spark_abacus/main.c

610 lines
25 KiB
C
Raw Normal View History

2016-01-17 14:54:54 +01:00
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
2016-08-14 21:04:08 +02:00
/** STM32F1 example
2016-08-14 21:02:38 +02:00
* @file main.c
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2016
*/
2016-01-17 14:54:54 +01:00
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdio.h> // standard I/O facilities
#include <stdlib.h> // standard utilities
#include <unistd.h> // standard streams
2016-08-14 21:02:38 +02:00
#include <string.h> // string utilities
#include <math.h> // mathematical utilities
2016-01-17 14:54:54 +01:00
/* STM32 (including CM3) libraries */
2016-01-18 16:23:35 +01:00
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
2016-10-08 14:32:31 +02:00
#include <libopencm3/cm3/scb.h> // vector table definition
2016-01-29 11:25:30 +01:00
#include <libopencm3/cm3/nvic.h> // interrupt utilities
2016-10-08 14:32:31 +02:00
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
2016-01-29 11:25:30 +01:00
#include <libopencm3/stm32/exti.h> // external interrupt utilities
2016-08-14 21:02:38 +02:00
#include <libopencm3/stm32/rtc.h> // real time clock utilities
2016-10-08 14:32:31 +02:00
#include <libopencm3/stm32/iwdg.h> // independent watchdog utilities
#include <libopencm3/stm32/dbgmcu.h> // debug utilities
2016-10-09 17:04:42 +02:00
#include <libopencm3/stm32/flash.h> // flash utilities
#include <libopencm3/stm32/timer.h> // timer utilities
2016-01-17 14:54:54 +01:00
/* own libraries */
#include "global.h" // board definitions
2016-10-08 18:32:21 +02:00
//#include "usart.h" // USART utilities
2016-01-18 16:23:35 +01:00
#include "usb_cdcacm.h" // USB CDC ACM utilities
2016-10-08 18:32:21 +02:00
#include "sensor_pzem.h" // PZEM electricity meter utilities
2016-09-13 22:42:56 +02:00
#include "sensor_sdm120.h" // SDM120 electricity meter utilities
2016-10-03 17:39:59 +02:00
#include "radio_esp8266.h" // ESP8266 WiFi SoC utilities
2016-01-17 14:54:54 +01:00
2016-10-10 10:24:55 +02:00
#define WATCHDOG_PERIOD 10000 /**< watchdog period in ms */
2016-08-14 21:02:38 +02:00
/** @defgroup main_flags flag set in interrupts to be processed in main task
* @{
*/
volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */
/** @} */
#define QUERY_PERIOD 10 /**< period in seconds to query meter measurements */
2016-01-17 14:54:54 +01:00
int _write(int file, char *ptr, int len)
{
2016-08-14 21:02:38 +02:00
int i; // how much data has been sent
static char newline = 0; // what newline has been sent
2016-01-17 14:54:54 +01:00
if (file == STDOUT_FILENO || file == STDERR_FILENO) {
for (i = 0; i < len; i++) {
2016-08-14 21:02:38 +02:00
if (ptr[i] == '\r' || ptr[i] == '\n') { // send CR+LF newline for most carriage return and line feed combination
if (newline==0 || (newline==ptr[i])) { // newline has already been detected
2016-10-08 18:32:21 +02:00
//usart_putchar_nonblocking('\r'); // send newline over USART
//usart_putchar_nonblocking('\n'); // send newline over USART
2016-08-14 21:02:38 +02:00
cdcacm_putchar('\r'); // send newline over USB
cdcacm_putchar('\n'); // send newline over USB
newline = ptr[i]; // remember the newline
}
if (ptr[i] == '\n') { // line feed are always considered to end a line (the LF+CR combination is not supported to better support the others)
