stm32f1/application.c

527 lines
20 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** STM32F1 application example
* @file application.c
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2016-2020
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // standard utilities
#include <string.h> // string utilities
#include <time.h> // date/time utilities
#include <ctype.h> // utilities to check chars
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/scb.h> // vector table definition
#include <libopencm3/cm3/nvic.h> // interrupt utilities
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/exti.h> // external interrupt utilities
#include <libopencm3/stm32/rtc.h> // real time clock utilities
#include <libopencm3/stm32/iwdg.h> // independent watchdog utilities
#include <libopencm3/stm32/dbgmcu.h> // debug utilities
#include <libopencm3/stm32/desig.h> // design utilities
#include <libopencm3/stm32/flash.h> // flash utilities
#include <libopencm3/stm32/timer.h> // timer utilities
/* own libraries */
#include "global.h" // board definitions
#include "print.h" // printing utilities
#if !defined(STLINKV2)
#include "uart.h" // USART utilities
#endif
#include "usb_cdcacm.h" // USB CDC ACM utilities
#include "terminal.h" // handle the terminal interface
#include "menu.h" // menu utilities
#include "flash_internal.h" // menu utilities
#define WATCHDOG_PERIOD 3000 /**< watchdog period in ms */
/** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime
* set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time
*/
#define RTC_DATE_TIME 0
/** number of RTC ticks per second */
#define RTC_TICKS 10
/** RTC time when device is started */
static time_t time_start = 0;
/** @defgroup main_flags flag set in interrupts to be processed in main task
* @{
*/
volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */
/** @} */
volatile uint32_t tacho_count = 0; /**< tachometer edge count */
bool tacho_display = false; /**< if the current tachometer count should be displayed */
#define TACHO_PIN PB11 /**< tachometer input on SWIM pin, pulled up to 3V3 by 680R */
#define TACHO_TARGET_DEFAULT 20 /**< the default target tachometer count (slow for safety) */
uint32_t tacho_target = TACHO_TARGET_DEFAULT; /**< the target tachometer count (switch SSR on when below, off when above) */
#define SSR_PIN PB14 /**< pin to control the SSR (SWDIO, active low, open drain to 5V) */
size_t putc(char c)
{
size_t length = 0; // number of characters printed
static char last_c = 0; // to remember on which character we last sent
if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF
if ('\r' != last_c) { // CR has not already been sent
#if !defined(STLINKV2)
uart_putchar_nonblocking('\r'); // send CR over USART
#endif
usb_cdcacm_putchar('\r'); // send CR over USB
length++; // remember we printed 1 character
}
}
#if !defined(STLINKV2)
uart_putchar_nonblocking(c); // send byte over USART
#endif
usb_cdcacm_putchar(c); // send byte over USB
length++; // remember we printed 1 character
last_c = c; // remember last character
return length; // return number of characters printed
}
/** display available commands
* @param[in] argument no argument required
*/
static void command_help(void* argument);
/** show software and hardware version
* @param[in] argument no argument required
*/
static void command_version(void* argument);
/** show uptime
* @param[in] argument no argument required
*/
static void command_uptime(void* argument);
#if RTC_DATE_TIME
/** show date and time
* @param[in] argument date and time to set
*/
static void command_datetime(void* argument);
#endif
/** reset board
* @param[in] argument no argument required
*/
static void command_reset(void* argument);
/** switch to DFU bootloader
* @param[in] argument no argument required
*/
static void command_bootloader(void* argument);
static void command_tacho(void* argument)
{
(void)argument; // we won't use the argument
if (argument) { // tachometer value has been provided
uint32_t target = *(uint32_t*)argument; // get target tachometer value
printf("setting target tachometer value to %u\n", target);
tacho_target = target;
// save to EEPROM
const uint32_t eeprom_tacho[2] = {tacho_target, tacho_target ^ 0xffffffff};
const int32_t rc = flash_internal_eeprom_write((uint8_t*)eeprom_tacho, sizeof(eeprom_tacho));
if (rc != sizeof(eeprom_tacho)) {
