/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_LPC18XX || \ CFG_TUSB_MCU == OPT_MCU_LPC43XX || \ CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX) //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #include "common/tusb_common.h" #include "device/dcd.h" #if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX #include "fsl_device_registers.h" // RT1010 and RT1020 only has 1 USB controller #if FSL_FEATURE_SOC_USBHS_COUNT == 1 #define DCD_REGS_BASE { (dcd_registers_t*) USB_BASE } IRQn_Type DCD_IRQn[] = { USB_OTG1_IRQn }; // RT1050, RT1060 has 2 USB controllers #else #define DCD_REGS_BASE { (dcd_registers_t*) USB1_BASE, (dcd_registers_t*) USB2_BASE } IRQn_Type DCD_IRQn[] = { USB_OTG1_IRQn, USB_OTG2_IRQn }; #endif #else #include "chip.h" #define DCD_REGS_BASE { (dcd_registers_t*) LPC_USB0_BASE, (dcd_registers_t*) LPC_USB1_BASE } IRQn_Type DCD_IRQn[] = { USB0_IRQn, USB1_IRQn }; #endif //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ // ENDPTCTRL enum { ENDPTCTRL_STALL = TU_BIT(0), ENDPTCTRL_TOGGLE_INHIBIT = TU_BIT(5), ///< used for test only ENDPTCTRL_TOGGLE_RESET = TU_BIT(6), ENDPTCTRL_ENABLE = TU_BIT(7) }; // USBCMD enum { USBCMD_RUN_STOP = TU_BIT(0), USBCMD_RESET = TU_BIT(1), USBCMD_SETUP_TRIPWIRE = TU_BIT(13), USBCMD_ADD_QTD_TRIPWIRE = TU_BIT(14) ///< This bit is used as a semaphore to ensure the to proper addition of a new dTD to an active (primed) endpoint’s linked list. This bit is set and cleared by software during the process of adding a new dTD }; // Interrupt Threshold bit 23:16 // USBSTS, USBINTR enum { INTR_USB = TU_BIT(0), INTR_ERROR = TU_BIT(1), INTR_PORT_CHANGE = TU_BIT(2), INTR_RESET = TU_BIT(6), INTR_SOF = TU_BIT(7), INTR_SUSPEND = TU_BIT(8), INTR_NAK = TU_BIT(16) }; // PORTSC1 enum { PORTSC1_CURRENT_CONNECT_STATUS = TU_BIT(0), PORTSC1_FORCE_PORT_RESUME = TU_BIT(6), PORTSC1_SUSPEND = TU_BIT(7), PORTSC1_FORCE_FULL_SPEED = TU_BIT(24), }; // OTGSC enum { OTGSC_VBUS_DISCHARGE = TU_BIT(0), OTGSC_VBUS_CHARGE = TU_BIT(1), // OTGSC_HWASSIST_AUTORESET = TU_BIT(2), OTGSC_OTG_TERMINATION = TU_BIT(3), ///< Must set to 1 when OTG go to device mode OTGSC_DATA_PULSING = TU_BIT(4), OTGSC_ID_PULLUP = TU_BIT(5), // OTGSC_HWASSIT_DATA_PULSE = TU_BIT(6), // OTGSC_HWASSIT_BDIS_ACONN = TU_BIT(7), OTGSC_ID = TU_BIT(8), ///< 0 = A device, 1 = B Device OTGSC_A_VBUS_VALID = TU_BIT(9), OTGSC_A_SESSION_VALID = TU_BIT(10), OTGSC_B_SESSION_VALID = TU_BIT(11), OTGSC_B_SESSION_END = TU_BIT(12), OTGSC_1MS_TOGGLE = TU_BIT(13), OTGSC_DATA_BUS_PULSING_STATUS = TU_BIT(14), }; // USBMode enum { USBMODE_CM_DEVICE = 2, USBMODE_CM_HOST = 3, USBMODE_SLOM = TU_BIT(3), USBMODE_SDIS = TU_BIT(4), USBMODE_VBUS_POWER_SELCT = TU_BIT(5), // Enable for LPC18XX/43XX in host most only }; // Device Registers typedef struct { //------------- ID + HW Parameter Registers-------------// __I uint32_t TU_RESERVED[64]; ///< For iMX RT10xx, but not used by LPC18XX/LPC43XX //------------- Capability Registers-------------// __I uint8_t CAPLENGTH; ///< Capability Registers Length __I uint8_t TU_RESERVED[1]; __I uint16_t HCIVERSION; ///< Host Controller Interface Version __I uint32_t HCSPARAMS; ///< Host Controller Structural Parameters __I uint32_t HCCPARAMS; ///< Host Controller Capability Parameters __I uint32_t TU_RESERVED[5]; __I uint16_t DCIVERSION; ///< Device Controller Interface Version __I uint8_t TU_RESERVED[2]; __I uint32_t DCCPARAMS; ///< Device Controller Capability