/* * The MIT License (MIT) * * Copyright (c) 2021 Koji Kitayama * Portions copyrighted (c) 2021 Roland Winistoerfer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if CFG_TUH_ENABLED && ( CFG_TUSB_MCU == OPT_MCU_RX63X || \ CFG_TUSB_MCU == OPT_MCU_RX65X || \ CFG_TUSB_MCU == OPT_MCU_RX72N ) #include "host/hcd.h" #include "iodefine.h" //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ #define SYSTEM_PRCR_PRC1 (1<<1) #define SYSTEM_PRCR_PRKEY (0xA5u<<8) #define USB_DVSTCTR0_LOW (1u) #define USB_DVSTCTR0_FULL (2u) #define USB_FIFOSEL_TX ((uint16_t)(1u<<5)) #define USB_FIFOSEL_BIGEND ((uint16_t)(1u<<8)) #define USB_FIFOSEL_MBW_8 ((uint16_t)(0u<<10)) #define USB_FIFOSEL_MBW_16 ((uint16_t)(1u<<10)) #define USB_IS0_CTSQ ((uint16_t)(7u)) #define USB_IS0_DVSQ ((uint16_t)(7u<<4)) #define USB_IS0_VALID ((uint16_t)(1u<<3)) #define USB_IS0_BRDY ((uint16_t)(1u<<8)) #define USB_IS0_NRDY ((uint16_t)(1u<<9)) #define USB_IS0_BEMP ((uint16_t)(1u<<10)) #define USB_IS0_CTRT ((uint16_t)(1u<<11)) #define USB_IS0_DVST ((uint16_t)(1u<<12)) #define USB_IS0_SOFR ((uint16_t)(1u<<13)) #define USB_IS0_RESM ((uint16_t)(1u<<14)) #define USB_IS0_VBINT ((uint16_t)(1u<<15)) #define USB_IS1_SACK ((uint16_t)(1u<<4)) #define USB_IS1_SIGN ((uint16_t)(1u<<5)) #define USB_IS1_EOFERR ((uint16_t)(1u<<6)) #define USB_IS1_ATTCH ((uint16_t)(1u<<11)) #define USB_IS1_DTCH ((uint16_t)(1u<<12)) #define USB_IS1_BCHG ((uint16_t)(1u<<14)) #define USB_IS1_OVRCR ((uint16_t)(1u<<15)) #define USB_IS0_CTSQ_MSK (7u) #define USB_IS0_CTSQ_SETUP (1u) #define USB_IS0_DVSQ_DEF (1u<<4) #define USB_IS0_DVSQ_ADDR (2u<<4) #define USB_IS0_DVSQ_SUSP0 (4u<<4) #define USB_IS0_DVSQ_SUSP1 (5u<<4) #define USB_IS0_DVSQ_SUSP2 (6u<<4) #define USB_IS0_DVSQ_SUSP3 (7u<<4) #define USB_PIPECTR_PID_MSK (3u) #define USB_PIPECTR_PID_NAK (0u) #define USB_PIPECTR_PID_BUF (1u) #define USB_PIPECTR_PID_STALL (2u) #define USB_PIPECTR_CCPL (1u<<2) #define USB_PIPECTR_SQMON (1u<<6) #define USB_PIPECTR_SQCLR (1u<<8) #define USB_PIPECTR_ACLRM (1u<<9) #define USB_PIPECTR_INBUFM (1u<<14) #define USB_PIPECTR_BSTS (1u<<15) #define USB_FIFOCTR_DTLN (0x1FF) #define USB_FIFOCTR_FRDY (1u<<13) #define USB_FIFOCTR_BCLR (1u<<14) #define USB_FIFOCTR_BVAL (1u<<15) #define USB_PIPECFG_SHTNAK (1u<<7) #define USB_PIPECFG_DBLB (1u<<9) #define USB_PIPECFG_BULK (1u<<14) #define USB_PIPECFG_ISO (3u<<14) #define USB_PIPECFG_INT (2u<<14) #define USB_DEVADD_LOW (1u<<6) #define USB_DEVADD_FULL (2u<<6) #define FIFO_REQ_CLR (1u) #define FIFO_COMPLETE (1u<<1) // Start of definition of packed structs (used by the CCRX toolchain) TU_ATTR_PACKED_BEGIN TU_ATTR_BIT_FIELD_ORDER_BEGIN typedef struct { union { struct { uint16_t : 8; uint16_t TRCLR: 1; uint16_t TRENB: 1; uint16_t : 0; }; uint16_t TRE; }; uint16_t TRN; } reg_pipetre_t; typedef union { struct { volatile uint16_t u8: 8; volatile uint16_t : 0; }; volatile uint16_t u16; } hw_fifo_t; typedef struct TU_ATTR_PACKED { void *buf; /* the start address of a transfer data buffer */ uint16_t length; /* the number of bytes in the buffer */ uint16_t remaining; /* the number of bytes remaining