/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** STM32F1 application example * @file application.c * @author King Kévin * @date 2016-2020 */ /* standard libraries */ #include // standard integer types #include // standard utilities #include // string utilities #include // date/time utilities #include // utilities to check chars /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities #include // design utilities #include // flash utilities #include // timer utilities /* own libraries */ #include "global.h" // board definitions #include "print.h" // printing utilities #if !defined(STLINKV2) #include "uart.h" // USART utilities #endif #include "usb_cdcacm.h" // USB CDC ACM utilities #include "terminal.h" // handle the terminal interface #include "menu.h" // menu utilities #include "flash_internal.h" // menu utilities #define WATCHDOG_PERIOD 3000 /**< watchdog period in ms */ /** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime * set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time */ #define RTC_DATE_TIME 0 /** number of RTC ticks per second */ #define RTC_TICKS 10 /** RTC time when device is started */ static time_t time_start = 0; /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */ /** @} */ volatile uint32_t tacho_count = 0; /**< tachometer edge count */ bool tacho_display = false; /**< if the current tachometer count should be displayed */ #define TACHO_PIN PB11 /**< tachometer input on SWIM pin, pulled up to 3V3 by 680R */ #define TACHO_TARGET_DEFAULT 20 /**< the default target tachometer count (slow for safety) */ uint32_t tacho_target = TACHO_TARGET_DEFAULT; /**< the target tachometer count (switch SSR on when below, off when above) */ #define SSR_PIN PB14 /**< pin to control the SSR (SWDIO, active low, open drain to 5V) */ size_t putc(char c) { size_t length = 0; // number of characters printed static char last_c = 0; // to remember on which character we last sent if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF if ('\r' != last_c) { // CR has not already been sent #if !defined(STLINKV2) uart_putchar_nonblocking('\r'); // send CR over USART #endif usb_cdcacm_putchar('\r'); // send CR over USB length++; // remember we printed 1 character } } #if !defined(STLINKV2) uart_putchar_nonblocking(c); // send byte over USART #endif usb_cdcacm_putchar(c); // send byte over USB length++; // remember we printed 1 character last_c = c; // remember last character return length; // return number of characters printed } /** display available commands * @param[in] argument no argument required */ static void command_help(void* argument); /** show software and hardware version * @param[in] argument no argument required */ static void command_version(void* argument); /** show uptime * @param[in] argument no argument required */ static void command_uptime(void* argument); #if RTC_DATE_TIME /** show date and time * @param[in] argument date and time to set */ static void command_datetime(void* argument); #endif /** reset board * @param[in] argument no argument required */ static void command_reset(void* argument); /** switch to DFU bootloader * @param[in] argument no argument required */ static void command_bootloader(void* argument); static void command_tacho(void* argument) { (void)argument; // we won't use the argument if (argument) { // tachometer value has been provided uint32_t target = *(uint32_t*)argument; // get target tachometer value printf("setting target tachometer value to %u\n", target); tacho_target = target; // save to EEPROM const uint32_t eeprom_tacho[2] = {tacho_target, tacho_target ^ 0xffffffff}; const int32_t rc = flash_internal_eeprom_write((uint8_t*)eeprom_tacho, sizeof(eeprom_tacho)); if (rc != sizeof(eeprom_tacho)) { printf("could not save value to EEPROM: %d\n", rc); } } else { if (tacho_display) { tacho_display = false; } else { printf("target tachometer value set to %u\n", tacho_target); tacho_display = true; } } } /** list of all supported commands */ static const struct menu_command_t menu_commands[] = { { .shortcut = 'h', .name = "help", .command_description = "display help", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_help, }, { .shortcut = 'v', .name = "version", .command_description = "show software and hardware version", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_version, }, { .shortcut = 'u', .name = "uptime", .command_description = "show uptime", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_uptime, }, #if RTC_DATE_TIME { .shortcut = 'd', .name = "date", .command_description = "show/set date and time", .argument = MENU_ARGUMENT_STRING, .argument_description = "[YYYY-MM-DD HH:MM:SS]", .command_handler = &command_datetime, }, #endif { .shortcut = 'r', .name = "reset", .command_description = "reset board", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_reset, }, { .shortcut = 'b', .name = "bootloader", .command_description = "reboot into DFU bootloader", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_bootloader, }, { .shortcut = 't', .name = "tacho", .command_description = "set/show/hide tachometer target and current value", .argument = MENU_ARGUMENT_UNSIGNED, .argument_description = "[target]", .command_handler = &command_tacho, }, }; static void command_help(void* argument) { (void)argument; // we won't use the argument printf("available commands:\n"); menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands } static void command_version(void* argument) { (void)argument; // we