newline = 0; // clear new line
}
} else { // non-newline character
2016-10-08 18:32:21 +02:00
//usart_putchar_nonblocking(ptr[i]); // send byte over USART
2016-08-14 21:02:38 +02:00
cdcacm_putchar(ptr[i]); // send byte over USB
newline = 0; // clear new line
2016-01-17 14:54:54 +01:00
}
}
return i;
}
return -1;
}
/** user input command */
2016-10-08 16:26:38 +02:00
static char command[32] = {0};
/** user input command index */
uint8_t command_i = 0;
2016-01-17 14:54:54 +01:00
2016-08-14 21:02:38 +02:00
/** process user command
* @param[in] str user command string (\0 ended)
*/
static void process_command(char* str)
2016-01-17 14:54:54 +01:00
{
2016-08-14 21:02:38 +02:00
// split command
const char* delimiter = " ";
char* word = strtok(str,delimiter);
if (!word) {
goto error;
}
// parse command
if (0==strcmp(word,"help")) {
printf("available commands:\n");
printf("led [on|off|toggle]\n");
printf("time [HH:MM:SS]\n");
} else if (0==strcmp(word,"led")) {
word = strtok(NULL,delimiter);
if (!word) {
goto error;
} else if (0==strcmp(word,"on")) {
led_on(); // switch LED on
printf("LED switched on\n"); // notify user
} else if (0==strcmp(word,"off")) {
led_off(); // switch LED off
printf("LED switched off\n"); // notify user
} else if (0==strcmp(word,"toggle")) {
led_toggle(); // toggle LED
printf("LED toggled\n"); // notify user
} else {
goto error;
}
} else if (0==strcmp(word,"time")) {
word = strtok(NULL,delimiter);
if (!word) {
2016-08-28 23:15:45 +02:00
printf("current time: %02lu:%02lu:%02lu\n", rtc_get_counter_val()/(60*60), (rtc_get_counter_val()%(60*60))/60, (rtc_get_counter_val()%60)); // get and print time from internal RTC
2016-08-14 21:02:38 +02:00
} else if (strlen(word)!=8 || word[0]<'0' || word[0]>'2' || word[1]<'0' || word[1]>'9' || word[3]<'0' || word[3]>'5' || word[4]<'0' || word[4]>'9' || word[6]<'0' || word[6]>'5' || word[7]<'0' || word[7]>'9') { // time format is incorrect
goto error;
} else {
rtc_set_counter_val(((word[0]-'0')*10+(word[1]-'0')*1)*(60*60)+((word[3]-'0')*10+(word[4]-'0')*1)*60+((word[6]-'0')*10+(word[7]-'0')*1)); // set time in internal RTC counter
printf("time set\n");
}
} else {
goto error;
}
return; // command successfully processed
error:
printf("command not recognized. enter help to list commands\n");
2016-09-04 14:48:40 +02:00
return;
2016-01-17 14:54:54 +01:00
}
2016-10-08 16:26:38 +02:00
/** send HTTP data
* @warning blocking until a response has been received
* @param[in] data data to be send
* @param[in] length number of bytes to be sent, set to 0 to use the string length
* @return if data has been sent
*/
static bool http_send(uint8_t* data, size_t length)
{
if (length==0) {
radio_esp8266_send(data, strlen((char*)data)); // send string data
} else {
radio_esp8266_send(data, length); // send raw data
}
while (!radio_esp8266_activity) { // wait until response has been received
__WFI(); // wait until something happens
}
if (!radio_esp8266_success) {
fprintf(stderr,"could not send data\n");
return false;
}
return true;
}
/** end HTTP connection
* @warning blocking until a response has been received
* @return if connection has been closed
*/
static bool http_end(void)
{
radio_esp8266_close(); // close connection
while (!radio_esp8266_activity) { // wait until response has been received
