ;
USB0.SYSCFG.BIT.DPRPU = 0;
USB0.SYSCFG.BIT.DRPD = 0;
USB0.SYSCFG.BIT.DCFM = 1;
USB0.DVSTCTR0.BIT.VBUSEN = 1;
USB0.SYSCFG.BIT.DRPD = 1;
for (volatile int i = 0; i < 30000; ++i) ;
USB0.SYSCFG.BIT.USBE = 1;
USB.DPUSR0R.BIT.FIXPHY0 = 0u; /* USB0 Transceiver Output fixed */
#if ( CFG_TUSB_MCU == OPT_MCU_RX72N )
USB0.PHYSLEW.LONG = 0x5;
IR(PERIB, INTB185) = 0;
#else
IR(USB0, USBI0) = 0;
#endif
/* Setup default control pipe */
USB0.DCPCFG.WORD = USB_PIPECFG_SHTNAK;
USB0.DCPMAXP.WORD = 64;
USB0.INTENB0.WORD = USB_IS0_BRDY | USB_IS0_NRDY | USB_IS0_BEMP;
USB0.INTENB1.WORD = USB_IS1_SACK | USB_IS1_SIGN |
USB_IS1_ATTCH | USB_IS1_DTCH;
USB0.BEMPENB.WORD = 1;
USB0.NRDYENB.WORD = 1;
USB0.BRDYENB.WORD = 1;
return true;
}
void hcd_int_enable(uint8_t rhport)
{
(void)rhport;
#if ( CFG_TUSB_MCU == OPT_MCU_RX72N )
IEN(PERIB, INTB185) = 1;
#else
IEN(USB0, USBI0) = 1;
#endif
}
void hcd_int_disable(uint8_t rhport)
{
(void)rhport;
#if ( CFG_TUSB_MCU == OPT_MCU_RX72N )
IEN(PERIB, INTB185) = 0;
#else
IEN(USB0, USBI0) = 0;
#endif
}
uint32_t hcd_frame_number(uint8_t rhport)
{
(void)rhport;
/* The device must be reset at least once after connection
* in order to start the frame counter. */
if (_hcd.need_reset) hcd_port_reset(rhport);
return USB0.FRMNUM.BIT.FRNM;
}
/*--------------------------------------------------------------------+
* Port API
*--------------------------------------------------------------------+*/
bool hcd_port_connect_status(uint8_t rhport)
{
(void)rhport;
return USB0.INTSTS1.BIT.ATTCH ? true : false;
}
void hcd_port_reset(uint8_t rhport)
{
USB0.DCPCTR.WORD = USB_PIPECTR_PID_NAK;
while (USB0.DCPCTR.BIT.PBUSY) ;
hcd_int_disable(rhport);
USB0.DVSTCTR0.BIT.UACT = 0;
if (USB0.DCPCTR.BIT.SUREQ)
USB0.DCPCTR.BIT.SUREQCLR = 1;
hcd_int_enable(rhport);
/* Reset should be asserted 10-20ms. */
USB0.DVSTCTR0.BIT.USBRST = 1;
for (volatile int i = 0; i < 2400000; ++i) ;
USB0.DVSTCTR0.BIT.USBRST = 0;
USB0.DVSTCTR0.BIT.UACT = 1;
_hcd.need_reset = false;
}
void hcd_port_reset_end(uint8_t rhport)
{
(void) rhport;
}
tusb_speed_t hcd_port_speed_get(uint8_t rhport)
{
(void)rhport;
switch (USB0.DVSTCTR0.BIT.RHST) {
default: return TUSB_SPEED_INVALID;
case USB_DVSTCTR0_FULL: return TUSB_SPEED_FULL;
case USB_DVSTCTR0_LOW: return TUSB_SPEED_LOW;
}
}
void hcd_device_close(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
uint16_t volatile *ctr;
TU_ASSERT(dev_addr < 6,); /* USBa can only handle addresses from 0 to 5. */
if (!dev_addr) return;
_hcd.ctl_mps[dev_addr] = 0;
uint8_t *ep = &_hcd.ep[dev_addr - 1][0][0];
for (int i = 0; i < 2 * 15; ++i, ++ep) {
unsigned num = *ep;
if (!num || dev_addr != _hcd.pipe[num].dev) continue;
ctr = (uint16_t volatile*)&USB0.PIPE1CTR.WORD + num - 1;
*ctr = 0;
USB0.NRDYENB.WORD &= ~TU_BIT(num);
USB0.BRDYENB.WORD &= ~TU_BIT(num);
USB0.PIPESEL.WORD = num;
USB0.PIPECFG.WORD = 0;
USB0.PIPEMAXP.WORD = 0;