Parameters __I uint32_t TU_RESERVED[6]; //------------- Operational Registers -------------// __IO uint32_t USBCMD; ///< USB Command Register __IO uint32_t USBSTS; ///< USB Status Register __IO uint32_t USBINTR; ///< Interrupt Enable Register __IO uint32_t FRINDEX; ///< USB Frame Index __I uint32_t TU_RESERVED; __IO uint32_t DEVICEADDR; ///< Device Address __IO uint32_t ENDPTLISTADDR; ///< Endpoint List Address __I uint32_t TU_RESERVED; __IO uint32_t BURSTSIZE; ///< Programmable Burst Size __IO uint32_t TXFILLTUNING; ///< TX FIFO Fill Tuning uint32_t TU_RESERVED[4]; __IO uint32_t ENDPTNAK; ///< Endpoint NAK __IO uint32_t ENDPTNAKEN; ///< Endpoint NAK Enable __I uint32_t TU_RESERVED; __IO uint32_t PORTSC1; ///< Port Status & Control __I uint32_t TU_RESERVED[7]; __IO uint32_t OTGSC; ///< On-The-Go Status & control __IO uint32_t USBMODE; ///< USB Device Mode __IO uint32_t ENDPTSETUPSTAT; ///< Endpoint Setup Status __IO uint32_t ENDPTPRIME; ///< Endpoint Prime __IO uint32_t ENDPTFLUSH; ///< Endpoint Flush __I uint32_t ENDPTSTAT; ///< Endpoint Status __IO uint32_t ENDPTCOMPLETE; ///< Endpoint Complete __IO uint32_t ENDPTCTRL[8]; ///< Endpoint Control 0 - 7 } dcd_registers_t; // Queue Transfer Descriptor typedef struct { // Word 0: Next QTD Pointer uint32_t next; ///< Next link pointer This field contains the physical memory address of the next dTD to be processed // Word 1: qTQ Token uint32_t : 3 ; volatile uint32_t xact_err : 1 ; uint32_t : 1 ; volatile uint32_t buffer_err : 1 ; volatile uint32_t halted : 1 ; volatile uint32_t active : 1 ; uint32_t : 2 ; uint32_t iso_mult_override : 2 ; ///< This field can be used for transmit ISOs to override the MULT field in the dQH. This field must be zero for all packet types that are not transmit-ISO. uint32_t : 3 ; uint32_t int_on_complete : 1 ; volatile uint32_t total_bytes : 15 ; uint32_t : 0 ; // Word 2-6: Buffer Page Pointer List, Each element in the list is a 4K page aligned, physical memory address. The lower 12 bits in each pointer are reserved (except for the first one) as each memory pointer must reference the start of a 4K page uint32_t buffer[5]; ///< buffer1 has frame_n for TODO Isochronous //------------- DCD Area -------------// uint16_t expected_bytes; uint8_t reserved[2]; } dcd_qtd_t; TU_VERIFY_STATIC( sizeof(dcd_qtd_t) == 32, "size is not correct"); // Queue Head typedef struct { // Word 0: Capabilities and Characteristics uint32_t : 15 ; ///< Number of packets executed per transaction descriptor 00 - Execute N transactions as demonstrated by the USB variable length protocol where N is computed using Max_packet_length and the Total_bytes field in the dTD. 01 - Execute one transaction 10 - Execute two transactions 11 - Execute three transactions Remark: Non-isochronous endpoints must set MULT = 00. Remark: Isochronous endpoints must set MULT = 01, 10, or 11 as needed. uint32_t int_on_setup : 1 ; ///< Interrupt on setup This bit is used on control type endpoints to indicate if USBINT is set in response to a setup being received. uint32_t max_package_size : 11 ; ///< This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize) uint32_t : 2 ; uint32_t zero_length_termination : 1 ; ///< This bit is used for non-isochronous endpoints to indicate when a zero-length packet is received to terminate transfers in case the total transfer length is “multiple”. 0 - Enable zero-length packet to terminate transfers equal to a multiple of Max_packet_length (default). 