__WFI(); // wait until something happens
}
return radio_esp8266_success;
}
/** open HTTP connection and send POST header
* @warning blocking until a response has been received
* @param[in] host host name or IP of HTTP server to connect to
* @param[in] port port number of HTTP server to connect to
* @param[in] length number of bytes to POST
* @return if HTTP POST succeeded
*/
static bool http_post_header(char* host, uint16_t port, size_t length)
{
char http_line[256] = {0}; // generated lines
radio_esp8266_tcp_open(host, port); // open connection
while (!radio_esp8266_activity) { // wait until response has been received
__WFI(); // wait until something happens
}
if (!radio_esp8266_success) {
fprintf(stderr,"TCP connection failed\n");
return false;
}
if (!http_send((uint8_t*)"POST /write?db=spark_abacus HTTP/1.1\r\n", 0)) { // send data
2016-10-08 16:26:38 +02:00
return false;
}
if (snprintf(http_line, LENGTH(http_line), "Content-Length: %u\r\n", length)<0) { // set content length (for measurements)
fprintf(stderr,"could not create line\n");
return false;
}
if (!http_send((uint8_t*)http_line, 0)) { // send data
return false;
}
if (!http_send((uint8_t*)"Host: influx\r\n", 0)) { // send data
return false;
}
if (!http_send((uint8_t*)"\r\n", 0)) { // send data
return false;
}
return true;
}
2016-08-14 21:02:38 +02:00
/** program entry point
* this is the firmware function started by the micro-controller
*/
2016-08-20 23:27:01 +02:00
void main(void);
void main(void)
{
2016-01-29 00:24:49 +01:00
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
2016-08-14 21:02:38 +02:00
2016-10-08 14:32:31 +02:00
#if DEBUG
DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered)
DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered)
DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered)
#endif
// setup board
board_setup();
2016-08-14 21:02:38 +02:00
// setup USART and USB for user communication
2016-10-08 18:32:21 +02:00
//usart_setup(); // setup USART (for printing)
2016-08-14 21:02:38 +02:00
cdcacm_setup(); // setup USB CDC ACM (for printing)
2016-08-20 23:27:01 +02:00
setbuf(stdout, NULL); // set standard out buffer to NULL to immediately print
setbuf(stderr, NULL); // set standard error buffer to NULL to immediately print
2016-01-29 00:24:49 +01:00
2016-08-14 21:02:38 +02:00
// minimal setup ready
printf("welcome to the STM32F1 CuVoodoo example code\n"); // print welcome message
2016-01-29 00:24:49 +01:00
2016-08-14 21:02:38 +02:00
// setup RTC
printf("setup internal RTC: ");
rtc_auto_awake(RCC_LSE, 0x8000-1); // ensure internal RTC is on, uses the 32.768 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect)
2016-08-14 21:02:38 +02:00
rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds"
nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt
printf("OK\n");
2016-10-03 17:46:58 +02:00
uint32_t ticks_time = rtc_get_counter_val(); // get time from internal RTC (since first start/power up)
printf("uptime: %02lu:%02lu:%02lu\n", ticks_time/(60*60), (ticks_time%(60*60))/60, (ticks_time%60)); // display time
2016-01-18 16:23:35 +01:00
2016-09-11 17:21:33 +02:00
// setup PZEM electricity meter
printf("setup PZEM-004 electricity meter: ");
sensor_pzem_setup(); // setup PZEM electricity meter
printf("OK\n");
2016-09-13 22:42:56 +02:00
