esp32-s2_dfu/src/portable/nxp/transdimension/dcd_transdimension.c

562 lines
20 KiB
C
Raw Normal View History

2020-01-16 06:59:15 +01:00
/*
* The MIT License (MIT)
*
2019-05-14 06:48:05 +02:00
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
2018-12-04 06:47:58 +01:00
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_LPC18XX || \
CFG_TUSB_MCU == OPT_MCU_LPC43XX || \
CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX)
2018-12-04 06:47:58 +01:00
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "common/tusb_common.h"
#include "device/dcd.h"
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
#include "fsl_device_registers.h"
// RT1010 and RT1020 only has 1 USB controller
#if FSL_FEATURE_SOC_USBHS_COUNT == 1
#define DCD_REGS_BASE { (dcd_registers_t*) USB_BASE }
IRQn_Type DCD_IRQn[] = { USB_OTG1_IRQn };
// RT1050, RT1060 has 2 USB controllers
#else
2019-11-22 06:34:41 +01:00
#define DCD_REGS_BASE { (dcd_registers_t*) USB1_BASE, (dcd_registers_t*) USB2_BASE }
IRQn_Type DCD_IRQn[] = { USB_OTG1_IRQn, USB_OTG2_IRQn };
#endif
2019-11-22 06:26:40 +01:00
#else
#include "chip.h"
2019-11-22 06:34:41 +01:00
#define DCD_REGS_BASE { (dcd_registers_t*) LPC_USB0_BASE, (dcd_registers_t*) LPC_USB1_BASE }
IRQn_Type DCD_IRQn[] = { USB0_IRQn, USB1_IRQn };
#endif
2018-12-04 06:47:58 +01:00
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
2018-12-04 10:06:50 +01:00
2019-11-22 06:14:55 +01:00
// ENDPTCTRL
enum {
ENDPTCTRL_STALL = TU_BIT(0),
ENDPTCTRL_TOGGLE_INHIBIT = TU_BIT(5), ///< used for test only
ENDPTCTRL_TOGGLE_RESET = TU_BIT(6),
ENDPTCTRL_ENABLE = TU_BIT(7)
};
// USBCMD
enum {
USBCMD_RUN_STOP = TU_BIT(0),
USBCMD_RESET = TU_BIT(1),
USBCMD_SETUP_TRIPWIRE = TU_BIT(13),
USBCMD_ADD_QTD_TRIPWIRE = TU_BIT(14) ///< This bit is used as a semaphore to ensure the to proper addition of a new dTD to an active (primed) endpoints linked list. This bit is set and cleared by software during the process of adding a new dTD
};
// Interrupt Threshold bit 23:16
// USBSTS, USBINTR
enum {
INTR_USB = TU_BIT(0),
INTR_ERROR = TU_BIT(1),
INTR_PORT_CHANGE = TU_BIT(2),
INTR_RESET = TU_BIT(6),
INTR_SOF = TU_BIT(7),
INTR_SUSPEND = TU_BIT(8),
INTR_NAK = TU_BIT(16)
};
// PORTSC1
2019-11-22 06:14:55 +01:00
enum {
PORTSC1_CURRENT_CONNECT_STATUS = TU_BIT(0),
PORTSC1_FORCE_PORT_RESUME = TU_BIT(6),
PORTSC1_SUSPEND = TU_BIT(7),
PORTSC1_FORCE_FULL_SPEED = TU_BIT(24),
};
// OTGSC
enum {
OTGSC_VBUS_DISCHARGE = TU_BIT(0),
OTGSC_VBUS_CHARGE = TU_BIT(1),
// OTGSC_HWASSIST_AUTORESET = TU_BIT(2),
OTGSC_OTG_TERMINATION = TU_BIT(3), ///< Must set to 1 when OTG go to device mode
OTGSC_DATA_PULSING = TU_BIT(4),
OTGSC_ID_PULLUP = TU_BIT(5),
// OTGSC_HWASSIT_DATA_PULSE = TU_BIT(6),
// OTGSC_HWASSIT_BDIS_ACONN = TU_BIT(7),
OTGSC_ID = TU_BIT(8), ///< 0 = A device, 1 = B Device
OTGSC_A_VBUS_VALID = TU_BIT(9),
OTGSC_A_SESSION_VALID = TU_BIT(10),
OTGSC_B_SESSION_VALID = TU_BIT(11),
OTGSC_B_SESSION_END = TU_BIT(12),
OTGSC_1MS_TOGGLE = TU_BIT(13),
OTGSC_DATA_BUS_PULSING_STATUS = TU_BIT(14),
};
// USBMode
enum {
USBMODE_CM_DEVICE = 2,
USBMODE_CM_HOST = 3,
USBMODE_SLOM = TU_BIT(3),