1 - Disable zero-length packet on transfers that are equal in length to a multiple Max_packet_length. uint32_t iso_mult : 2 ; ///< uint32_t : 0 ; // Word 1: Current qTD Pointer volatile uint32_t qtd_addr; // Word 2-9: Transfer Overlay volatile dcd_qtd_t qtd_overlay; // Word 10-11: Setup request (control OUT only) volatile tusb_control_request_t setup_request; //--------------------------------------------------------------------+ /// Due to the fact QHD is 64 bytes aligned but occupies only 48 bytes /// thus there are 16 bytes padding free that we can make use of. //--------------------------------------------------------------------+ uint8_t reserved[16]; } dcd_qhd_t; TU_VERIFY_STATIC( sizeof(dcd_qhd_t) == 64, "size is not correct"); //--------------------------------------------------------------------+ // Variables //--------------------------------------------------------------------+ #define QHD_MAX 12 #define QTD_NEXT_INVALID 0x01 typedef struct { // Must be at 2K alignment dcd_qhd_t qhd[QHD_MAX] TU_ATTR_ALIGNED(64); dcd_qtd_t qtd[QHD_MAX] TU_ATTR_ALIGNED(32); }dcd_data_t; static dcd_data_t _dcd_data CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048); static dcd_registers_t* DCD_REGS[] = DCD_REGS_BASE; //--------------------------------------------------------------------+ // CONTROLLER API //--------------------------------------------------------------------+ /// follows LPC43xx User Manual 23.10.3 static void bus_reset(uint8_t rhport) { dcd_registers_t* dcd_reg = DCD_REGS[rhport]; // The reset value for all endpoint types is the control endpoint. If one endpoint // direction is enabled and the paired endpoint of opposite direction is disabled, then the // endpoint type of the unused direction must bechanged from the control type to any other // type (e.g. bulk). Leaving an unconfigured endpoint control will cause undefined behavior // for the data PID tracking on the active endpoint. // USB0 has 5 but USB1 only has 3 non-control endpoints for( int i=1; i < (rhport ? 6 : 4); i++) { dcd_reg->ENDPTCTRL[i] = (TUSB_XFER_BULK << 2) | (TUSB_XFER_BULK << 18); } //------------- Clear All Registers -------------// dcd_reg->ENDPTNAK = dcd_reg->ENDPTNAK; dcd_reg->ENDPTNAKEN = 0; dcd_reg->USBSTS = dcd_reg->USBSTS; dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT; dcd_reg->ENDPTCOMPLETE = dcd_reg->ENDPTCOMPLETE; while (dcd_reg->ENDPTPRIME) {} dcd_reg->ENDPTFLUSH = 0xFFFFFFFF; while (dcd_reg->ENDPTFLUSH) {} // read reset bit in portsc //------------- Queue Head & Queue TD -------------// tu_memclr(&_dcd_data, sizeof(dcd_data_t)); //------------- Set up Control Endpoints (0 OUT, 1 IN) -------------// _dcd_data.qhd[0].zero_length_termination = _dcd_data.qhd[1].zero_length_termination = 1; _dcd_data.qhd[0].max_package_size = _dcd_data.qhd[1].max_package_size = CFG_TUD_ENDPOINT0_SIZE; _dcd_data.qhd[0].qtd_overlay.next = _dcd_data.qhd[1].qtd_overlay.next = QTD_NEXT_INVALID; _dcd_data.qhd[0].int_on_setup = 1; // OUT only } void dcd_init(uint8_t rhport) { tu_memclr(&_dcd_data, sizeof(dcd_data_t)); dcd_registers_t* const dcd_reg = DCD_REGS[rhport]; // Reset controller dcd_reg->USBCMD |= USBCMD_RESET; while( dcd_reg->USBCMD & USBCMD_RESET ) {} // Set mode to device, must be set immediately after reset dcd_reg->USBMODE = USBMODE_CM_DEVICE; dcd_reg->OTGSC = OTGSC_VBUS_DISCHARGE | OTGSC_OTG_TERMINATION; // TODO Force