_hcd.pipe[num].ep = 0;
_hcd.pipe[num].dev = 0;
*ep = 0;
}
}
/*--------------------------------------------------------------------+
* Endpoints API
*--------------------------------------------------------------------+*/
bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8])
{
(void)rhport;
// TU_LOG1("S %d %x\n", dev_addr, USB0.DCPCTR.WORD);
TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */
TU_ASSERT(0 == USB0.DCPCTR.BIT.SUREQ);
USB0.DCPCTR.WORD = USB_PIPECTR_PID_NAK;
_hcd.pipe[0].buf = NULL;
_hcd.pipe[0].length = 8;
_hcd.pipe[0].remaining = 0;
_hcd.pipe[0].dev = dev_addr;
while (USB0.DCPCTR.BIT.PBUSY) ;
USB0.DCPMAXP.WORD = (dev_addr << 12) | _hcd.ctl_mps[dev_addr];
/* Set direction in advance for DATA stage */
uint8_t const bmRequesttype = setup_packet[0];
USB0.DCPCFG.BIT.DIR = tu_edpt_dir(bmRequesttype) ? 0: 1;
uint16_t const* p = (uint16_t const*)(uintptr_t)&setup_packet[0];
USB0.USBREQ.WORD = tu_htole16(p[0]);
USB0.USBVAL = p[1];
USB0.USBINDX = p[2];
USB0.USBLENG = p[3];
USB0.DCPCTR.BIT.SUREQ = 1;
return true;
}
bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
(void)rhport;
TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned mps = tu_edpt_packet_size(ep_desc);
if (0 == epn) {
USB0.DCPCTR.WORD = USB_PIPECTR_PID_NAK;
hcd_devtree_info_t devtree;
hcd_devtree_get_info(dev_addr, &devtree);
uint16_t volatile *devadd = (uint16_t volatile *)(uintptr_t)&USB0.DEVADD0.WORD;
devadd += dev_addr;
while (USB0.DCPCTR.BIT.PBUSY) ;
USB0.DCPMAXP.WORD = (dev_addr << 12) | mps;
*devadd = (TUSB_SPEED_FULL == devtree.speed) ? USB_DEVADD_FULL : USB_DEVADD_LOW;
_hcd.ctl_mps[dev_addr] = mps;
return true;
}
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned xfer = ep_desc->bmAttributes.xfer;
if (xfer == TUSB_XFER_ISOCHRONOUS && mps > 256) {
/* USBa supports up to 256 bytes */
return false;
}
const unsigned num = find_pipe(xfer);
if (!num) return false;
_hcd.pipe[num].dev = dev_addr;
_hcd.pipe[num].ep = ep_addr;
_hcd.ep[dev_addr - 1][dir_in][epn - 1] = num;
/* setup pipe */
hcd_int_disable(rhport);
USB0.PIPESEL.WORD = num;
USB0.PIPEMAXP.WORD = (dev_addr << 12) | mps;
volatile uint16_t *ctr = get_pipectr(num);
*ctr = USB_PIPECTR_ACLRM | USB_PIPECTR_SQCLR;
*ctr = 0;
unsigned cfg = ((1 ^ dir_in) << 4) | epn;
if (xfer == TUSB_XFER_BULK) {
cfg |= USB_PIPECFG_BULK | USB_PIPECFG_SHTNAK | USB_PIPECFG_DBLB;
} else if (xfer == TUSB_XFER_INTERRUPT) {
cfg |= USB_PIPECFG_INT;
} else {
cfg |= USB_PIPECFG_ISO | USB_PIPECFG_DBLB;
}
USB0.PIPECFG.WORD = cfg;
USB0.BRDYSTS.WORD = 0x1FFu ^ TU_BIT(num);
USB0.NRDYENB.WORD |= TU_BIT(num);
USB0.BRDYENB.WORD |= TU_BIT(num);
if (!dir_in) {
*ctr = USB_PIPECTR_PID_BUF;
}
hcd_int_enable(rhport);
return true;
}
bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *buffer, uint16_t buflen)
{
bool r;
hcd_int_disable(rhport);
// TU_LOG1("X %d %x %u\n", dev_addr, ep_addr, buflen);