USBMODE_SDIS = TU_BIT(4),
USBMODE_VBUS_POWER_SELCT = TU_BIT(5), // Enable for LPC18XX/43XX in host most only
2019-11-22 06:14:55 +01:00
};
2019-11-22 06:26:40 +01:00
// Device Registers
typedef struct
{
2019-11-22 06:26:40 +01:00
//------------- ID + HW Parameter Registers-------------//
2020-01-17 06:06:59 +01:00
__I uint32_t TU_RESERVED[64]; ///< For iMX RT10xx, but not used by LPC18XX/LPC43XX
2019-11-22 06:26:40 +01:00
//------------- Capability Registers-------------//
2020-01-17 06:06:59 +01:00
__I uint8_t CAPLENGTH; ///< Capability Registers Length
__I uint8_t TU_RESERVED[1];
2020-01-17 06:06:59 +01:00
__I uint16_t HCIVERSION; ///< Host Controller Interface Version
2020-01-17 06:06:59 +01:00
__I uint32_t HCSPARAMS; ///< Host Controller Structural Parameters
__I uint32_t HCCPARAMS; ///< Host Controller Capability Parameters
__I uint32_t TU_RESERVED[5];
2020-01-17 06:06:59 +01:00
__I uint16_t DCIVERSION; ///< Device Controller Interface Version
__I uint8_t TU_RESERVED[2];
2020-01-17 06:06:59 +01:00
__I uint32_t DCCPARAMS; ///< Device Controller Capability Parameters
__I uint32_t TU_RESERVED[6];
//------------- Operational Registers -------------//
2020-01-17 06:06:59 +01:00
__IO uint32_t USBCMD; ///< USB Command Register
__IO uint32_t USBSTS; ///< USB Status Register
__IO uint32_t USBINTR; ///< Interrupt Enable Register
__IO uint32_t FRINDEX; ///< USB Frame Index
__I uint32_t TU_RESERVED;
2020-01-17 06:06:59 +01:00
__IO uint32_t DEVICEADDR; ///< Device Address
__IO uint32_t ENDPTLISTADDR; ///< Endpoint List Address
__I uint32_t TU_RESERVED;
2020-01-17 06:06:59 +01:00
__IO uint32_t BURSTSIZE; ///< Programmable Burst Size
__IO uint32_t TXFILLTUNING; ///< TX FIFO Fill Tuning
uint32_t TU_RESERVED[4];
2020-01-17 06:06:59 +01:00
__IO uint32_t ENDPTNAK; ///< Endpoint NAK
__IO uint32_t ENDPTNAKEN; ///< Endpoint NAK Enable
__I uint32_t TU_RESERVED;
2020-01-17 06:06:59 +01:00
__IO uint32_t PORTSC1; ///< Port Status & Control
__I uint32_t TU_RESERVED[7];
2020-01-17 06:06:59 +01:00
__IO uint32_t OTGSC; ///< On-The-Go Status & control
__IO uint32_t USBMODE; ///< USB Device Mode
__IO uint32_t ENDPTSETUPSTAT; ///< Endpoint Setup Status
__IO uint32_t ENDPTPRIME; ///< Endpoint Prime
__IO uint32_t ENDPTFLUSH; ///< Endpoint Flush
__I uint32_t ENDPTSTAT; ///< Endpoint Status
__IO uint32_t ENDPTCOMPLETE; ///< Endpoint Complete
__IO uint32_t ENDPTCTRL[8]; ///< Endpoint Control 0 - 7
} dcd_registers_t;
2019-11-22 06:14:55 +01:00
// Queue Transfer Descriptor
2019-11-21 18:38:22 +01:00
typedef struct
{
// Word 0: Next QTD Pointer
uint32_t next; ///< Next link pointer This field contains the physical memory address of the next dTD to be processed
// Word 1: qTQ Token
uint32_t : 3 ;
volatile uint32_t xact_err : 1 ;
uint32_t : 1 ;
volatile uint32_t buffer_err : 1 ;
volatile uint32_t halted : 1 ;
volatile uint32_t active : 1 ;
uint32_t : 2 ;
uint32_t iso_mult_override : 2 ; ///< This field can be used for transmit ISOs to override the MULT field in the dQH. This field must be zero for all packet types that are not transmit-ISO.