fullspeed on non-highspeed port // dcd_reg->PORTSC1 = PORTSC1_FORCE_FULL_SPEED; #if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1 SCB_CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t)); #endif dcd_reg->ENDPTLISTADDR = (uint32_t) _dcd_data.qhd; // Endpoint List Address has to be 2K alignment dcd_reg->USBSTS = dcd_reg->USBSTS; dcd_reg->USBINTR = INTR_USB | INTR_ERROR | INTR_PORT_CHANGE | INTR_RESET | INTR_SUSPEND | INTR_SOF; dcd_reg->USBCMD &= ~0x00FF0000; // Interrupt Threshold Interval = 0 dcd_reg->USBCMD |= TU_BIT(0); // connect } void dcd_int_enable(uint8_t rhport) { NVIC_EnableIRQ(DCD_IRQn[rhport]); } void dcd_int_disable(uint8_t rhport) { NVIC_DisableIRQ(DCD_IRQn[rhport]); } void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { // Response with status first before changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); DCD_REGS[rhport]->DEVICEADDR = (dev_addr << 25) | TU_BIT(24); } void dcd_set_config(uint8_t rhport, uint8_t config_num) { (void) rhport; (void) config_num; // nothing to do } void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } //--------------------------------------------------------------------+ // HELPER //--------------------------------------------------------------------+ // index to bit position in register static inline uint8_t ep_idx2bit(uint8_t ep_idx) { return ep_idx/2 + ( (ep_idx%2) ? 16 : 0); } static void qtd_init(dcd_qtd_t* p_qtd, void * data_ptr, uint16_t total_bytes) { tu_memclr(p_qtd, sizeof(dcd_qtd_t)); p_qtd->next = QTD_NEXT_INVALID; p_qtd->active = 1; p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes; if (data_ptr != NULL) { p_qtd->buffer[0] = (uint32_t) data_ptr; for(uint8_t i=1; i<5; i++) { p_qtd->buffer[i] |= tu_align4k( p_qtd->buffer[i-1] ) + 4096; } } } //--------------------------------------------------------------------+ // DCD Endpoint Port //--------------------------------------------------------------------+ void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); DCD_REGS[rhport]->ENDPTCTRL[epnum] |= ENDPTCTRL_STALL << (dir ? 16 : 0); } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); // data toggle also need to be reset DCD_REGS[rhport]->ENDPTCTRL[epnum] |= ENDPTCTRL_TOGGLE_RESET << ( dir ? 16 : 0 ); DCD_REGS[rhport]->ENDPTCTRL[epnum] &= ~(ENDPTCTRL_STALL << ( dir ? 16 : 0)); } bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) { // TODO not support ISO yet TU_VERIFY ( p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS); uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress); uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress); uint8_t const ep_idx = 2*epnum + dir; // USB0 has 5, USB1 has 3 non-control endpoints TU_ASSERT( epnum <= (rhport ? 3 : 5) ); //------------- Prepare Queue Head -------------// dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx]; tu_memclr(p_qhd, sizeof(dcd_qhd_t)); p_qhd->zero_length_termination = 1; p_qhd->max_package_size = p_endpoint_desc->wMaxPacketSize.size; p_qhd->qtd_overlay.next = QTD_NEXT_INVALID; #if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1 SCB_CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t)); #endif // Enable EP Control DCD_REGS[rhport]->ENDPTCTRL[epnum] |= ((p_endpoint_desc->bmAttributes.xfer << 2) | ENDPTCTRL_ENABLE | ENDPTCTRL_TOGGLE_RESET) << (dir ? 