// setup SDM120 electricity meter
printf("setup SDM120 electricity meter: ");
sensor_sdm120_setup(9600); // setup SDM120 electricity meter (get baud rate by scrolling through the menu on the device)
2016-09-13 22:42:56 +02:00
printf("OK\n");
2016-09-11 17:21:33 +02:00
2016-10-03 17:39:59 +02:00
//setup ESP8266 WiFi SoC
printf("setup ESP8266 WiFi SoC: ");
radio_esp8266_setup();
printf("OK\n");
2016-10-04 11:16:34 +02:00
2016-10-08 14:32:31 +02:00
#if !(DEBUG)
//setup watchdog to reset in case we get stuck (i.e. when an error occurred)
printf("setup watchdog (%.2fs): ",WATCHDOG_PERIOD/1000.0);
iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period
iwdg_start(); // start independent watchdog
printf("OK\n");
2016-10-09 17:04:42 +02:00
if (FLASH_OBR&FLASH_OBR_OPTERR) {
printf("option bytes not set in flash: software wachtdog used (not started at reset)\n");
} else if (FLASH_OBR&FLASH_OBR_WDG_SW) {
printf("software wachtdog used (not started at reset)\n");
} else {
printf("hardware wachtdog used (started at reset)\n");
}
2016-10-08 14:32:31 +02:00
#endif
2016-10-09 17:04:42 +02:00
2016-08-14 21:02:38 +02:00
// main loop
printf("command input: ready\n");
bool action = false; // if an action has been performed don't go to sleep
button_flag = false; // reset button flag
char c = '\0'; // to store received character
2016-08-14 21:02:38 +02:00
bool char_flag = false; // a new character has been received
2016-10-09 17:04:42 +02:00
// variables for PZEM-004T meter measurements
struct sensor_pzem_measurement_t pzem_measurements[2][SENSOR_PZEM_MAX]; // PZEM-004T measurements (2 meters, all measurements)
2016-10-14 11:09:44 +02:00
uint8_t pzem_meter = 0; // PZEM-004T meter index (add to prefix)
uint8_t pzem_measurement = 0; // PZEM-004T measurement index (matches the type)
// variables for SDM120 meter measurements
float sdm120_measurements[2][SENSOR_SDM120_MEASUREMENT_MAX]; // SDM120 measurements (2 meters, all measurements)
uint8_t sdm120_meter = 0; // SDM120 meter index (add to 1 to get ID)
uint8_t sdm120_measurement = 0; // SDM120 measurement index
2016-10-09 17:04:42 +02:00
2016-01-29 00:24:49 +01:00
while (true) { // infinite loop
2016-10-08 14:32:31 +02:00
iwdg_reset(); // kick the dog
2016-10-08 18:32:21 +02:00
/*
2016-08-14 21:02:38 +02:00
while (usart_received) { // data received over UART
action = true; // action has been performed
2016-01-29 00:24:49 +01:00
led_toggle(); // toggle LED
2016-08-14 21:02:38 +02:00
c = usart_getchar(); // store receive character
char_flag = true; // notify character has been received
}
2016-10-08 18:32:21 +02:00
*/
2016-08-14 21:02:38 +02:00
while (cdcacm_received) { // data received over USB
action = true; // action has been performed
2016-01-29 00:24:49 +01:00
led_toggle(); // toggle LED
2016-08-14 21:02:38 +02:00
c = cdcacm_getchar(); // store receive character
char_flag = true; // notify character has been received
2016-01-18 16:23:35 +01:00
}
2016-08-14 21:02:38 +02:00
while (char_flag) { // user data received
char_flag = false; // reset flag
action = true; // action has been performed
2016-08-14 21:02:38 +02:00
printf("%c",c); // echo receive character
if (c=='\r' || c=='\n') { // end of command received
if (command_i>0) { // there is a command to process
command[command_i] = 0; // end string