in the buffer */ struct { uint32_t ep : 8; /* an assigned endpoint address */ uint32_t dev : 8; /* an assigned device address */ uint32_t ff : 1; /* `buf` is TU_FUFO or POD */ uint32_t : 0; }; } pipe_state_t; TU_ATTR_PACKED_END // End of definition of packed structs (used by the CCRX toolchain) TU_ATTR_BIT_FIELD_ORDER_END typedef struct { bool need_reset; /* The device has not been reset after connection. */ pipe_state_t pipe[10]; uint8_t ep[4][2][15]; /* a lookup table for a pipe index from an endpoint address */ uint8_t ctl_mps[5]; /* EP0 max packet size for each device */ } hcd_data_t; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static hcd_data_t _hcd; static uint32_t disable_interrupt(void) { uint32_t pswi; #if defined(__CCRX__) pswi = get_psw() & 0x010000; clrpsw_i(); #else pswi = __builtin_rx_mvfc(0) & 0x010000; __builtin_rx_clrpsw('I'); #endif return pswi; } static void enable_interrupt(uint32_t pswi) { #if defined(__CCRX__) set_psw(get_psw() | pswi); #else __builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi); #endif } static unsigned find_pipe(unsigned xfer) { switch (xfer) { case TUSB_XFER_ISOCHRONOUS: for (int i = 1; i <= 2; ++i) { if (0 == _hcd.pipe[i].ep) return i; } break; case TUSB_XFER_BULK: for (int i = 3; i <= 5; ++i) { if (0 == _hcd.pipe[i].ep) return i; } for (int i = 1; i <= 1; ++i) { if (0 == _hcd.pipe[i].ep) return i; } break; case TUSB_XFER_INTERRUPT: for (int i = 6; i <= 9; ++i) { if (0 == _hcd.pipe[i].ep) return i; } break; default: /* No support for control transfer */ break; } return 0; } static volatile uint16_t* get_pipectr(unsigned num) { volatile uint16_t *ctr = NULL; if (num) { ctr = (volatile uint16_t*)&USB0.PIPE1CTR.WORD; ctr += num - 1; } else { ctr = (volatile uint16_t*)&USB0.DCPCTR.WORD; } return ctr; } static volatile reg_pipetre_t* get_pipetre(unsigned num) { volatile reg_pipetre_t* tre = NULL; if ((1 <= num) && (num <= 5)) { tre = (volatile reg_pipetre_t*)&USB0.PIPE1TRE.WORD; tre += num - 1; } return tre; } static volatile uint16_t* addr_to_pipectr(uint8_t dev_addr, unsigned ep_addr) { volatile uint16_t *ctr = NULL; const unsigned epn = tu_edpt_number(ep_addr); if (epn) { const unsigned dir_in = tu_edpt_dir(ep_addr); const unsigned num = _hcd.ep[dev_addr][dir_in][epn - 1]; if (num) { ctr = (volatile uint16_t*)&USB0.PIPE1CTR.WORD; ctr += num - 1; } } else { ctr = (volatile uint16_t*)&USB0.DCPCTR.WORD; } return ctr; } static unsigned edpt0_max_packet_size(void) { return USB0.DCPMAXP.BIT.MXPS; } static unsigned edpt_max_packet_size(unsigned num) { USB0.PIPESEL.WORD = num; return USB0.PIPEMAXP.BIT.MXPS; } static inline void pipe_wait_for_ready(unsigned num) { while (USB0.D0FIFOSEL.BIT.CURPIPE != num) ; while (!USB0.D0FIFOCTR.BIT.FRDY) ; } static void pipe_write_packet(void *buf, volatile void *fifo, unsigned len) { volatile hw_fifo_t *reg = (volatile hw_fifo_t*)fifo; uintptr_t addr = (uintptr_t)buf; while (len >= 2) { reg->u16 = *(const uint16_t *)addr; addr += 2; len -= 2; } if (len) { reg->u8 = *(const uint8_t *)addr; ++addr; } } static void pipe_read_packet(void *buf, volatile void *fifo, unsigned len) { uint8_t *p = (uint8_t*)buf; volatile uint8_t *reg = (volatile uint8_t*)fifo; /* byte access is always at base register address */ while (len--) *p++ = *reg; } static bool pipe0_xfer_in(void) { pipe_state_t *pipe = &_hcd.pipe[0]; const unsigned rem = pipe->remaining; const unsigned mps = edpt0_max_packet_size(); const unsigned vld = USB0.CFIFOCTR.BIT.DTLN; const unsigned len = TU_MIN(TU_MIN(rem, mps), vld); void *buf = pipe->buf; if (len) { USB0.DCPCTR.WORD = USB_PIPECTR_PID_NAK; pipe_read_packet(buf, (volatile void*)&USB0.CFIFO.WORD, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) USB0.CFIFOCTR.WORD = USB_FIFOCTR_BCLR; pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return true; } USB0.DCPCTR.WORD = USB_PIPECTR_PID_BUF; return false; } static bool pipe0_xfer_out(void) { pipe_state_t *pipe = &_hcd.pipe[0]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } const unsigned mps = edpt0_max_packet_size(); const unsigned len = TU_MIN(mps, rem); void *buf = pipe->buf; if (len) { pipe_write_packet(buf, (volatile void*)&USB0.CFIFO.WORD, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) USB0.CFIFOCTR.WORD = USB_FIFOCTR_BVAL; pipe->remaining = rem - len; return false; } static bool pipe_xfer_in(unsigned num) { pipe_state_t *pipe = &_hcd.pipe[num]; const unsigned rem = pipe->remaining; USB0.D0FIFOSEL.WORD = num | USB_FIFOSEL_MBW_8; const unsigned mps = edpt_max_packet_size(num); pipe_wait_for_ready(num); const unsigned vld = USB0.D0FIFOCTR.BIT.DTLN; const unsigned len = TU_MIN(TU_MIN(rem, mps), vld); void *buf = pipe->buf; if (len) { pipe_read_packet(buf, (volatile void*)&USB0.D0FIFO.WORD, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BCLR; USB0.D0FIFOSEL.WORD = 0; while (USB0.D0FIFOSEL.BIT.CURPIPE) ; /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return NULL != buf; } return false; } static bool pipe_xfer_out(unsigned num) { pipe_state_t *pipe = &_hcd.pipe[num]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } USB0.D0FIFOSEL.WORD = num | USB_FIFOSEL_MBW_16 | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? USB_FIFOSEL_BIGEND : 0); const unsigned mps = edpt_max_packet_size(num); pipe_wait_for_ready(num); const unsigned len = TU_MIN(rem, mps); void *buf = pipe->buf; if (len) { pipe_write_packet(buf, (volatile void*)&USB0.D0FIFO.WORD, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BVAL; USB0.D0FIFOSEL.WORD = 0; while (USB0.D0FIFOSEL.BIT.CURPIPE) ; /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; return false; } static bool process_pipe0_xfer(uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen) { (void)dev_addr; const unsigned dir_in = tu_edpt_dir(ep_addr); /* configure fifo direction and access unit settings */ if (dir_in) { /* IN, a byte */ USB0.CFIFOSEL.WORD = USB_FIFOSEL_MBW_8; while (USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX) ; } else { /* OUT, 2 bytes */ USB0.CFIFOSEL.WORD = USB_FIFOSEL_TX | USB_FIFOSEL_MBW_16 | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? USB_FIFOSEL_BIGEND : 0); while (!(USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX)) ; } pipe_state_t *pipe = &_hcd.pipe[0]; pipe->ep = ep_addr; pipe->length = buflen; pipe->remaining = buflen; if (buflen) { pipe->buf = buffer; if (!dir_in) { /* OUT */ TU_ASSERT(USB0.DCPCTR.BIT.BSTS && (USB0.USBREQ.WORD & 0x80)); pipe0_xfer_out(); } } else { /* ZLP */ pipe->buf = NULL; if (!dir_in) { /* OUT */ USB0.CFIFOCTR.WORD = USB_FIFOCTR_BVAL; } if (dir_in == USB0.DCPCFG.BIT.DIR) { TU_ASSERT(USB_PIPECTR_PID_NAK == USB0.DCPCTR.BIT.PID); USB0.DCPCTR.BIT.SQSET = 1; USB0.DCPCFG.BIT.DIR = dir_in ^ 1; } } USB0.DCPCTR.WORD = USB_PIPECTR_PID_BUF; return true; } static bool process_pipe_xfer(uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen) { const unsigned epn = tu_edpt_number(ep_addr); const unsigned dir_in = tu_edpt_dir(ep_addr); const unsigned num = _hcd.ep[dev_addr - 1][dir_in][epn - 1]; TU_ASSERT(num); pipe_state_t *pipe = &_hcd.pipe[num]; pipe->buf = buffer; pipe->length = buflen; pipe->remaining = buflen; if (!dir_in) { /* OUT */ if (buflen) { pipe_xfer_out(num); } else { /* ZLP */ USB0.D0FIFOSEL.WORD = num; pipe_wait_for_ready(num); USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BVAL; USB0.D0FIFOSEL.WORD = 0; while (USB0.D0FIFOSEL.BIT.CURPIPE) ; /* if CURPIPE bits changes, check written value */ } } else { volatile uint16_t *ctr = get_pipectr(num); volatile reg_pipetre_t *pt = get_pipetre(num); if (pt) { const unsigned mps = edpt_max_packet_size(num); if (*ctr & 0x3) *ctr = USB_PIPECTR_PID_NAK; pt->TRE = TU_BIT(8); pt->TRN = (buflen + mps - 1) / mps; pt->TRENB = 1; } *ctr = USB_PIPECTR_PID_BUF; } return true; } static bool process_edpt_xfer(uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen) { const unsigned epn = tu_edpt_number(ep_addr); if (0 == epn) { return process_pipe0_xfer(dev_addr, ep_addr, buffer, buflen); } else { return process_pipe_xfer(dev_addr, ep_addr, buffer, buflen); } } static void process_pipe0_bemp(uint8_t rhport) { (void)rhport; bool completed = pipe0_xfer_out(); if (completed) { pipe_state_t *pipe = &_hcd.pipe[0]; hcd_event_xfer_complete(pipe->dev, tu_edpt_addr(0, TUSB_DIR_OUT), pipe->length - pipe->remaining, XFER_RESULT_SUCCESS, true); } } static void process_pipe_nrdy(uint8_t rhport, unsigned num) { (void)rhport; unsigned result; uint16_t volatile *ctr = get_pipectr(num); // TU_LOG1("NRDY %d %x\n", num, *ctr); switch (*ctr & USB_PIPECTR_PID_MSK) { default: return; case USB_PIPECTR_PID_STALL: result = XFER_RESULT_STALLED; break; case USB_PIPECTR_PID_NAK: result = XFER_RESULT_FAILED; break; } pipe_state_t *pipe = &_hcd.pipe[num]; hcd_event_xfer_complete(pipe->dev, pipe->ep, pipe->length - pipe->remaining, result, true); } static void process_pipe_brdy(uint8_t rhport, unsigned num) { (void)rhport; pipe_state_t *pipe = &_hcd.pipe[num]; const unsigned dir_in = tu_edpt_dir(pipe->ep); bool completed; if (dir_in) { /* IN */ if (num) { completed = pipe_xfer_in(num); } else { completed = pipe0_xfer_in(); } } else { completed = pipe_xfer_out(num); } if (completed) { hcd_event_xfer_complete(pipe->dev, pipe->ep, pipe->length - pipe->remaining, XFER_RESULT_SUCCESS, true); // TU_LOG1("C %d %d\r\n", num, pipe->length - pipe->remaining); } } /*------------------------------------------------------------------*/ /* Host API *------------------------------------------------------------------*/ bool hcd_init(uint8_t rhport) { (void)rhport; /* Enable USB0 */ uint32_t pswi = disable_interrupt(); SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY | SYSTEM_PRCR_PRC1; MSTP(USB0) = 0; SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY; enable_interrupt(pswi); USB0.SYSCFG.BIT.SCKE = 1; while (!USB0.SYSCFG.BIT.SCKE) ; USB0.SYSCFG.BIT.DPRPU = 0; USB0.SYSCFG.BIT.DRPD = 0; USB0.SYSCFG.BIT.DCFM = 1; USB0.DVSTCTR0.BIT.VBUSEN = 1; USB0.SYSCFG.BIT.DRPD = 1; for (volatile int i = 0; i < 30000; ++i) ; USB0.SYSCFG.BIT.USBE = 1; USB.DPUSR0R.BIT.FIXPHY0 = 0u; /* USB0 Transceiver Output fixed */ #if ( CFG_TUSB_MCU == OPT_MCU_RX72N ) USB0.PHYSLEW.LONG = 0x5; IR(PERIB, INTB185) = 0; #else IR(USB0, USBI0) = 0; #endif /* Setup default control pipe */ USB0.DCPCFG.WORD = USB_PIPECFG_SHTNAK; USB0.DCPMAXP.WORD = 64; USB0.INTENB0.WORD = USB_IS0_BRDY | USB_IS0_NRDY | USB_IS0_BEMP; USB0.INTENB1.WORD = USB_IS1_SACK | USB_IS1_SIGN | USB_IS1_ATTCH | USB_IS1_DTCH; USB0.BEMPENB.WORD = 1; USB0.NRDYENB.WORD = 1; USB0.BRDYENB.WORD = 1; return true; } void hcd_int_enable(uint8_t rhport) { (void)rhport; #if ( CFG_TUSB_MCU == OPT_MCU_RX72N ) IEN(PERIB, INTB185) = 1; #else IEN(USB0, USBI0) = 1; #endif } void hcd_int_disable(uint8_t rhport) { (void)rhport; #if ( CFG_TUSB_MCU == OPT_MCU_RX72N ) IEN(PERIB, INTB185) = 0; #else IEN(USB0, USBI0) = 0; #endif } uint32_t hcd_frame_number(uint8_t rhport) { (void)rhport; /* The device must be reset at least once after connection * in order to start the frame counter. */ if (_hcd.need_reset) hcd_port_reset(rhport); return USB0.FRMNUM.BIT.FRNM; } /*--------------------------------------------------------------------+ * Port API *--------------------------------------------------------------------+*/ bool hcd_port_connect_status(uint8_t rhport) { (void)rhport; return USB0.INTSTS1.BIT.ATTCH ? true : false; } void hcd_port_reset(uint8_t rhport) { USB0.DCPCTR.WORD = USB_PIPECTR_PID_NAK; while (USB0.DCPCTR.BIT.PBUSY) ; hcd_int_disable(rhport); USB0.DVSTCTR0.BIT.UACT = 0; if (USB0.DCPCTR.BIT.SUREQ) USB0.DCPCTR.BIT.SUREQCLR = 1; hcd_int_enable(rhport); /* Reset should be asserted 10-20ms. */ USB0.DVSTCTR0.BIT.USBRST = 1; for (volatile int i = 0; i < 2400000; ++i) ; USB0.DVSTCTR0.BIT.USBRST = 0; USB0.DVSTCTR0.BIT.UACT = 1; _hcd.need_reset = false; } void hcd_port_reset_end(uint8_t rhport) { (void) rhport; } tusb_speed_t hcd_port_speed_get(uint8_t rhport) { (void)rhport; switch (USB0.DVSTCTR0.BIT.RHST) { default: return TUSB_SPEED_INVALID; case USB_DVSTCTR0_FULL: return TUSB_SPEED_FULL; case USB_DVSTCTR0_LOW: return TUSB_SPEED_LOW; } } void hcd_device_close(uint8_t rhport, uint8_t dev_addr) { (void)rhport; uint16_t volatile *ctr; TU_ASSERT(dev_addr < 6,); /* USBa can only handle addresses from 0 to 5. */ if (!dev_addr) return; _hcd.ctl_mps[dev_addr] = 