uint32_t : 3 ;
uint32_t int_on_complete : 1 ;
volatile uint32_t total_bytes : 15 ;
uint32_t : 0 ;
// Word 2-6: Buffer Page Pointer List, Each element in the list is a 4K page aligned, physical memory address. The lower 12 bits in each pointer are reserved (except for the first one) as each memory pointer must reference the start of a 4K page
uint32_t buffer[5]; ///< buffer1 has frame_n for TODO Isochronous
//------------- DCD Area -------------//
uint16_t expected_bytes;
uint8_t reserved[2];
} dcd_qtd_t;
TU_VERIFY_STATIC( sizeof(dcd_qtd_t) == 32, "size is not correct");
2019-11-22 06:14:55 +01:00
// Queue Head
2019-11-21 18:38:22 +01:00
typedef struct
{
// Word 0: Capabilities and Characteristics
uint32_t : 15 ; ///< Number of packets executed per transaction descriptor 00 - Execute N transactions as demonstrated by the USB variable length protocol where N is computed using Max_packet_length and the Total_bytes field in the dTD. 01 - Execute one transaction 10 - Execute two transactions 11 - Execute three transactions Remark: Non-isochronous endpoints must set MULT = 00. Remark: Isochronous endpoints must set MULT = 01, 10, or 11 as needed.
uint32_t int_on_setup : 1 ; ///< Interrupt on setup This bit is used on control type endpoints to indicate if USBINT is set in response to a setup being received.
uint32_t max_package_size : 11 ; ///< This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize)
uint32_t : 2 ;
uint32_t zero_length_termination : 1 ; ///< This bit is used for non-isochronous endpoints to indicate when a zero-length packet is received to terminate transfers in case the total transfer length is “multiple”. 0 - Enable zero-length packet to terminate transfers equal to a multiple of Max_packet_length (default). 1 - Disable zero-length packet on transfers that are equal in length to a multiple Max_packet_length.
uint32_t iso_mult : 2 ; ///<
uint32_t : 0 ;
// Word 1: Current qTD Pointer
volatile uint32_t qtd_addr;
// Word 2-9: Transfer Overlay
volatile dcd_qtd_t qtd_overlay;
// Word 10-11: Setup request (control OUT only)
volatile tusb_control_request_t setup_request;
//--------------------------------------------------------------------+
/// Due to the fact QHD is 64 bytes aligned but occupies only 48 bytes
/// thus there are 16 bytes padding free that we can make use of.
//--------------------------------------------------------------------+
uint8_t reserved[16];
} dcd_qhd_t;
TU_VERIFY_STATIC( sizeof(dcd_qhd_t) == 64, "size is not correct");
//--------------------------------------------------------------------+
// Variables
//--------------------------------------------------------------------+
2018-12-04 10:06:50 +01:00
#define QHD_MAX 12
#define QTD_NEXT_INVALID 0x01
2018-12-04 06:47:58 +01:00
typedef struct {
2018-12-04 10:06:50 +01:00
// Must be at 2K alignment
dcd_qhd_t qhd[QHD_MAX] TU_ATTR_ALIGNED(64);
dcd_qtd_t qtd[QHD_MAX] TU_ATTR_ALIGNED(32);
2018-12-04 06:47:58 +01:00
}dcd_data_t;
static dcd_data_t _dcd_data CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048);
2019-11-22 06:16:47 +01:00
static dcd_registers_t* DCD_REGS[] = DCD_REGS_BASE;
2018-12-04 06:47:58 +01:00
//--------------------------------------------------------------------+
// CONTROLLER API
//--------------------------------------------------------------------+
/// follows LPC43xx User Manual 23.10.3
static void bus_reset(uint8_t rhport)
{
2019-11-22 06:16:47 +01:00
dcd_registers_t* dcd_reg = DCD_REGS[rhport];
2018-12-04 06:47:58 +01:00
// The reset value for all endpoint types is the control endpoint. If one endpoint
// direction is enabled and the paired endpoint of opposite direction is disabled, then the
// endpoint type of the unused direction must bechanged from the control type to any other
// type (e.g. bulk). Leaving an unconfigured endpoint control will cause undefined behavior
// for the data PID tracking on the active endpoint.
