espressif_tinyusb/src/portable/raspberrypi/rp2040/dcd_rp2040.c

483 lines
14 KiB
C
Raw Normal View History

2021-01-20 02:52:07 +01:00
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_RP2040
#include "pico.h"
#include "rp2040_usb.h"
#if TUD_OPT_RP2040_USB_DEVICE_ENUMERATION_FIX
#include "pico/fix/rp2040_usb_device_enumeration.h"
#endif
#include "device/dcd.h"
#include "pico/stdlib.h"
/*------------------------------------------------------------------*/
/* Low level controller
*------------------------------------------------------------------*/
#define usb_hw_set hw_set_alias(usb_hw)
#define usb_hw_clear hw_clear_alias(usb_hw)
// Init these in dcd_init
static uint8_t assigned_address;
static uint8_t *next_buffer_ptr;
// Endpoints 0-15, direction 0 for out and 1 for in.
static struct hw_endpoint hw_endpoints[16][2] = {0};
static inline struct hw_endpoint *hw_endpoint_get_by_num(uint8_t num, uint8_t in)
{
return &hw_endpoints[num][in];
}
static struct hw_endpoint *hw_endpoint_get_by_addr(uint8_t ep_addr)
{
uint8_t num = tu_edpt_number(ep_addr);
uint8_t in = (ep_addr & TUSB_DIR_IN_MASK) ? 1 : 0;
return hw_endpoint_get_by_num(num, in);
}
static void _hw_endpoint_alloc(struct hw_endpoint *ep)
{
uint size = 64;
if (ep->wMaxPacketSize > 64)
{
size = ep->wMaxPacketSize;
}
// Assumes single buffered for now
ep->hw_data_buf = next_buffer_ptr;
next_buffer_ptr += size;
// Bits 0-5 are ignored by the controller so make sure these are 0
if ((uintptr_t)next_buffer_ptr & 0b111111u)
{
// Round up to the next 64
uint32_t fixptr = (uintptr_t)next_buffer_ptr;
fixptr &= ~0b111111u;
fixptr += 64;
pico_info("Rounding non 64 byte boundary buffer up from %x to %x\n", (uintptr_t)next_buffer_ptr, fixptr);
next_buffer_ptr = (uint8_t*)fixptr;
}
assert(((uintptr_t)next_buffer_ptr & 0b111111u) == 0);
uint dpram_offset = hw_data_offset(ep->hw_data_buf);
assert(hw_data_offset(next_buffer_ptr) <= USB_DPRAM_MAX);
pico_info("Alloced %d bytes at offset 0x%x (0x%p) for ep %d %s\n",
size,
dpram_offset,
ep->hw_data_buf,
ep->num,
ep_dir_string[ep->in]);
// Fill in endpoint control register with buffer offset
uint32_t reg = EP_CTRL_ENABLE_BITS
| EP_CTRL_INTERRUPT_PER_BUFFER
| (ep->transfer_type << EP_CTRL_BUFFER_TYPE_LSB)
| dpram_offset;
*ep->endpoint_control = reg;
}
static void _hw_endpoint_init(struct hw_endpoint *ep, uint8_t ep_addr, uint wMaxPacketSize, uint8_t transfer_type)
{
uint8_t num = tu_edpt_number(ep_addr);
bool in = ep_addr & TUSB_DIR_IN_MASK;
ep->ep_addr = ep_addr;
ep->in = in;
// For device, IN is a tx transfer and OUT is an rx transfer
ep->rx = in == false;
ep->num = num;
// Response to a setup packet on EP0 starts with pid of 1
ep->next_pid = num == 0 ? 1u : 0u;
// Add some checks around the max packet size
if (transfer_type == TUSB_XFER_ISOCHRONOUS)
{
if (wMaxPacketSize > USB_MAX_ISO_PACKET_SIZE)
{
panic("Isochronous wMaxPacketSize %d too large", wMaxPacketSize);
}
}
else
{
if (wMaxPacketSize > USB_MAX_PACKET_SIZE)
{
panic("Isochronous wMaxPacketSize %d too large", wMaxPacketSize);
}
}
ep->wMaxPacketSize = wMaxPacketSize;
ep->transfer_type = transfer_type;
// Every endpoint has a buffer control register in dpram
if (ep->in)
{
ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].in;
}
else
{
ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].out;
}
// Clear existing buffer control state
*ep->buffer_control = 0;
if (ep->num == 0)
{
// EP0 has no endpoint control register because
// the buffer offsets are fixed
ep->endpoint_control = NULL;
// Buffer offset is fixed
ep->hw_data_buf = (uint8_t*)&usb_dpram->ep0_buf_a[0];
}
else
{
// Set the endpoint control register (starts at EP1, hence num-1)
if (in)
{
ep->endpoint_control = &usb_dpram->ep_ctrl[num-1].in;
}
else
{
ep->endpoint_control = &usb_dpram->ep_ctrl[num-1].out;
}