0; uint8_t *ep = &_hcd.ep[dev_addr - 1][0][0]; for (int i = 0; i < 2 * 15; ++i, ++ep) { unsigned num = *ep; if (!num || dev_addr != _hcd.pipe[num].dev) continue; ctr = (uint16_t volatile*)&USB0.PIPE1CTR.WORD + num - 1; *ctr = 0; USB0.NRDYENB.WORD &= ~TU_BIT(num); USB0.BRDYENB.WORD &= ~TU_BIT(num); USB0.PIPESEL.WORD = num; USB0.PIPECFG.WORD = 0; USB0.PIPEMAXP.WORD = 0; _hcd.pipe[num].ep = 0; _hcd.pipe[num].dev = 0; *ep = 0; } } /*--------------------------------------------------------------------+ * Endpoints API *--------------------------------------------------------------------+*/ bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8]) { (void)rhport; // TU_LOG1("S %d %x\n", dev_addr, USB0.DCPCTR.WORD); TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */ TU_ASSERT(0 == USB0.DCPCTR.BIT.SUREQ); USB0.DCPCTR.WORD = USB_PIPECTR_PID_NAK; _hcd.pipe[0].buf = NULL; _hcd.pipe[0].length = 8; _hcd.pipe[0].remaining = 0; _hcd.pipe[0].dev = dev_addr; while (USB0.DCPCTR.BIT.PBUSY) ; USB0.DCPMAXP.WORD = (dev_addr << 12) | _hcd.ctl_mps[dev_addr]; /* Set direction in advance for DATA stage */ uint8_t const bmRequesttype = setup_packet[0]; USB0.DCPCFG.BIT.DIR = tu_edpt_dir(bmRequesttype) ? 0: 1; uint16_t const* p = (uint16_t const*)(uintptr_t)&setup_packet[0]; USB0.USBREQ.WORD = tu_htole16(p[0]); USB0.USBVAL = p[1]; USB0.USBINDX = p[2]; USB0.USBLENG = p[3]; USB0.DCPCTR.BIT.SUREQ = 1; return true; } bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc) { (void)rhport; TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */ const unsigned ep_addr = ep_desc->bEndpointAddress; const unsigned epn = tu_edpt_number(ep_addr); const unsigned mps = tu_edpt_packet_size(ep_desc); if (0 == epn) { USB0.DCPCTR.WORD = USB_PIPECTR_PID_NAK; hcd_devtree_info_t devtree; hcd_devtree_get_info(dev_addr, &devtree); uint16_t volatile *devadd = (uint16_t volatile *)(uintptr_t)&USB0.DEVADD0.WORD; devadd += dev_addr; while (USB0.DCPCTR.BIT.PBUSY) ; USB0.DCPMAXP.WORD = (dev_addr << 12) | mps; *devadd = (TUSB_SPEED_FULL == devtree.speed) ? USB_DEVADD_FULL : USB_DEVADD_LOW; _hcd.ctl_mps[dev_addr] = mps; return true; } const unsigned dir_in = tu_edpt_dir(ep_addr); const unsigned xfer = ep_desc->bmAttributes.xfer; if (xfer == TUSB_XFER_ISOCHRONOUS && mps > 256) { /* USBa supports up to 256 bytes */ return false; } const unsigned num = find_pipe(xfer); if (!num) return false; _hcd.pipe[num].dev = dev_addr; _hcd.pipe[num].ep = ep_addr; _hcd.ep[dev_addr - 1][dir_in][epn - 1] = num; /* setup pipe */ hcd_int_disable(rhport); USB0.PIPESEL.WORD = num; USB0.PIPEMAXP.WORD = (dev_addr << 12) | mps; volatile uint16_t *ctr = get_pipectr(num); *ctr = USB_PIPECTR_ACLRM | USB_PIPECTR_SQCLR; *ctr = 0; unsigned cfg = ((1 ^ dir_in) << 4) | epn; if (xfer == TUSB_XFER_BULK) { cfg |= USB_PIPECFG_BULK | USB_PIPECFG_SHTNAK | USB_PIPECFG_DBLB; } else if (xfer == TUSB_XFER_INTERRUPT) { cfg |= USB_PIPECFG_INT; } else { cfg |= USB_PIPECFG_ISO | USB_PIPECFG_DBLB; } USB0.PIPECFG.WORD = cfg; USB0.BRDYSTS.WORD = 0x1FFu ^ TU_BIT(num); USB0.NRDYENB.WORD |= TU_BIT(num); USB0.BRDYENB.WORD |= TU_BIT(num); if (!dir_in) { *ctr = USB_PIPECTR_PID_BUF; } hcd_int_enable(rhport); return true; } bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *buffer, uint16_t buflen) { bool r; hcd_int_disable(rhport); // TU_LOG1("X %d %x %u\n", dev_addr, ep_addr, buflen); r = process_edpt_xfer(dev_addr, ep_addr, buffer, buflen); hcd_int_enable(rhport); return r; } bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr) { uint16_t volatile *ctr = addr_to_pipectr(dev_addr, ep_addr); TU_ASSERT(ctr); const uint32_t pid = *ctr & 0x3; if (pid & 2) { *ctr = pid & 2; *ctr = 0; } *ctr = USB_PIPECTR_SQCLR; unsigned const epn = tu_edpt_number(ep_addr); if (!epn) return true; if (!tu_edpt_dir(ep_addr)) { /* OUT */ *ctr = USB_PIPECTR_PID_BUF; } return true; } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ void hcd_int_handler(uint8_t rhport) { (void)rhport; #if defined(__CCRX__) static const int Mod37BitPosition[] = { -1, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5, 20, 8, 19, 18}; #endif unsigned is1 = USB0.INTSTS1.WORD; unsigned is0 = USB0.INTSTS0.WORD; /* clear active bits except VALID (don't write 0 to already cleared bits according to the HW manual) */ USB0.INTSTS1.WORD = ~((USB_IS1_SACK | USB_IS1_SIGN | USB_IS1_ATTCH | USB_IS1_DTCH) & is1); USB0.INTSTS0.WORD = ~((USB_IS0_BRDY | USB_IS0_NRDY | USB_IS0_BEMP) & is0); // TU_LOG1("IS %04x %04x\n", is0, is1); is1 &= USB0.INTENB1.WORD; is0 &= USB0.INTENB0.WORD; if (is1 & USB_IS1_SACK) { /* Set DATA1 in advance for the next transfer. */ USB0.DCPCTR.BIT.SQSET = 1; hcd_event_xfer_complete(USB0.DCPMAXP.BIT.DEVSEL, tu_edpt_addr(0, TUSB_DIR_OUT), 8, XFER_RESULT_SUCCESS, true); } if (is1 & USB_IS1_SIGN) { hcd_event_xfer_complete(USB0.DCPMAXP.BIT.DEVSEL, tu_edpt_addr(0, TUSB_DIR_OUT), 8, XFER_RESULT_FAILED, true); } if (is1 & USB_IS1_ATTCH) { USB0.DVSTCTR0.BIT.UACT = 1; _hcd.need_reset = true; USB0.INTENB1.WORD = (USB0.INTENB1.WORD & ~USB_IS1_ATTCH) | USB_IS1_DTCH; hcd_event_device_attach(rhport, true); } if (is1 & USB_IS1_DTCH) { USB0.DVSTCTR0.BIT.UACT = 0; if (USB0.DCPCTR.BIT.SUREQ) USB0.DCPCTR.BIT.SUREQCLR = 1; USB0.INTENB1.WORD = (USB0.INTENB1.WORD & ~USB_IS1_DTCH) | USB_IS1_ATTCH; hcd_event_device_remove(rhport, true); } if (is0 & USB_IS0_BEMP) { const unsigned s = USB0.BEMPSTS.WORD; USB0.BEMPSTS.WORD = 0; if (s & 1) { process_pipe0_bemp(rhport); } } if (is0 & USB_IS0_NRDY) { const unsigned m = USB0.NRDYENB.WORD; unsigned s = USB0.NRDYSTS.WORD & m; USB0.NRDYSTS.WORD = ~s; while (s) { #if defined(__CCRX__) const unsigned num = Mod37BitPosition[(-s & s) % 37]; #else const unsigned num = __builtin_ctz(s); #endif process_pipe_nrdy(rhport, num); s &= ~TU_BIT(num); } } if (is0 & USB_IS0_BRDY) { const unsigned m = USB0.BRDYENB.WORD; unsigned s = USB0.BRDYSTS.WORD & m; /* clear active bits (don't write 0 to already cleared bits according to the HW manual) */ USB0.BRDYSTS.WORD = ~s; while (s) { #if defined(__CCRX__) const unsigned num = Mod37BitPosition[(-s & s) % 37]; #else const unsigned num = __builtin_ctz(s); #endif process_pipe_brdy(rhport, num); s &= ~TU_BIT(num); } } } #endif