r = process_edpt_xfer(dev_addr, ep_addr, buffer, buflen);
hcd_int_enable(rhport);
return r;
}
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
uint16_t volatile *ctr = addr_to_pipectr(dev_addr, ep_addr);
TU_ASSERT(ctr);
const uint32_t pid = *ctr & 0x3;
if (pid & 2) {
*ctr = pid & 2;
*ctr = 0;
}
*ctr = USB_PIPECTR_SQCLR;
unsigned const epn = tu_edpt_number(ep_addr);
if (!epn) return true;
if (!tu_edpt_dir(ep_addr)) { /* OUT */
*ctr = USB_PIPECTR_PID_BUF;
}
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void hcd_int_handler(uint8_t rhport)
{
(void)rhport;
#if defined(__CCRX__)
static const int Mod37BitPosition[] = {
-1, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4,
7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5,
20, 8, 19, 18};
#endif
unsigned is1 = USB0.INTSTS1.WORD;
unsigned is0 = USB0.INTSTS0.WORD;
/* clear active bits except VALID (don't write 0 to already cleared bits according to the HW manual) */
USB0.INTSTS1.WORD = ~((USB_IS1_SACK | USB_IS1_SIGN | USB_IS1_ATTCH | USB_IS1_DTCH) & is1);
USB0.INTSTS0.WORD = ~((USB_IS0_BRDY | USB_IS0_NRDY | USB_IS0_BEMP) & is0);
// TU_LOG1("IS %04x %04x\n", is0, is1);
is1 &= USB0.INTENB1.WORD;
is0 &= USB0.INTENB0.WORD;
if (is1 & USB_IS1_SACK) {
/* Set DATA1 in advance for the next transfer. */
USB0.DCPCTR.BIT.SQSET = 1;
hcd_event_xfer_complete(USB0.DCPMAXP.BIT.DEVSEL,
tu_edpt_addr(0, TUSB_DIR_OUT),
8, XFER_RESULT_SUCCESS, true);
}
if (is1 & USB_IS1_SIGN) {
hcd_event_xfer_complete(USB0.DCPMAXP.BIT.DEVSEL,
tu_edpt_addr(0, TUSB_DIR_OUT),
8, XFER_RESULT_FAILED, true);
}
if (is1 & USB_IS1_ATTCH) {
USB0.DVSTCTR0.BIT.UACT = 1;
_hcd.need_reset = true;
USB0.INTENB1.WORD = (USB0.INTENB1.WORD & ~USB_IS1_ATTCH) | USB_IS1_DTCH;
hcd_event_device_attach(rhport, true);
}
if (is1 & USB_IS1_DTCH) {
USB0.DVSTCTR0.BIT.UACT = 0;
if (USB0.DCPCTR.BIT.SUREQ)
USB0.DCPCTR.BIT.SUREQCLR = 1;
USB0.INTENB1.WORD = (USB0.INTENB1.WORD & ~USB_IS1_DTCH) | USB_IS1_ATTCH;
hcd_event_device_remove(rhport, true);
}
if (is0 & USB_IS0_BEMP) {
const unsigned s = USB0.BEMPSTS.WORD;
USB0.BEMPSTS.WORD = 0;
if (s & 1) {
process_pipe0_bemp(rhport);
}
}
if (is0 & USB_IS0_NRDY) {
const unsigned m = USB0.NRDYENB.WORD;
unsigned s = USB0.NRDYSTS.WORD & m;
USB0.NRDYSTS.WORD = ~s;
while (s) {
#if defined(__CCRX__)
const unsigned num = Mod37BitPosition[(-s & s) % 37];
#else
const unsigned num = __builtin_ctz(s);
#endif
process_pipe_nrdy(rhport, num);
s &= ~TU_BIT(num);
}
}
if (is0 & USB_IS0_BRDY) {
const unsigned m = USB0.BRDYENB.WORD;
unsigned s = USB0.BRDYSTS.WORD & m;
/* clear active bits (don't write 0 to already cleared bits according to the HW manual) */
USB0.BRDYSTS.WORD = ~s;
while (s) {
#if defined(__CCRX__)
const unsigned num = Mod37BitPosition[(-s & s) % 37];
#else
const unsigned num = __builtin_ctz(s);
#endif
process_pipe_brdy(rhport, num);
s &= ~TU_BIT(num);
}
}
}
#endif