16 : 0); return true; } bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); uint8_t const ep_idx = 2*epnum + dir; if ( epnum == 0 ) { // follows UM 24.10.8.1.1 Setup packet handling using setup lockout mechanism // wait until ENDPTSETUPSTAT before priming data/status in response TODO add time out while(DCD_REGS[rhport]->ENDPTSETUPSTAT & TU_BIT(0)) {} } dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx]; dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx]; // Force the CPU to flush the buffer. We increase the size by 32 because the call aligns the // address to 32-byte boundaries. #if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1 SCB_CleanInvalidateDCache_by_Addr((uint32_t*) buffer, total_bytes + 31); #endif //------------- Prepare qtd -------------// qtd_init(p_qtd, buffer, total_bytes); p_qtd->int_on_complete = true; p_qhd->qtd_overlay.next = (uint32_t) p_qtd; // link qtd to qhd #if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1 SCB_CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t)); #endif // start transfer DCD_REGS[rhport]->ENDPTPRIME = TU_BIT( ep_idx2bit(ep_idx) ) ; return true; } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ void dcd_isr(uint8_t rhport) { dcd_registers_t* const dcd_reg = DCD_REGS[rhport]; uint32_t const int_enable = dcd_reg->USBINTR; uint32_t const int_status = dcd_reg->USBSTS & int_enable; dcd_reg->USBSTS = int_status; // Acknowledge handled interrupt // disabled interrupt sources if (int_status == 0) return; if (int_status & INTR_RESET) { bus_reset(rhport); dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true); } if (int_status & INTR_SUSPEND) { if (dcd_reg->PORTSC1 & PORTSC1_SUSPEND) { // Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration. if ((dcd_reg->DEVICEADDR >> 25) & 0x0f) { dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); } } } // Make sure we read the latest version of _dcd_data. #if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1 SCB_CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t)); #endif // TODO disconnection does not generate interrupt !!!!!! // if (int_status & INTR_PORT_CHANGE) // { // if ( !(dcd_reg->PORTSC1 & PORTSC1_CURRENT_CONNECT_STATUS) ) // { // dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_UNPLUGGED }; // dcd_event_handler(&event, true); // } // } if (int_status & INTR_USB) { uint32_t const edpt_complete = dcd_reg->ENDPTCOMPLETE; dcd_reg->ENDPTCOMPLETE = edpt_complete; // acknowledge if (dcd_reg->ENDPTSETUPSTAT) { //------------- Set up Received -------------// // 23.10.10.2 Operational model for setup transfers dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT;// acknowledge dcd_event_setup_received(rhport, (uint8_t*) &_dcd_data.qhd[0].setup_request, true); } if ( edpt_complete ) { for(uint8_t ep_idx = 0; ep_idx < QHD_MAX; ep_idx++) { if ( tu_bit_test(edpt_complete, ep_idx2bit(ep_idx)) ) { // 23.10.12.3 Failed QTD also get ENDPTCOMPLETE set dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx]; uint8_t result = p_qtd->halted ? XFER_RESULT_STALLED : ( p_qtd->xact_err ||p_qtd->buffer_err ) ? XFER_RESULT_FAILED : XFER_RESULT_SUCCESS; uint8_t const ep_addr = (ep_idx/2) | ( (ep_idx & 0x01) ? TUSB_DIR_IN_MASK : 0 ); dcd_event_xfer_complete(rhport, ep_addr, p_qtd->expected_bytes - p_qtd->total_bytes, result, true); // only number of bytes in the IOC qtd } } } } if (int_status & INTR_SOF) { dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true); } if (int_status & INTR_NAK) {} if (int_status & INTR_ERROR) TU_ASSERT(false, ); } #endif