// Now alloc a buffer and fill in endpoint control register
_hw_endpoint_alloc(ep);
}
ep->configured = true;
}
#if 0 // todo unused
static void _hw_endpoint_close(struct hw_endpoint *ep)
{
// Clear hardware registers and then zero the struct
// Clears endpoint enable
*ep->endpoint_control = 0;
// Clears buffer available, etc
*ep->buffer_control = 0;
// Clear any endpoint state
memset(ep, 0, sizeof(struct hw_endpoint));
}
static void hw_endpoint_close(uint8_t ep_addr)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_close(ep);
}
#endif
static void hw_endpoint_init(uint8_t ep_addr, uint wMaxPacketSize, uint8_t bmAttributes)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_init(ep, ep_addr, wMaxPacketSize, bmAttributes);
}
static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes, bool start)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_xfer(ep, buffer, total_bytes, start);
}
static void hw_handle_buff_status(void)
{
uint32_t remaining_buffers = usb_hw->buf_status;
pico_trace("buf_status 0x%08x\n", remaining_buffers);
uint bit = 1u;
for (uint i = 0; remaining_buffers && i < USB_MAX_ENDPOINTS * 2; i++)
{
if (remaining_buffers & bit)
{
uint __unused which = (usb_hw->buf_cpu_should_handle & bit) ? 1 : 0;
// Should be single buffered
assert(which == 0);
// clear this in advance
usb_hw_clear->buf_status = bit;
// IN transfer for even i, OUT transfer for odd i
struct hw_endpoint *ep = hw_endpoint_get_by_num(i >> 1u, !(i & 1u));
// Continue xfer
bool done = _hw_endpoint_xfer_continue(ep);
if (done)
{
// Notify
dcd_event_xfer_complete(0, ep->ep_addr, ep->len, XFER_RESULT_SUCCESS, true);
hw_endpoint_reset_transfer(ep);
}
remaining_buffers &= ~bit;
}
bit <<= 1u;
}
}
static void reset_ep0(void)
{
// If we have finished this transfer on EP0 set pid back to 1 for next
// setup transfer. Also clear a stall in case
uint8_t addrs[] = {0x0, 0x80};
for (uint i = 0 ; i < count_of(addrs); i++)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(addrs[i]);
ep->next_pid = 1u;
ep->stalled = 0;
}
}
static void ep0_0len_status(void)
{
// Send 0len complete response on EP0 IN
reset_ep0();
hw_endpoint_xfer(0x80, NULL, 0, true);
}
static void _hw_endpoint_stall(struct hw_endpoint *ep)
{
assert(!ep->stalled);
if (ep->num == 0)
{
// A stall on EP0 has to be armed so it can be cleared on the next setup packet
usb_hw_set->ep_stall_arm = ep->in ? USB_EP_STALL_ARM_EP0_IN_BITS : USB_EP_STALL_ARM_EP0_OUT_BITS;
}
_hw_endpoint_buffer_control_set_mask32(ep, USB_BUF_CTRL_STALL);
ep->stalled = true;
}
static void hw_endpoint_stall(uint8_t ep_addr)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_stall(ep);
}
static void _hw_endpoint_clear_stall(struct hw_endpoint *ep)
{
if (ep->num == 0)
{
// Probably already been cleared but no harm
usb_hw_clear->ep_stall_arm = ep->in ? USB_EP_STALL_ARM_EP0_IN_BITS : USB_EP_STALL_ARM_EP0_OUT_BITS;
}
_hw_endpoint_buffer_control_clear_mask32(ep, USB_BUF_CTRL_STALL);
ep->stalled = false;
}
static void hw_endpoint_clear_stall(uint8_t ep_addr)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_clear_stall(ep);
}
static void dcd_rp2040_irq(void)
{
uint32_t status = usb_hw->ints;
uint32_t handled = 0;
if (status & USB_INTS_SETUP_REQ_BITS)
{
handled |= USB_INTS_SETUP_REQ_BITS;
uint8_t const *setup = (uint8_t const *)&usb_dpram->setup_packet;
// Clear stall bits and reset pid
reset_ep0();
// Pass setup packet to tiny usb
dcd_event_setup_received(0, setup, true);
usb_hw_clear->sie_status = USB_SIE_STATUS_SETUP_REC_BITS;
}
if (status & USB_INTS_BUFF_STATUS_BITS)
{
handled |= USB_INTS_BUFF_STATUS_BITS;
hw_handle_buff_status();
}
if (status & USB_INTS_BUS_RESET_BITS)
{
pico_trace("BUS RESET (addr %d -> %d)\n", assigned_address, 0);
assigned_address = 0;
usb_hw->dev_addr_ctrl = assigned_address;