won't use the argument printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date // get device identifier (DEV_ID) // 0x412: low-density, 16-32 kB flash // 0x410: medium-density, 64-128 kB flash // 0x414: high-density, 256-512 kB flash // 0x430: XL-density, 768-1024 kB flash // 0x418: connectivity printf("device family: "); switch (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK) { case 0: // this is a known issue document in STM32F10xxC/D/E Errata sheet, without workaround printf("unreadable\n"); break; case 0x412: printf("low-density\n"); break; case 0x410: printf("medium-density\n"); break; case 0x414: printf("high-density\n"); break; case 0x430: printf("XL-density\n"); break; case 0x418: printf("connectivity\n"); break; default: printf("unknown\n"); break; } // show flash size printf("flash size: "); if (0xffff == DESIG_FLASH_SIZE) { printf("unknown (probably a defective micro-controller\n"); } else { printf("%u KB\n", DESIG_FLASH_SIZE); } // display device identity printf("device id: %08x%08x%08x\n", DESIG_UNIQUE_ID0, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID2); } static void command_uptime(void* argument) { (void)argument; // we won't use the argument uint32_t uptime = rtc_get_counter_val() - time_start; // get time from internal RTC printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60); } #if RTC_DATE_TIME static void command_datetime(void* argument) { char* datetime = (char*)argument; // argument is optional date time if (NULL == argument) { // no date and time provided, just show the current day and time time_t time_rtc = rtc_get_counter_val(); // get time from internal RTC struct tm* time_tm = localtime(&time_rtc); // convert time printf("date: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm->tm_year, time_tm->tm_mon, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec); } else { // date and time provided, set it const char* malformed = "date and time malformed, expecting YYYY-MM-DD HH:MM:SS\n"; struct tm time_tm; // to store the parsed date time if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough printf(malformed); return; } if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && '-' == datetime[4] && isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && '-' == datetime[7] && isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && ' ' == datetime[10] && isdigit((int8_t)datetime[11]) && isdigit((int8_t)datetime[12]) && ':' == datetime[13] && isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && ':' == datetime[16] && isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]))) { // verify format (good enough to not fail parsing) printf(malformed); return; } time_tm.tm_year = strtol(&datetime[0], NULL, 10) - 1900; // parse year time_tm.tm_mon = strtol(&datetime[5], NULL, 10); // parse month time_tm.tm_mday = strtol(&datetime[8], NULL, 10); // parse day time_tm.tm_hour = strtol(&datetime[11], NULL, 10); // parse hour time_tm.tm_min = strtol(&datetime[14], NULL, 10); // parse minutes time_tm.tm_sec = strtol(&datetime[17], NULL, 10); // parse seconds time_t time_rtc = mktime(&time_tm); // get back seconds time_start = time_rtc + (rtc_get_counter_val() - time_start); // update uptime with current date rtc_set_counter_val(time_rtc); // save date/time to internal RTC printf("date and time saved: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm.tm_year, time_tm.tm_mon, time_tm.tm_mday, time_tm.tm_hour, time_tm.tm_min, time_tm.tm_sec); } } #endif static void command_reset(void* argument) { (void)argument; // we won't use the argument scb_reset_system(); // reset device while (true); // wait for the reset to happen } static void command_bootloader(void* argument) { (void)argument; // we won't use the argument // set DFU magic to specific RAM location __dfu_magic[0] = 'D'; __dfu_magic[1] = 'F'; __dfu_magic[2] = 'U'; __dfu_magic[3] = '!'; scb_reset_system(); // reset system (core and peripherals) while (true); // wait for the reset to happen } /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // ensure actions are available if (NULL == menu_commands || 0 == LENGTH(menu_commands)) { return; } // don't handle empty lines if (!str || 0 == strlen(str)) { return; } bool command_handled = false; if (!command_handled) { command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command } if (!command_handled) { printf("command not recognized. enter help to list commands\n"); } } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock #if DEBUG // enable functionalities for easier debug DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #else // setup watchdog to reset in case we get stuck (i.e. when an error occurred) iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period iwdg_start(); // start independent watchdog #endif board_setup(); // setup board #if !defined(STLINKV2) uart_setup(); // setup USART (for printing) #endif usb_cdcacm_setup(); // setup USB CDC ACM (for printing) puts("\nwelcome to the CuVoodoo dachboden clock turner\n"); // print welcome message #if DEBUG // show reset cause if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) { puts("reset cause(s):"); if (RCC_CSR & RCC_CSR_LPWRRSTF) { puts(" low-power"); } if (RCC_CSR & RCC_CSR_WWDGRSTF) { puts(" window-watchdog"); } if (RCC_CSR & RCC_CSR_IWDGRSTF) { puts(" independent-watchdog"); } if (RCC_CSR & RCC_CSR_SFTRSTF) { puts(" software"); } if (RCC_CSR & RCC_CSR_PORRSTF) { puts(" POR/PDR"); } if (RCC_CSR & RCC_CSR_PINRSTF) { puts(" pin"); } putc('\n'); RCC_CSR |= RCC_CSR_RMVF; // clear reset flags } #endif #if !