/* * The MIT License (MIT) * * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_RP2040 #include "pico.h" #include "rp2040_usb.h" #if TUD_OPT_RP2040_USB_DEVICE_ENUMERATION_FIX #include "pico/fix/rp2040_usb_device_enumeration.h" #endif #include "device/dcd.h" #include "pico/stdlib.h" /*------------------------------------------------------------------*/ /* Low level controller *------------------------------------------------------------------*/ #define usb_hw_set hw_set_alias(usb_hw) #define usb_hw_clear hw_clear_alias(usb_hw) // Init these in dcd_init static uint8_t assigned_address; static uint8_t *next_buffer_ptr; // Endpoints 0-15, direction 0 for out and 1 for in. static struct hw_endpoint hw_endpoints[16][2] = {0}; static inline struct hw_endpoint *hw_endpoint_get_by_num(uint8_t num, uint8_t in) { return &hw_endpoints[num][in]; } static struct hw_endpoint *hw_endpoint_get_by_addr(uint8_t ep_addr) { uint8_t num = tu_edpt_number(ep_addr); uint8_t in = (ep_addr & TUSB_DIR_IN_MASK) ? 1 : 0; return hw_endpoint_get_by_num(num, in); } static void _hw_endpoint_alloc(struct hw_endpoint *ep) { uint size = 64; if (ep->wMaxPacketSize > 64) { size = ep->wMaxPacketSize; } // Assumes single buffered for now ep->hw_data_buf = next_buffer_ptr; next_buffer_ptr += size; // Bits 0-5 are ignored by the controller so make sure these are 0 if ((uintptr_t)next_buffer_ptr & 0b111111u) { // Round up to the next 64 uint32_t fixptr = (uintptr_t)next_buffer_ptr; fixptr &= ~0b111111u; fixptr += 64; pico_info("Rounding non 64 byte boundary buffer up from %x to %x\n", (uintptr_t)next_buffer_ptr, fixptr); next_buffer_ptr = (uint8_t*)fixptr; } assert(((uintptr_t)next_buffer_ptr & 0b111111u) == 0); uint dpram_offset = hw_data_offset(ep->hw_data_buf); assert(hw_data_offset(next_buffer_ptr) <= USB_DPRAM_MAX); pico_info("Alloced %d bytes at offset 0x%x (0x%p) for ep %d %s\n", size, dpram_offset, ep->hw_data_buf, ep->num, ep_dir_string[ep->in]); // Fill in endpoint control register with buffer offset uint32_t reg = EP_CTRL_ENABLE_BITS | EP_CTRL_INTERRUPT_PER_BUFFER | (ep->transfer_type << EP_CTRL_BUFFER_TYPE_LSB) | dpram_offset; *ep->endpoint_control = reg; } static void _hw_endpoint_init(struct hw_endpoint *ep, uint8_t ep_addr, uint wMaxPacketSize, uint8_t transfer_type) { uint8_t num = tu_edpt_number(ep_addr); bool in = ep_addr & TUSB_DIR_IN_MASK; ep->ep_addr = ep_addr; ep->in = in; // For device, IN is a tx transfer and OUT is an rx transfer ep->rx = in == false; ep->num = num; // Response to a setup packet on EP0 starts with pid of 1 ep->next_pid = num == 0 ? 1u : 0u; // Add some checks around the max packet size if (transfer_type == TUSB_XFER_ISOCHRONOUS) { if (wMaxPacketSize > USB_MAX_ISO_PACKET_SIZE) { panic("Isochronous wMaxPacketSize %d too large", wMaxPacketSize); } } else { if (wMaxPacketSize > USB_MAX_PACKET_SIZE) { panic("Isochronous wMaxPacketSize %d too large", wMaxPacketSize); } } ep->wMaxPacketSize = wMaxPacketSize; ep->transfer_type = transfer_type; // Every endpoint has a buffer control register in dpram if (ep->in) { ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].in; } else { ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].out; } // Clear existing buffer control state *ep->buffer_control = 0; if (ep->num == 0) { // EP0 has no endpoint control register because // the buffer offsets are fixed ep->endpoint_control = NULL; // Buffer offset is fixed ep->hw_data_buf = (uint8_t*)&usb_dpram->ep0_buf_a[0]; } else { // Set the endpoint control register (starts at EP1, hence num-1) if (in) { ep->endpoint_control = &usb_dpram->ep_ctrl[num-1].in; } else { ep->endpoint_control = &usb_dpram->ep_ctrl[num-1].out; } // Now alloc a buffer and fill in endpoint control register _hw_endpoint_alloc(ep); } ep->configured = true; } #if 0 // todo unused static void _hw_endpoint_close(struct hw_endpoint *ep) { // Clear hardware registers and then zero the struct // Clears endpoint enable *ep->endpoint_control = 0; // Clears buffer available, etc *ep->buffer_control = 0; // Clear any endpoint state memset(ep, 0, sizeof(struct hw_endpoint)); } static void hw_endpoint_close(uint8_t ep_addr) { struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); _hw_endpoint_close(ep); } #endif static void hw_endpoint_init(uint8_t ep_addr, uint wMaxPacketSize, uint8_t bmAttributes) { struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); _hw_endpoint_init(ep, ep_addr, wMaxPacketSize, bmAttributes); } static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes, bool start) { struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); _hw_endpoint_xfer(ep, buffer, total_bytes, start); } static void hw_handle_buff_status(void) { uint32_t remaining_buffers = usb_hw->buf_status; pico_trace("buf_status 0x%08x\n", remaining_buffers); uint bit = 1u; for (uint i = 0; remaining_buffers && i < USB_MAX_ENDPOINTS * 2; i++) { if (remaining_buffers & bit) { uint __unused which = (usb_hw->buf_cpu_should_handle & bit) ? 1 : 0; // Should be single buffered assert(which == 0); // clear this in advance usb_hw_clear->buf_status = bit; // IN transfer for even i, OUT transfer for odd i struct hw_endpoint *ep = hw_endpoint_get_by_num(i >> 1u, !(i & 1u)); // Continue xfer bool done = _hw_endpoint_xfer_continue(ep); if (done) { // Notify dcd_event_xfer_complete(0, ep->ep_addr, ep->len, XFER_RESULT_SUCCESS, true); hw_endpoint_reset_transfer(ep); } remaining_buffers &= ~bit; } bit <<= 1u; } } static void reset_ep0(void) { // If we have finished this transfer on EP0 set pid back to 1 for next // setup transfer. Also clear a stall in case uint8_t addrs[] = {0x0, 0x80}; for (uint i = 0 ; i < count_of(addrs); i++) { struct hw_endpoint *ep = hw_endpoint_get_by_addr(addrs[i]); ep->next_pid = 1u; ep->stalled = 0; } } static void ep0_0len_status(void) { // Send 0len complete response on EP0 IN reset_ep0(); hw_endpoint_xfer(0x80, NULL, 0, true); } static void _hw_endpoint_stall(struct hw_endpoint *ep) { assert(!ep->stalled); if (ep->num == 0) { // A stall on EP0 has to be armed so it can be cleared on the next setup packet usb_hw_set->ep_stall_arm = ep->in ? USB_EP_STALL_ARM_EP0_IN_BITS : USB_EP_STALL_ARM_EP0_OUT_BITS; } _hw_endpoint_buffer_control_set_mask32(ep, USB_BUF_CTRL_STALL); ep->stalled = true; } static void hw_endpoint_stall(uint8_t ep_addr) { struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); _hw_endpoint_stall(ep); } static void _hw_endpoint_clear_stall(struct hw_endpoint *ep) { if (ep->num == 0) { // Probably already been cleared but no harm usb_hw_clear->ep_stall_arm = ep->in ? USB_EP_STALL_ARM_EP0_IN_BITS : USB_EP_STALL_ARM_EP0_OUT_BITS; } _hw_endpoint_buffer_control_clear_mask32(ep, USB_BUF_CTRL_STALL); ep->stalled = false; } static void hw_endpoint_clear_stall(uint8_t ep_addr) { struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); _hw_endpoint_clear_stall(ep); } static void dcd_rp2040_irq(void) { uint32_t status = usb_hw->ints; uint32_t handled = 0; if (status & USB_INTS_SETUP_REQ_BITS) { handled |= USB_INTS_SETUP_REQ_BITS; uint8_t const *setup = (uint8_t const *)&usb_dpram->setup_packet; // Clear stall bits and reset pid reset_ep0(); // Pass setup packet to tiny usb dcd_event_setup_received(0, setup, true); usb_hw_clear->sie_status = USB_SIE_STATUS_SETUP_REC_BITS; } if (status & USB_INTS_BUFF_STATUS_BITS) { handled |= USB_INTS_BUFF_STATUS_BITS; hw_handle_buff_status(); } if (status & USB_INTS_BUS_RESET_BITS) { pico_trace("BUS RESET (addr %d -> %d)\n", assigned_address, 0); assigned_address = 0; usb_hw->dev_addr_ctrl = assigned_address; handled |= USB_INTS_BUS_RESET_BITS; dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true); usb_hw_clear->sie_status = USB_SIE_STATUS_BUS_RESET_BITS; #if TUD_OPT_RP2040_USB_DEVICE_ENUMERATION_FIX rp2040_usb_device_enumeration_fix(); #endif } if (status ^ handled) { panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled)); } } #define USB_INTS_ERROR_BITS ( \ USB_INTS_ERROR_DATA_SEQ_BITS | \ USB_INTS_ERROR_BIT_STUFF_BITS | \ USB_INTS_ERROR_CRC_BITS | \ USB_INTS_ERROR_RX_OVERFLOW_BITS | \ USB_INTS_ERROR_RX_TIMEOUT_BITS) /*------------------------------------------------------------------*/ /* Controller API *------------------------------------------------------------------*/ void dcd_init (uint8_t rhport) { pico_trace("dcd_init %d\n", rhport); assert(rhport == 0); // Reset hardware to default state rp2040_usb_init(); irq_set_exclusive_handler(USBCTRL_IRQ, dcd_rp2040_irq); memset(hw_endpoints, 0, sizeof(hw_endpoints)); assigned_address = 0; next_buffer_ptr = &usb_dpram->epx_data[0]; // EP0 always exists so init it now // EP0 OUT hw_endpoint_init(0x0, 64, 0); // EP0 IN hw_endpoint_init(0x80, 64, 0); // Initializes the USB peripheral for device mode and enables it. // Don't need to enable the pull up here. Force VBUS usb_hw->main_ctrl = USB_MAIN_CTRL_CONTROLLER_EN_BITS; // Enable individual controller IRQS here. Processor interrupt enable will be used // for the global interrupt enable... usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS; usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS | USB_INTS_SETUP_REQ_BITS; dcd_connect(rhport); } void dcd_int_enable(uint8_t rhport) { assert(rhport == 0); irq_set_enabled(USBCTRL_IRQ, true); } void dcd_int_disable(uint8_t rhport) { assert(rhport == 0); irq_set_enabled(USBCTRL_IRQ, false); } void dcd_set_address (uint8_t rhport, uint8_t dev_addr) { pico_trace("dcd_set_address %d %d\n", rhport, dev_addr); assert(rhport == 0); // Can't set device address in hardware until status xfer has complete assigned_address = dev_addr; ep0_0len_status(); } void dcd_remote_wakeup(uint8_t rhport) { panic("dcd_remote_wakeup %d\n", rhport); assert(rhport == 0); } // disconnect by disabling internal pull-up resistor on D+/D- void dcd_disconnect(uint8_t rhport) { pico_info("dcd_disconnect %d\n", rhport); assert(rhport == 0); usb_hw_clear->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS; } // connect by enabling internal pull-up resistor on D+/D- void dcd_connect(uint8_t rhport) { pico_info("dcd_connect %d\n", rhport); assert(rhport == 0); usb_hw_set->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS; } /*------------------------------------------------------------------*/ /* DCD Endpoint port *------------------------------------------------------------------*/ void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request) { pico_trace("dcd_edpt0_status_complete %d\n", rhport); assert(rhport == 0); if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE && request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD && request->bRequest == TUSB_REQ_SET_ADDRESS) { pico_trace("Set HW address %d\n", assigned_address); usb_hw->dev_addr_ctrl = assigned_address; } reset_ep0(); } bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt) { pico_info("dcd_edpt_open %d %02x\n", rhport, desc_edpt->bEndpointAddress); assert(rhport == 0); hw_endpoint_init(desc_edpt->bEndpointAddress, desc_edpt->wMaxPacketSize.size, desc_edpt->bmAttributes.xfer); return true; } bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { assert(rhport == 0); // True means start new xfer hw_endpoint_xfer(ep_addr, buffer, total_bytes, true); return true; } void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) { pico_trace("dcd_edpt_stall %d %02x\n", rhport, ep_addr); assert(rhport == 0); hw_endpoint_stall(ep_addr); } void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr) { pico_trace("dcd_edpt_clear_stall %d %02x\n", rhport, ep_addr); assert(rhport == 0); hw_endpoint_clear_stall(ep_addr); } void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr) { // usbd.c says: In progress transfers on this EP may be delivered after this call pico_trace("dcd_edpt_close %d %02x\n", rhport, ep_addr); } #endif