command_i = 0; // prepare for next command
process_command(command); // process user command
}
} else { // user command input
command[command_i] = c; // save command input
if (command_i<LENGTH(command)-2) { // verify if there is place to save next character
command_i++; // save next character
}
}
}
2016-09-11 17:21:33 +02:00
while (sensor_pzem_measurement_received) { // measurement from electricity meter received
struct sensor_pzem_measurement_t measurement = sensor_pzem_measurement_decode(); // decode measurement
if (measurement.type>=SENSOR_PZEM_MAX) {
fprintf(stderr,"unknown measurement type: %u\n", measurement.type);
while (true); // unhandled error
}
2016-09-11 17:21:33 +02:00
if (measurement.valid) { // only show valid measurement
printf("PZEM-004T meter %u ", pzem_meter);
2016-09-11 17:21:33 +02:00
switch (measurement.type) {
2016-09-12 21:42:37 +02:00
case SENSOR_PZEM_VOLTAGE:
printf("voltage: %.01f V\n", measurement.value.voltage); // display measurement
2016-09-11 17:21:33 +02:00
break;
2016-09-12 21:42:37 +02:00
case SENSOR_PZEM_CURRENT:
printf("current: %.02f A\n", measurement.value.current);
2016-09-11 17:21:33 +02:00
break;
2016-09-12 21:42:37 +02:00
case SENSOR_PZEM_POWER:
printf("power: %u W\n", measurement.value.power);
2016-09-11 17:21:33 +02:00
break;
2016-09-12 21:42:37 +02:00
case SENSOR_PZEM_ENERGY:
printf("energy: %lu Wh\n", measurement.value.energy);
2016-09-11 17:21:33 +02:00
break;
/* not used for this application
2016-10-03 17:39:59 +02:00
case SENSOR_PZEM_ADDRESS:
printf("address set\n");
2016-10-03 17:39:59 +02:00
break;
case SENSOR_PZEM_ALARM:
printf("alarm threshold set\n");
2016-10-03 17:39:59 +02:00
break;
*/
2016-09-11 17:21:33 +02:00
default:
break;
}
2016-10-14 11:09:44 +02:00
if (measurement.type!=pzem_measurement) {
fprintf(stderr, "PZEM-004T measurement mismatch: expected %u, got %u\n", pzem_measurement, measurement.type);
sensor_pzem_measurement_request(0xc0a80100+pzem_meter, pzem_measurement); // request same measurement
} else if (pzem_measurement<SENSOR_PZEM_MAX-1) { // not all measurement types requested
pzem_measurements[pzem_meter][pzem_measurement] = measurement; // save measurement (the type matches the index)
pzem_measurement++; // go to next measurement
sensor_pzem_measurement_request(0xc0a80100+pzem_meter, pzem_measurement); // request next measurement
} else { // all measurement types requested
2016-10-14 11:09:44 +02:00
pzem_measurements[pzem_meter][pzem_measurement] = measurement; // save measurement (the type matches the index)
pzem_meter++; // got to next meter
pzem_measurement = 0; // restart measurements
if (pzem_meter<LENGTH(pzem_measurements)) { // ensure next meter exists
sensor_pzem_measurement_request(0xc0a80100+pzem_meter, pzem_measurement); // request measurement for next meter
}
}
} else { // measurement not valid
2016-10-14 11:09:44 +02:00
fprintf(stderr, "PZEM-004T measurement invalid\n");
sensor_pzem_measurement_request(0xc0a80100+pzem_meter, pzem_measurement); // request same measurement
2016-09-11 17:21:33 +02:00
}
}
2016-09-13 22:42:56 +02:00
while (sensor_sdm120_measurement_received) { // measurement from electricity meter received
float measurement = sensor_sdm120_measurement_decode(); // decode measurement
2016-09-14 10:02:38 +02:00
if (isnan(measurement)) {
printf("error in SDM120 response\n");