(DEBUG) // show watchdog information printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0); if (FLASH_OBR & FLASH_OBR_OPTERR) { printf(" (option bytes not set in flash: software wachtdog used, not automatically started at reset)\n"); } else if (FLASH_OBR & FLASH_OBR_WDG_SW) { printf(" (software watchdog used, not automatically started at reset)\n"); } else { printf(" (hardware watchdog used, automatically started at reset)\n"); } #endif // setup RTC printf("setup internal RTC: "); #if defined(BLUE_PILL) || defined(STLINKV2) || defined(BLASTER) // for boards without a Low Speed External oscillator // note: the blue pill LSE oscillator is affected when toggling the onboard LED, thus prefer the HSE rtc_auto_awake(RCC_HSE, 8000000 / 128 / RTC_TICKS - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running) #else // for boards with an precise Low Speed External oscillator rtc_auto_awake(RCC_LSE, 32768 - 1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect) #endif rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds" nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt time_start = rtc_get_counter_val(); // get start time from internal RTC printf("OK\n"); printf("setup SSR: "); rcc_periph_clock_enable(GPIO_RCC(SSR_PIN)); // enable clock for GPIO peripheral gpio_set(GPIO_PORT(SSR_PIN), GPIO_PIN(SSR_PIN)); // set high to switch off gpio_set_mode(GPIO_PORT(SSR_PIN), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN(SSR_PIN)); // set SSR - control pin to open drain. active low, connected to 5V on the + pin printf("OK\n"); // setup timer to measure motor tachometer printf("setup tachometer measurer: "); rcc_periph_clock_enable(GPIO_RCC(TACHO_PIN)); // enable clock for GPIO peripheral gpio_set_mode(GPIO_PORT(TACHO_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(TACHO_PIN)); // set tachometer pin to input rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt exti_select_source(GPIO_EXTI(TACHO_PIN), GPIO_PORT(TACHO_PIN)); // mask external interrupt of this pin only for this port gpio_set(GPIO_PORT(TACHO_PIN), GPIO_PIN(TACHO_PIN)); // pull up to eliminate noise exti_set_trigger(GPIO_EXTI(TACHO_PIN), EXTI_TRIGGER_FALLING); // trigger when opto-coupler triggers exti_enable_request(GPIO_EXTI(TACHO_PIN)); // enable external interrupt nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(TACHO_PIN)); // enable interrupt printf("OK\n"); // load target tachometer value from EEPROM uint32_t eeprom_tacho[2]; flash_internal_eeprom_setup(1); // use 1 page for EEPROM emulation bool eeprom_read = flash_internal_eeprom_read((uint8_t*)eeprom_tacho, sizeof(eeprom_tacho)); printf("target tachometer count ("); if (eeprom_read && eeprom_tacho[0] == (eeprom_tacho[1] ^ 0xffffffff)) { tacho_target = eeprom_tacho[0]; printf("set"); } else { tacho_target = TACHO_TARGET_DEFAULT; printf("default"); } bool tacho_safety = false; // if the motor is switched of for safety reasons uint32_t tacho_activity = rtc_get_counter_val(); // when was the last time we saw the motor spinning printf("): %u\n", tacho_target); // setup terminal terminal_prefix = ""; // set default prefix terminal_process = &process_command; // set central function to process commands terminal_setup(); // start terminal // start main loop bool action = false; // if an action has been performed don't go to sleep while (true) { // infinite loop iwdg_reset(); // kick the dog if (user_input_available) { // user input is available action = true; // action has been performed led_toggle(); // toggle LED char c = user_input_get(); // store receive character terminal_send(c); // send received character to terminal } if (rtc_internal_tick_flag) { // the internal RTC ticked rtc_internal_tick_flag = false; // reset flag action = true; // action has been performed uint32_t tacho = tacho_count; // backup before clearing tacho_count = 0; // restart count led_toggle(); // toggle LED (good to indicate if main function is stuck) if (!tacho_safety) { if (tacho < tacho_target) { gpio_clear(GPIO_PORT(SSR_PIN), GPIO_PIN(SSR_PIN)); // switch SSR on to provide power } else { gpio_set(GPIO_PORT(SSR_PIN), GPIO_PIN(SSR_PIN)); // switch SSR off to cut power } if (tacho) { // we tachometer indicates the motor is spinning tacho_activity = rtc_get_counter_val(); // updated the last time we saw it spinning } else if (rtc_get_counter_val() > tacho_activity + 5 * RTC_TICKS) { // the motor does not seem to turn, after 5 s tacho_safety = true; // turn safety on gpio_set(GPIO_PORT(SSR_PIN), GPIO_PIN(SSR_PIN)); // switch SSR off to cut power printf("\ntachometer does not indicate the motor is turning\n"); printf("either the tachometer is defective, or the motor is stuck\n"); printf("switching the motor off for safety\n"); printf("reboot to retry\n"); } } if (tacho_display) { printf("%u\n", tacho); // display tachometer frequency } } if (action) { // go to sleep if nothing had to be done, else recheck for activity action = false; } else { __WFI(); // go to sleep } } // main loop } /** @brief interrupt service routine called when tick passed on RTC */ void rtc_isr(void) { rtc_clear_flag(RTC_SEC); // clear flag rtc_internal_tick_flag = true; // notify to show new time } /** interrupt service routine called when tachometer edge is detected is pressed */ void GPIO_EXTI_ISR(TACHO_PIN)(void) { exti_reset_request(GPIO_EXTI(TACHO_PIN)); // reset interrupt tacho_count++; // increment edge count }