printf("could not save value to EEPROM: %d\n", rc);
}
} else {
if (tacho_display) {
tacho_display = false;
} else {
printf("target tachometer value set to %u\n", tacho_target);
tacho_display = true;
}
}
}
/** list of all supported commands */
static const struct menu_command_t menu_commands[] = {
{
.shortcut = 'h',
.name = "help",
.command_description = "display help",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_help,
},
{
.shortcut = 'v',
.name = "version",
.command_description = "show software and hardware version",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_version,
},
{
.shortcut = 'u',
.name = "uptime",
.command_description = "show uptime",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_uptime,
},
#if RTC_DATE_TIME
{
.shortcut = 'd',
.name = "date",
.command_description = "show/set date and time",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[YYYY-MM-DD HH:MM:SS]",
.command_handler = &command_datetime,
},
#endif
{
.shortcut = 'r',
.name = "reset",
.command_description = "reset board",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_reset,
},
{
.shortcut = 'b',
.name = "bootloader",
.command_description = "reboot into DFU bootloader",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_bootloader,
},
{
.shortcut = 't',
.name = "tacho",
.command_description = "set/show/hide tachometer target and current value",
.argument = MENU_ARGUMENT_UNSIGNED,
.argument_description = "[target]",
.command_handler = &command_tacho,
},
};
static void command_help(void* argument)
{
(void)argument; // we won't use the argument
printf("available commands:\n");
menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands
}
static void command_version(void* argument)
{
(void)argument; // we won't use the argument
printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date
// get device identifier (DEV_ID)
// 0x412: low-density, 16-32 kB flash
// 0x410: medium-density, 64-128 kB flash
// 0x414: high-density, 256-512 kB flash
// 0x430: XL-density, 768-1024 kB flash
// 0x418: connectivity
printf("device family: ");
switch (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK) {
case 0: // this is a known issue document in STM32F10xxC/D/E Errata sheet, without workaround
printf("unreadable\n");
break;
case 0x412:
printf("low-density\n");
break;
case 0x410:
printf("medium-density\n");
break;
case 0x414:
printf("high-density\n");
break;
case 0x430:
printf("XL-density\n");
break;
case 0x418:
printf("connectivity\n");
break;
default:
printf("unknown\n");
break;
}
// show flash size
printf("flash size: ");
if (0xffff == DESIG_FLASH_SIZE) {
printf("unknown (probably a defective micro-controller\n");
} else {
printf("%u KB\n", DESIG_FLASH_SIZE);
}
// display device identity
printf("device id: %08x%08x%08x\n", DESIG_UNIQUE_ID0, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID2);
}
static void command_uptime(void* argument)
{
(void)argument; // we won't use the argument
uint32_t uptime = rtc_get_counter_val() - time_start; // get time from internal RTC
printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60);
}
#if RTC_DATE_TIME
static void command_datetime(void* argument)
{
char* datetime = (char*)argument; // argument is optional date time
if (NULL == argument) { // no date and time provided, just show the current day and time
time_t time_rtc = rtc_get_counter_val(); // get time from internal RTC
struct tm* time_tm = localtime(&time_rtc); // convert time
printf("date: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm->tm_year, time_tm->tm_mon, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec);
} else { // date and time provided, set it
const char* malformed = "date and time malformed, expecting YYYY-MM-DD HH:MM:SS\n";
struct tm time_tm; // to store the parsed date time
if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough
printf(malformed);
return;
}
if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && '-' == datetime[4] && isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && '-' == datetime[7] && isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && ' ' == datetime[10] && isdigit((int8_t)datetime[11]) && isdigit((int8_t)datetime[12]) && ':' == datetime[13] && isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && ':' == datetime[16] && isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]))) { // verify format (good enough to not fail parsing)