// USB0 has 5 but USB1 only has 3 non-control endpoints
for( int i=1; i < (rhport ? 6 : 4); i++)
{
2019-11-22 06:16:47 +01:00
dcd_reg->ENDPTCTRL[i] = (TUSB_XFER_BULK << 2) | (TUSB_XFER_BULK << 18);
2018-12-04 06:47:58 +01:00
}
//------------- Clear All Registers -------------//
2019-11-22 06:16:47 +01:00
dcd_reg->ENDPTNAK = dcd_reg->ENDPTNAK;
dcd_reg->ENDPTNAKEN = 0;
dcd_reg->USBSTS = dcd_reg->USBSTS;
dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT;
dcd_reg->ENDPTCOMPLETE = dcd_reg->ENDPTCOMPLETE;
2018-12-04 06:47:58 +01:00
2020-01-17 06:06:59 +01:00
while (dcd_reg->ENDPTPRIME) {}
2019-11-22 06:16:47 +01:00
dcd_reg->ENDPTFLUSH = 0xFFFFFFFF;
2020-01-17 06:06:59 +01:00
while (dcd_reg->ENDPTFLUSH) {}
2018-12-04 06:47:58 +01:00
// read reset bit in portsc
//------------- Queue Head & Queue TD -------------//
tu_memclr(&_dcd_data, sizeof(dcd_data_t));
2018-12-04 06:47:58 +01:00
//------------- Set up Control Endpoints (0 OUT, 1 IN) -------------//
_dcd_data.qhd[0].zero_length_termination = _dcd_data.qhd[1].zero_length_termination = 1;
_dcd_data.qhd[0].max_package_size = _dcd_data.qhd[1].max_package_size = CFG_TUD_ENDPOINT0_SIZE;
_dcd_data.qhd[0].qtd_overlay.next = _dcd_data.qhd[1].qtd_overlay.next = QTD_NEXT_INVALID;
2018-12-04 06:47:58 +01:00
_dcd_data.qhd[0].int_on_setup = 1; // OUT only
2018-12-04 06:47:58 +01:00
}
void dcd_init(uint8_t rhport)
2018-12-04 06:47:58 +01:00
{
tu_memclr(&_dcd_data, sizeof(dcd_data_t));
2019-11-22 06:16:47 +01:00
dcd_registers_t* const dcd_reg = DCD_REGS[rhport];
2018-12-04 06:47:58 +01:00
// Reset controller
dcd_reg->USBCMD |= USBCMD_RESET;
while( dcd_reg->USBCMD & USBCMD_RESET ) {}
// Set mode to device, must be set immediately after reset
dcd_reg->USBMODE = USBMODE_CM_DEVICE;
dcd_reg->OTGSC = OTGSC_VBUS_DISCHARGE | OTGSC_OTG_TERMINATION;
// TODO Force fullspeed on non-highspeed port
// dcd_reg->PORTSC1 = PORTSC1_FORCE_FULL_SPEED;
2018-12-04 06:47:58 +01:00
2020-01-17 02:17:49 +01:00
#if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1
SCB_CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
#endif
2020-01-16 06:59:15 +01:00
2019-11-22 06:16:47 +01:00
dcd_reg->ENDPTLISTADDR = (uint32_t) _dcd_data.qhd; // Endpoint List Address has to be 2K alignment
dcd_reg->USBSTS = dcd_reg->USBSTS;
2020-01-17 02:17:49 +01:00
dcd_reg->USBINTR = INTR_USB | INTR_ERROR | INTR_PORT_CHANGE | INTR_RESET | INTR_SUSPEND | INTR_SOF;
2018-12-04 06:47:58 +01:00
2019-11-22 06:16:47 +01:00
dcd_reg->USBCMD &= ~0x00FF0000; // Interrupt Threshold Interval = 0
dcd_reg->USBCMD |= TU_BIT(0); // connect
}
void dcd_int_enable(uint8_t rhport)
{
2019-11-22 06:34:41 +01:00
NVIC_EnableIRQ(DCD_IRQn[rhport]);
}
2018-12-04 06:47:58 +01:00
void dcd_int_disable(uint8_t rhport)
{
2019-11-22 06:34:41 +01:00
NVIC_DisableIRQ(DCD_IRQn[rhport]);
2018-12-04 06:47:58 +01:00
}
2018-12-17 06:14:11 +01:00
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
2019-11-22 06:16:47 +01:00
DCD_REGS[rhport]->DEVICEADDR = (dev_addr << 25) | TU_BIT(24);
2018-12-17 06:14:11 +01:00
}
void dcd_set_config(uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