handled |= USB_INTS_BUS_RESET_BITS;
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
usb_hw_clear->sie_status = USB_SIE_STATUS_BUS_RESET_BITS;
#if TUD_OPT_RP2040_USB_DEVICE_ENUMERATION_FIX
rp2040_usb_device_enumeration_fix();
#endif
}
if (status ^ handled)
{
panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled));
}
}
#define USB_INTS_ERROR_BITS ( \
USB_INTS_ERROR_DATA_SEQ_BITS | \
USB_INTS_ERROR_BIT_STUFF_BITS | \
USB_INTS_ERROR_CRC_BITS | \
USB_INTS_ERROR_RX_OVERFLOW_BITS | \
USB_INTS_ERROR_RX_TIMEOUT_BITS)
/*------------------------------------------------------------------*/
/* Controller API
*------------------------------------------------------------------*/
void dcd_init (uint8_t rhport)
{
pico_trace("dcd_init %d\n", rhport);
assert(rhport == 0);
// Reset hardware to default state
rp2040_usb_init();
irq_set_exclusive_handler(USBCTRL_IRQ, dcd_rp2040_irq);
memset(hw_endpoints, 0, sizeof(hw_endpoints));
assigned_address = 0;
next_buffer_ptr = &usb_dpram->epx_data[0];
// EP0 always exists so init it now
// EP0 OUT
hw_endpoint_init(0x0, 64, 0);
// EP0 IN
hw_endpoint_init(0x80, 64, 0);
// Initializes the USB peripheral for device mode and enables it.
// Don't need to enable the pull up here. Force VBUS
usb_hw->main_ctrl = USB_MAIN_CTRL_CONTROLLER_EN_BITS;
// Enable individual controller IRQS here. Processor interrupt enable will be used
// for the global interrupt enable...
usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS;
usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS | USB_INTS_SETUP_REQ_BITS;
dcd_connect(rhport);
}
void dcd_int_enable(uint8_t rhport)
{
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, true);
}
void dcd_int_disable(uint8_t rhport)
{
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, false);
}
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
pico_trace("dcd_set_address %d %d\n", rhport, dev_addr);
assert(rhport == 0);
// Can't set device address in hardware until status xfer has complete
assigned_address = dev_addr;
ep0_0len_status();
}
void dcd_remote_wakeup(uint8_t rhport)
{
panic("dcd_remote_wakeup %d\n", rhport);
assert(rhport == 0);
}
// disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(uint8_t rhport)
{
pico_info("dcd_disconnect %d\n", rhport);
assert(rhport == 0);
usb_hw_clear->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
}
// connect by enabling internal pull-up resistor on D+/D-
void dcd_connect(uint8_t rhport)
{
pico_info("dcd_connect %d\n", rhport);
assert(rhport == 0);
usb_hw_set->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
pico_trace("dcd_edpt0_status_complete %d\n", rhport);
assert(rhport == 0);
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS)
{
pico_trace("Set HW address %d\n", assigned_address);
usb_hw->dev_addr_ctrl = assigned_address;
}
reset_ep0();
}
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
pico_info("dcd_edpt_open %d %02x\n", rhport, desc_edpt->bEndpointAddress);
assert(rhport == 0);
hw_endpoint_init(desc_edpt->bEndpointAddress, desc_edpt->wMaxPacketSize.size, desc_edpt->bmAttributes.xfer);
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
assert(rhport == 0);
// True means start new xfer
hw_endpoint_xfer(ep_addr, buffer, total_bytes, true);
return true;
}
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
pico_trace("dcd_edpt_stall %d %02x\n", rhport, ep_addr);
assert(rhport == 0);
hw_endpoint_stall(ep_addr);
}
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
pico_trace("dcd_edpt_clear_stall %d %02x\n", rhport, ep_addr);
assert(rhport == 0);
hw_endpoint_clear_stall(ep_addr);
}
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
// usbd.c says: In progress transfers on this EP may be delivered after this call
pico_trace("dcd_edpt_close %d %02x\n", rhport, ep_addr);
}
#endif