printf(malformed);
return;
}
time_tm.tm_year = strtol(&datetime[0], NULL, 10) - 1900; // parse year
time_tm.tm_mon = strtol(&datetime[5], NULL, 10); // parse month
time_tm.tm_mday = strtol(&datetime[8], NULL, 10); // parse day
time_tm.tm_hour = strtol(&datetime[11], NULL, 10); // parse hour
time_tm.tm_min = strtol(&datetime[14], NULL, 10); // parse minutes
time_tm.tm_sec = strtol(&datetime[17], NULL, 10); // parse seconds
time_t time_rtc = mktime(&time_tm); // get back seconds
time_start = time_rtc + (rtc_get_counter_val() - time_start); // update uptime with current date
rtc_set_counter_val(time_rtc); // save date/time to internal RTC
printf("date and time saved: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm.tm_year, time_tm.tm_mon, time_tm.tm_mday, time_tm.tm_hour, time_tm.tm_min, time_tm.tm_sec);
}
}
#endif
static void command_reset(void* argument)
{
(void)argument; // we won't use the argument
scb_reset_system(); // reset device
while (true); // wait for the reset to happen
}
static void command_bootloader(void* argument)
{
(void)argument; // we won't use the argument
// set DFU magic to specific RAM location
__dfu_magic[0] = 'D';
__dfu_magic[1] = 'F';
__dfu_magic[2] = 'U';
__dfu_magic[3] = '!';
scb_reset_system(); // reset system (core and peripherals)
while (true); // wait for the reset to happen
}
/** process user command
* @param[in] str user command string (\0 ended)
*/
static void process_command(char* str)
{
// ensure actions are available
if (NULL == menu_commands || 0 == LENGTH(menu_commands)) {
return;
}
// don't handle empty lines
if (!str || 0 == strlen(str)) {
return;
}
bool command_handled = false;
if (!command_handled) {
command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command
}
if (!command_handled) {
printf("command not recognized. enter help to list commands\n");
}
}
/** program entry point
* this is the firmware function started by the micro-controller
*/
void main(void);
void main(void)
{
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
#if DEBUG
// enable functionalities for easier debug
DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered)
DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered)
DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered)
#else
// setup watchdog to reset in case we get stuck (i.e. when an error occurred)
iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period
iwdg_start(); // start independent watchdog
#endif
board_setup(); // setup board
#if !defined(STLINKV2)
uart_setup(); // setup USART (for printing)
#endif
usb_cdcacm_setup(); // setup USB CDC ACM (for printing)
puts("\nwelcome to the CuVoodoo dachboden clock turner\n"); // print welcome message
#if DEBUG
// show reset cause
if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) {
puts("reset cause(s):");
if (RCC_CSR & RCC_CSR_LPWRRSTF) {
puts(" low-power");
}
if (RCC_CSR & RCC_CSR_WWDGRSTF) {
puts(" window-watchdog");
}
if (RCC_CSR & RCC_CSR_IWDGRSTF) {
puts(" independent-watchdog");
}
if (RCC_CSR & RCC_CSR_SFTRSTF) {
puts(" software");
}
if (RCC_CSR & RCC_CSR_PORRSTF) {
puts(" POR/PDR");
}
if (RCC_CSR & RCC_CSR_PINRSTF) {
puts(" pin");
}
putc('\n');
RCC_CSR |= RCC_CSR_RMVF; // clear reset flags
}
#endif
#if !(DEBUG)
// show watchdog information
printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0);
if (FLASH_OBR & FLASH_OBR_OPTERR) {
printf(" (option bytes not set in flash: software wachtdog used, not automatically started at reset)\n");
} else if (FLASH_OBR & FLASH_OBR_WDG_SW) {
printf(" (software watchdog used, not automatically started at reset)\n");
} else {
printf(" (hardware watchdog used, automatically started at reset)\n");
}
#endif
// setup RTC
printf("setup internal RTC: ");
#if defined(BLUE_PILL) || defined(STLINKV2) || defined(BLASTER) // for boards without a Low Speed External oscillator
// note: the blue pill LSE oscillator is affected when toggling the onboard LED, thus prefer the HSE
rtc_auto_awake(RCC_HSE, 8000000 / 128 / RTC_TICKS - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running)
#else // for boards with an precise Low Speed External oscillator
rtc_auto_awake(RCC_LSE, 32768 - 1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect)
#endif
rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds"
nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt
time_start = rtc_get_counter_val(); // get start time from internal RTC
printf("OK\n");
printf("setup SSR: ");
rcc_periph_clock_enable(GPIO_RCC(SSR_PIN)); // enable clock for GPIO peripheral
gpio_set(GPIO_PORT(SSR_PIN), GPIO_PIN(SSR_PIN)); // set high to switch off
gpio_set_mode(GPIO_PORT(SSR_PIN), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN(SSR_PIN)); // set SSR - control pin to open drain. active low, connected to 5V on the + pin
printf("OK\n");
// setup timer to measure motor tachometer
printf("setup tachometer measurer: ");
rcc_periph_clock_enable(GPIO_RCC(TACHO_PIN)); // enable clock for GPIO peripheral
gpio_set_mode(GPIO_PORT(TACHO_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(TACHO_PIN)); // set tachometer pin to input
rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt
exti_select_source(GPIO_EXTI(TACHO_PIN), GPIO_PORT(TACHO_PIN)); // mask external interrupt of this pin only for this port
gpio_set(GPIO_PORT(TACHO_PIN), GPIO_PIN(TACHO_PIN)); // pull up to eliminate noise
exti_set_trigger(GPIO_EXTI(TACHO_PIN), EXTI_TRIGGER_FALLING); // trigger when opto-coupler triggers
exti_enable_request(GPIO_EXTI(TACHO_PIN)); // enable external interrupt
nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(TACHO_PIN)); // enable interrupt
printf("OK\n");
// load target tachometer value from EEPROM
uint32_t eeprom_tacho[2];
flash_internal_eeprom_setup(1); // use 1 page for EEPROM emulation
bool eeprom_read = flash_internal_eeprom_read((uint8_t*)eeprom_tacho, sizeof(eeprom_tacho));
printf("target tachometer count (");
if (eeprom_read && eeprom_tacho[0] == (eeprom_tacho[1] ^ 0xffffffff)) {
tacho_target = eeprom_tacho[0];
printf("set");
} else {
tacho_target = TACHO_TARGET_DEFAULT;
printf("default");
}
bool tacho_safety = false; // if the motor is switched of for safety reasons
uint32_t tacho_activity = rtc_get_counter_val(); // when was the last time we saw the motor spinning
printf("): %u\n", tacho_target);
// setup terminal
terminal_prefix = ""; // set default prefix
terminal_process = &process_command; // set central function to process commands
terminal_setup(); // start terminal
// start main loop
bool action = false; // if an action has been performed don't go to sleep
while (true) { // infinite loop
iwdg_reset(); // kick the dog
if (user_input_available) { // user input is available
action = true; // action has been performed
led_toggle(); // toggle LED
char c = user_input_get(); // store receive character
terminal_send(c); // send received character to terminal
}
if (rtc_internal_tick_flag) { // the internal RTC ticked
rtc_internal_tick_flag = false; // reset flag
action = true; // action has been performed
uint32_t tacho = tacho_count; // backup before clearing
tacho_count = 0; // restart count
led_toggle(); // toggle LED (good to indicate if main function is stuck)
if (!tacho_safety) {
if (tacho < tacho_target) {
gpio_clear(GPIO_PORT(SSR_PIN), GPIO_PIN(SSR_PIN)); // switch SSR on to provide power
} else {
gpio_set(GPIO_PORT(SSR_PIN), GPIO_PIN(SSR_PIN)); // switch SSR off to cut power
}
if (tacho) { // we tachometer indicates the motor is spinning
tacho_activity = rtc_get_counter_val(); // updated the last time we saw it spinning
} else if (rtc_get_counter_val() > tacho_activity + 5 * RTC_TICKS) { // the motor does not seem to turn, after 5 s
tacho_safety = true; // turn safety on
gpio_set(GPIO_PORT(SSR_PIN), GPIO_PIN(SSR_PIN)); // switch SSR off to cut power
printf("\ntachometer does not indicate the motor is turning\n");
printf("either the tachometer is defective, or the motor is stuck\n");
printf("switching the motor off for safety\n");
printf("reboot to retry\n");
}
}
if (tacho_display) {
printf("%u\n", tacho); // display tachometer frequency
}
}
if (action) { // go to sleep if nothing had to be done, else recheck for activity
action = false;
} else {
__WFI(); // go to sleep
}
} // main loop
}
/** @brief interrupt service routine called when tick passed on RTC */
void rtc_isr(void)
{
rtc_clear_flag(RTC_SEC); // clear flag
rtc_internal_tick_flag = true; // notify to show new time
}
/** interrupt service routine called when tachometer edge is detected is pressed */
void GPIO_EXTI_ISR(TACHO_PIN)(void)
{
exti_reset_request(GPIO_EXTI(TACHO_PIN)); // reset interrupt
tacho_count++; // increment edge count
}