// nothing to do
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
2018-12-04 06:47:58 +01:00
//--------------------------------------------------------------------+
// HELPER
//--------------------------------------------------------------------+
// index to bit position in register
static inline uint8_t ep_idx2bit(uint8_t ep_idx)
{
return ep_idx/2 + ( (ep_idx%2) ? 16 : 0);
}
static void qtd_init(dcd_qtd_t* p_qtd, void * data_ptr, uint16_t total_bytes)
{
tu_memclr(p_qtd, sizeof(dcd_qtd_t));
p_qtd->next = QTD_NEXT_INVALID;
p_qtd->active = 1;
p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes;
if (data_ptr != NULL)
{
p_qtd->buffer[0] = (uint32_t) data_ptr;
for(uint8_t i=1; i<5; i++)
{
p_qtd->buffer[i] |= tu_align4k( p_qtd->buffer[i-1] ) + 4096;
}
}
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
2018-12-04 06:47:58 +01:00
2019-11-22 06:16:47 +01:00
DCD_REGS[rhport]->ENDPTCTRL[epnum] |= ENDPTCTRL_STALL << (dir ? 16 : 0);
2018-12-04 06:47:58 +01:00
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
2018-12-04 06:47:58 +01:00
// data toggle also need to be reset
2019-11-22 06:16:47 +01:00
DCD_REGS[rhport]->ENDPTCTRL[epnum] |= ENDPTCTRL_TOGGLE_RESET << ( dir ? 16 : 0 );
DCD_REGS[rhport]->ENDPTCTRL[epnum] &= ~(ENDPTCTRL_STALL << ( dir ? 16 : 0));
2018-12-04 06:47:58 +01:00
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
// TODO not support ISO yet
TU_VERIFY ( p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
2018-12-04 06:47:58 +01:00
uint8_t const ep_idx = 2*epnum + dir;
2018-12-04 10:06:50 +01:00
// USB0 has 5, USB1 has 3 non-control endpoints
TU_ASSERT( epnum <= (rhport ? 3 : 5) );
2018-12-04 06:47:58 +01:00
//------------- Prepare Queue Head -------------//
dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx];
2018-12-04 06:47:58 +01:00
tu_memclr(p_qhd, sizeof(dcd_qhd_t));
p_qhd->zero_length_termination = 1;
p_qhd->max_package_size = p_endpoint_desc->wMaxPacketSize.size;
p_qhd->qtd_overlay.next = QTD_NEXT_INVALID;
2020-01-17 02:17:49 +01:00
#if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1
SCB_CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
#endif
2018-12-04 06:47:58 +01:00
// Enable EP Control
2019-11-22 06:16:47 +01:00
DCD_REGS[rhport]->ENDPTCTRL[epnum] |= ((p_endpoint_desc->bmAttributes.xfer << 2) | ENDPTCTRL_ENABLE | ENDPTCTRL_TOGGLE_RESET) << (dir ? 16 : 0);
2018-12-04 06:47:58 +01:00
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
2018-12-04 06:47:58 +01:00
uint8_t const ep_idx = 2*epnum + dir;
if ( epnum == 0 )
{
// follows UM 24.10.8.1.1 Setup packet handling using setup lockout mechanism
// wait until ENDPTSETUPSTAT before priming data/status in response TODO add time out
2019-11-22 06:16:47 +01:00
while(DCD_REGS[rhport]->ENDPTSETUPSTAT & TU_BIT(0)) {}
2018-12-04 06:47:58 +01:00
}
dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx];
dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx];
2018-12-04 06:47:58 +01:00
2020-01-17 02:17:49 +01:00
// Force the CPU to flush the buffer. We increase the size by 32 because the call aligns the
// address to 32-byte boundaries.