sensor_sdm120_measurement_request(1+sdm120_meter, sdm120_measurement); // request same measurement
2016-10-03 17:39:59 +02:00
} else if (isinf(measurement)) {
printf("error SDM120 message received\n");
while (true); // unhandled error
2016-09-13 22:42:56 +02:00
} else {
sdm120_measurements[sdm120_meter][sdm120_measurement] = measurement; // save measurement
printf("SDM120 meter %u ", sdm120_meter); // display measurement
switch (sdm120_measurement) {
case SENSOR_SDM120_VOLTAGE:
printf("voltage: %.01f V\n", measurement);
break;
case SENSOR_SDM120_CURRENT:
printf("current: %.02f A\n", measurement);
break;
case SENSOR_SDM120_POWER_ACTIVE:
printf("power (active): %.0f W\n", measurement);
break;
case SENSOR_SDM120_POWER_APPARENT:
printf("power (apparent): %.0f VA\n", measurement);
break;
case SENSOR_SDM120_POWER_REACTIVE:
printf("power (reactive): %.0f VAr\n", measurement);
break;
case SENSOR_SDM120_POWER_FACTOR:
printf("power factor: %.02f\n", measurement);
break;
case SENSOR_SDM120_FREQUENCY:
printf("frequency: %.02f Hz\n", measurement);
break;
case SENSOR_SDM120_ENERGY_ACTIVE_IMPORT:
printf("energy (import,active): %.02f KWh\n", measurement);
break;
case SENSOR_SDM120_ENERGY_ACTIVE_EXPORT:
printf("energy (export,active): %.02f kWh\n", measurement);
break;
case SENSOR_SDM120_ENERGY_REACTIVE_IMPORT:
printf("energy (import,reactive): %.02f kVArh\n", measurement);
break;
case SENSOR_SDM120_ENERGY_REACTIVE_EXPORT:
printf("energy (export,reactive): %.02f kVArh\n", measurement);
break;
case SENSOR_SDM120_ENERGY_ACTIVE_TOTAL:
printf("energy (active,total): %.02f kWh\n", measurement);
break;
case SENSOR_SDM120_ENERGY_REACTIVE_TOTAL:
printf("energy (reactive,total): %.02f kVArh\n", measurement);
break;
default:
break;
}
if (sdm120_measurement<SENSOR_SDM120_MEASUREMENT_MAX-1) { // not all measurement type required
sdm120_measurement++; // go to next measurement
sensor_sdm120_measurement_request(1+sdm120_meter, sdm120_measurement); // request next measurement
} else { // all measurement types requested
sdm120_meter++; // got to next meter (sending to none existing meter will just end in void)
sdm120_measurement = 0; // start requesting all measurement
if (sdm120_meter<LENGTH(sdm120_measurements)) { // ensure next meter exists
sensor_sdm120_measurement_request(1+sdm120_meter, sdm120_measurement); // request measurement for next meter
}
}
2016-09-13 22:42:56 +02:00
}
}
2016-08-14 21:02:38 +02:00
while (button_flag) { // user pressed button
action = true; // action has been performed
printf("button pressed\n");
led_toggle(); // toggle LED
2016-08-14 21:02:38 +02:00
for (uint32_t i=0; i<1000000; i++) { // wait a bit to remove noise and double trigger
__asm__("nop");
}
button_flag = false; // reset flag
}
2016-08-14 21:02:38 +02:00
while (rtc_internal_tick_flag) { // the internal RTC ticked
rtc_internal_tick_flag = false; // reset flag
//led_toggle(); // toggle LED (good to indicate if main function is stuck). do not toggle onboard the LED on PC13 on the blue pill board since this heavily influences the RTC (by ~13%)
2016-08-14 21:02:38 +02:00
ticks_time = rtc_get_counter_val(); // copy time from internal RTC for processing
action = true; // action has been performed
2016-08-18 11:54:24 +02:00
if ((ticks_time%(60))==0) { // one minute passed