#if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1
SCB_CleanInvalidateDCache_by_Addr((uint32_t*) buffer, total_bytes + 31);
#endif
2020-01-16 06:59:15 +01:00
2018-12-04 06:47:58 +01:00
//------------- Prepare qtd -------------//
qtd_init(p_qtd, buffer, total_bytes);
p_qtd->int_on_complete = true;
p_qhd->qtd_overlay.next = (uint32_t) p_qtd; // link qtd to qhd
2020-01-17 02:17:49 +01:00
#if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1
SCB_CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
#endif
2018-12-04 06:47:58 +01:00
// start transfer
2019-11-22 06:16:47 +01:00
DCD_REGS[rhport]->ENDPTPRIME = TU_BIT( ep_idx2bit(ep_idx) ) ;
2018-12-04 06:47:58 +01:00
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_isr(uint8_t rhport)
2018-12-04 06:47:58 +01:00
{
2019-11-22 06:16:47 +01:00
dcd_registers_t* const dcd_reg = DCD_REGS[rhport];
2018-12-04 06:47:58 +01:00
2019-11-22 06:16:47 +01:00
uint32_t const int_enable = dcd_reg->USBINTR;
uint32_t const int_status = dcd_reg->USBSTS & int_enable;
dcd_reg->USBSTS = int_status; // Acknowledge handled interrupt
2018-12-04 06:47:58 +01:00
2019-11-22 06:16:47 +01:00
// disabled interrupt sources
if (int_status == 0) return;
2018-12-04 06:47:58 +01:00
2019-11-22 06:14:55 +01:00
if (int_status & INTR_RESET)
2018-12-04 06:47:58 +01:00
{
bus_reset(rhport);
dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true);
}
2019-11-22 06:14:55 +01:00
if (int_status & INTR_SUSPEND)
2018-12-04 06:47:58 +01:00
{
if (dcd_reg->PORTSC1 & PORTSC1_SUSPEND)
2018-12-04 06:47:58 +01:00
{
// Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration.
2019-11-22 06:16:47 +01:00
if ((dcd_reg->DEVICEADDR >> 25) & 0x0f)
2018-12-04 06:47:58 +01:00
{
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
2018-12-04 06:47:58 +01:00
}
}
}
2020-01-16 06:59:15 +01:00
// Make sure we read the latest version of _dcd_data.
2020-01-17 02:17:49 +01:00
#if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1
SCB_CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
#endif
2020-01-16 06:59:15 +01:00
2018-12-04 06:47:58 +01:00
// TODO disconnection does not generate interrupt !!!!!!
2019-11-22 06:14:55 +01:00
// if (int_status & INTR_PORT_CHANGE)
2018-12-04 06:47:58 +01:00
// {
// if ( !(dcd_reg->PORTSC1 & PORTSC1_CURRENT_CONNECT_STATUS) )
2018-12-04 06:47:58 +01:00
// {
// dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_UNPLUGGED };
// dcd_event_handler(&event, true);
// }
// }
2019-11-22 06:14:55 +01:00
if (int_status & INTR_USB)
2018-12-04 06:47:58 +01:00
{
2019-11-22 06:16:47 +01:00
uint32_t const edpt_complete = dcd_reg->ENDPTCOMPLETE;
dcd_reg->ENDPTCOMPLETE = edpt_complete; // acknowledge
2018-12-04 06:47:58 +01:00
2019-11-22 06:16:47 +01:00
if (dcd_reg->ENDPTSETUPSTAT)
2018-12-04 06:47:58 +01:00
{
//------------- Set up Received -------------//
// 23.10.10.2 Operational model for setup transfers
2019-11-22 06:16:47 +01:00
dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT;// acknowledge
2018-12-04 06:47:58 +01:00
dcd_event_setup_received(rhport, (uint8_t*) &_dcd_data.qhd[0].setup_request, true);
2018-12-04 06:47:58 +01:00
}
if ( edpt_complete )
{
2018-12-04 10:06:50 +01:00
for(uint8_t ep_idx = 0; ep_idx < QHD_MAX; ep_idx++)
2018-12-04 06:47:58 +01:00
{
if ( tu_bit_test(edpt_complete, ep_idx2bit(ep_idx)) )
2018-12-04 06:47:58 +01:00
{
// 23.10.12.3 Failed QTD also get ENDPTCOMPLETE set
dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx];
2018-12-04 06:47:58 +01:00
uint8_t result = p_qtd->halted ? XFER_RESULT_STALLED :
( p_qtd->xact_err ||p_qtd->buffer_err ) ? XFER_RESULT_FAILED : XFER_RESULT_SUCCESS;
uint8_t const ep_addr = (ep_idx/2) | ( (ep_idx & 0x01) ? TUSB_DIR_IN_MASK : 0 );
dcd_event_xfer_complete(rhport, ep_addr, p_qtd->expected_bytes - p_qtd->total_bytes, result, true); // only number of bytes in the IOC qtd
}
}
}
}
2019-11-22 06:14:55 +01:00
if (int_status & INTR_SOF)
2018-12-04 06:47:58 +01:00
{
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
2019-11-22 06:14:55 +01:00
if (int_status & INTR_NAK) {}
if (int_status & INTR_ERROR) TU_ASSERT(false, );
2018-12-04 06:47:58 +01:00
}
#endif