2017-01-19 13:41:27 +01:00
printf("uptime: %lu.%02lu:%02lu:%02lu\n", ticks_time/(60*60*24), (ticks_time/(60*60))%24, (ticks_time%(60*60))/60, (ticks_time%60)); // display external time
2016-08-14 21:02:38 +02:00
}
if ((ticks_time%(QUERY_PERIOD))==0) { // query period passed
printf("query meter measurements (%lu.%02lu:%02lu:%02lu)\n", ticks_time/(60*60*24), (ticks_time/(60*60))%24, (ticks_time%(60*60))/60, (ticks_time%60));
// start getting all PZEM-004T measurements from all meters
pzem_meter = 0; // reset PZEM meter number
pzem_measurement = 0; // reset PZEM measurement index
sensor_pzem_measurement_request(0xc0a80100+pzem_meter, pzem_measurement); // request first measurement
// start getting all SDM120 measurements from all meters
sdm120_meter = 0; // reset SDM120 meter number
sdm120_measurement = 0; // reset SDM120 measurement index
sensor_sdm120_measurement_request(1+sdm120_meter, sdm120_measurement); // request first measurement
}
2016-08-14 21:02:38 +02:00
}
while (pzem_meter>=LENGTH(pzem_measurements) && sdm120_meter>=LENGTH(sdm120_measurements)) { // all measurements received for all meter
action = true; // action has been performed
printf("saving measurements to database: ");
const char* pzem_strings[SENSOR_PZEM_MAX] = {
"voltage,meter=PZEM-004T,phase=%u value=%.1f\n",
"current,meter=PZEM-004T,phase=%u value=%.2f\n",
"power,meter=PZEM-004T,phase=%u value=%u\n",
"energy,meter=PZEM-004T,phase=%u value=%lu\n"
};
const char* sdm120_strings[SENSOR_SDM120_MEASUREMENT_MAX] = {
"voltage,meter=SDM120,phase=%u value=%.3f\n",
"current,meter=SDM120,phase=%u value=%.3f\n",
"power,meter=SDM120,phase=%u,type=active value=%.3f\n",
"power,meter=SDM120,phase=%u,type=apparent value=%.3f\n",
"power,meter=SDM120,phase=%u,type=reactive value=%.3f\n",
"power,meter=SDM120,phase=%u,type=factor value=%.3f\n",
"frequency,meter=SDM120,phase=%u value=%.3f\n",
"energy,meter=SDM120,phase=%u,type=active,direction=import value=%.3f\n",
"energy,meter=SDM120,phase=%u,type=active,direction=export value=%.3f\n",
"energy,meter=SDM120,phase=%u,type=reactive,direction=import value=%.3f\n",
"energy,meter=SDM120,phase=%u,type=reactive,direction=export value=%.3f\n",
"energy,meter=SDM120,phase=%u,type=active,direction=total value=%.3f\n",
"energy,meter=SDM120,phase=%u,type=reactive,direction=total value=%.3f\n"
};
char line[256] = {0}; // measurement line to send
size_t data_length = 0; /**< length of the data string to send */
for (pzem_meter = 0; pzem_meter<LENGTH(pzem_measurements); pzem_meter++) {
for (pzem_measurement = 0; pzem_measurement<SENSOR_PZEM_MAX; pzem_measurement++) {
struct sensor_pzem_measurement_t measurement = pzem_measurements[pzem_meter][pzem_measurement]; // get measurement
if (measurement.valid) { // only use valid measurements
switch (measurement.type) { // get the size (hope no error is occurring)
case SENSOR_PZEM_VOLTAGE:
data_length += snprintf(line, LENGTH(line), pzem_strings[pzem_measurement], pzem_meter, measurement.value.voltage);
break;
case SENSOR_PZEM_CURRENT:
data_length += snprintf(line, LENGTH(line), pzem_strings[pzem_measurement], pzem_meter, measurement.value.current);
break;
case SENSOR_PZEM_POWER:
data_length += snprintf(line, LENGTH(line), pzem_strings[pzem_measurement], pzem_meter, measurement.value.power);
break;
case SENSOR_PZEM_ENERGY:
data_length += snprintf(line, LENGTH(line), pzem_strings[pzem_measurement], pzem_meter, measurement.value.energy);
break;
default:
break;
}
}
}
}
for (sdm120_meter = 0; sdm120_meter<LENGTH(sdm120_measurements); sdm120_meter++) {
for (sdm120_measurement = 0; sdm120_measurement<SENSOR_SDM120_MEASUREMENT_MAX; sdm120_measurement++) {
if (sdm120_measurement<SENSOR_SDM120_ENERGY_ACTIVE_IMPORT) {
data_length += snprintf(line, LENGTH(line), sdm120_strings[sdm120_measurement], sdm120_meter, sdm120_measurements[sdm120_meter][sdm120_measurement]); // get the size (hope no error is occurring)
} else {
data_length += snprintf(line, LENGTH(line), sdm120_strings[sdm120_measurement], sdm120_meter, sdm120_measurements[sdm120_meter][sdm120_measurement]*1000.0); // get the size (hope no error is occurring)
}
}
}
// send HTTP POST request
if (!http_post_header("192.168.42.2", 8086, data_length)) { // send header
fprintf(stderr,"could not sent HTTP POST header\n");
} else {
// send PZEM-004T values
for (pzem_meter = 0; pzem_meter<LENGTH(pzem_measurements); pzem_meter++) {
for (pzem_measurement = 0; pzem_measurement<SENSOR_PZEM_MAX; pzem_measurement++) {
struct sensor_pzem_measurement_t measurement = pzem_measurements[pzem_meter][pzem_measurement]; // get measurement
if (measurement.valid) { // only use valid measurements
switch (measurement.type) { // make line (hope no error is occurring)
case SENSOR_PZEM_VOLTAGE:
snprintf(line, LENGTH(line), pzem_strings[pzem_measurement], pzem_meter, measurement.value.voltage);
break;
case SENSOR_PZEM_CURRENT:
snprintf(line, LENGTH(line), pzem_strings[pzem_measurement], pzem_meter, measurement.value.current);
break;
case SENSOR_PZEM_POWER:
snprintf(line, LENGTH(line), pzem_strings[pzem_measurement], pzem_meter, measurement.value.power);
break;
case SENSOR_PZEM_ENERGY:
snprintf(line, LENGTH(line), pzem_strings[pzem_measurement], pzem_meter, measurement.value.energy);
break;
default:
break;
}
http_send((uint8_t*)line, 0); // don't care about the result
}
}
}
// send SDM120 values
for (sdm120_meter = 0; sdm120_meter<LENGTH(sdm120_measurements); sdm120_meter++) {
for (sdm120_measurement = 0; sdm120_measurement<SENSOR_SDM120_MEASUREMENT_MAX; sdm120_measurement++) {
if (sdm120_measurement<SENSOR_SDM120_ENERGY_ACTIVE_IMPORT) {
if (snprintf(line, LENGTH(line), sdm120_strings[sdm120_measurement], sdm120_meter, sdm120_measurements[sdm120_meter][sdm120_measurement])>0) {
http_send((uint8_t*)line, 0); // don't care about the result
}
} else {
if (snprintf(line, LENGTH(line), sdm120_strings[sdm120_measurement], sdm120_meter, sdm120_measurements[sdm120_meter][sdm120_measurement]*1000.0)>0) {
http_send((uint8_t*)line, 0); // don't care about the result
}
}
}
}
http_end(); // end HTTP request (don't care about the result)
printf("OK\n");
}
pzem_meter = 0; // reset meter
sdm120_meter = 0; // reset meter
}
2016-08-14 21:02:38 +02:00
if (action) { // go to sleep if nothing had to be done, else recheck for activity
action = false;
} else {
__WFI(); // go to sleep
}
2016-01-17 14:54:54 +01:00
}
}
2016-01-29 11:25:30 +01:00
2016-08-14 21:02:38 +02:00
/** @brief interrupt service routine called when tick passed on RTC */
void rtc_isr(void)
{
rtc_clear_flag(RTC_SEC); // clear flag
rtc_internal_tick_flag = true; // notify to show new time
}