Merge pull request #2516 from hathach/minor-code-format

Minor code format
This commit is contained in:
Ha Thach 2024-03-12 16:55:00 +07:00 committed by GitHub
commit 6b7ceed25c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 363 additions and 504 deletions

View File

@ -31,12 +31,24 @@
#include "bsp/board_api.h"
#include "tusb.h"
//------------- prototypes -------------//
/* Blink pattern
* - 250 ms : device not mounted
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum {
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
};
static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
static void led_blinking_task(void);
static void cdc_task(void);
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// init device stack on configured roothub port
@ -46,28 +58,23 @@ int main(void)
board_init_after_tusb();
}
while (1)
{
while (1) {
tud_task(); // tinyusb device task
cdc_task();
led_blinking_task();
}
}
// echo to either Serial0 or Serial1
// with Serial0 as all lower case, Serial1 as all upper case
static void echo_serial_port(uint8_t itf, uint8_t buf[], uint32_t count)
{
static void echo_serial_port(uint8_t itf, uint8_t buf[], uint32_t count) {
uint8_t const case_diff = 'a' - 'A';
for(uint32_t i=0; i<count; i++)
{
if (itf == 0)
{
for (uint32_t i = 0; i < count; i++) {
if (itf == 0) {
// echo back 1st port as lower case
if (isupper(buf[i])) buf[i] += case_diff;
}
else
{
} else {
// echo back 2nd port as upper case
if (islower(buf[i])) buf[i] -= case_diff;
}
@ -77,21 +84,29 @@ static void echo_serial_port(uint8_t itf, uint8_t buf[], uint32_t count)
tud_cdc_n_write_flush(itf);
}
// Invoked when device is mounted
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
//--------------------------------------------------------------------+
// USB CDC
//--------------------------------------------------------------------+
static void cdc_task(void)
{
static void cdc_task(void) {
uint8_t itf;
for (itf = 0; itf < CFG_TUD_CDC; itf++)
{
for (itf = 0; itf < CFG_TUD_CDC; itf++) {
// connected() check for DTR bit
// Most but not all terminal client set this when making connection
// if ( tud_cdc_n_connected(itf) )
{
if ( tud_cdc_n_available(itf) )
{
if (tud_cdc_n_available(itf)) {
uint8_t buf[64];
uint32_t count = tud_cdc_n_read(itf, buf, sizeof(buf));
@ -103,3 +118,18 @@ static void cdc_task(void)
}
}
}
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void) {
static uint32_t start_ms = 0;
static bool led_state = false;
// Blink every interval ms
if (board_millis() - start_ms < blink_interval_ms) return; // not enough time
start_ms += blink_interval_ms;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
}

View File

@ -372,10 +372,9 @@ bool tud_inited(void) {
return _usbd_rhport != RHPORT_INVALID;
}
bool tud_init (uint8_t rhport)
{
bool tud_init(uint8_t rhport) {
// skip if already initialized
if ( tud_inited() ) return true;
if (tud_inited()) return true;
TU_LOG_USBD("USBD init on controller %u\r\n", rhport);
TU_LOG_INT(CFG_TUD_LOG_LEVEL, sizeof(usbd_device_t));
@ -395,15 +394,13 @@ bool tud_init (uint8_t rhport)
TU_ASSERT(_usbd_q);
// Get application driver if available
if ( usbd_app_driver_get_cb )
{
if (usbd_app_driver_get_cb) {
_app_driver = usbd_app_driver_get_cb(&_app_driver_count);
}
// Init class drivers
for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++)
{
usbd_class_driver_t const * driver = get_driver(i);
for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++) {
usbd_class_driver_t const* driver = get_driver(i);
TU_ASSERT(driver);
TU_LOG_USBD("%s init\r\n", driver->name);
driver->init();
@ -418,31 +415,26 @@ bool tud_init (uint8_t rhport)
return true;
}
static void configuration_reset(uint8_t rhport)
{
for ( uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++ )
{
usbd_class_driver_t const * driver = get_driver(i);
TU_ASSERT(driver, );
static void configuration_reset(uint8_t rhport) {
for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++) {
usbd_class_driver_t const* driver = get_driver(i);
TU_ASSERT(driver,);
driver->reset(rhport);
}
tu_varclr(&_usbd_dev);
memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping
memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping
memset(_usbd_dev.ep2drv, DRVID_INVALID, sizeof(_usbd_dev.ep2drv)); // invalid mapping
}
static void usbd_reset(uint8_t rhport)
{
static void usbd_reset(uint8_t rhport) {
configuration_reset(rhport);
usbd_control_reset();
}
bool tud_task_event_ready(void)
{
bool tud_task_event_ready(void) {
// Skip if stack is not initialized
if ( !tud_inited() ) return false;
if (!tud_inited()) return false;
return !osal_queue_empty(_usbd_q);
}
@ -450,53 +442,44 @@ bool tud_task_event_ready(void)
* This top level thread manages all device controller event and delegates events to class-specific drivers.
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void)
{
int main(void) {
application_init();
tusb_init();
while(1) // the mainloop
{
while(1) { // the mainloop
application_code();
tud_task(); // tinyusb device task
}
}
@endcode
*/
void tud_task_ext(uint32_t timeout_ms, bool in_isr)
{
void tud_task_ext(uint32_t timeout_ms, bool in_isr) {
(void) in_isr; // not implemented yet
// Skip if stack is not initialized
if ( !tud_inited() ) return;
if (!tud_inited()) return;
// Loop until there is no more events in the queue
while (1)
{
while (1) {
dcd_event_t event;
if ( !osal_queue_receive(_usbd_q, &event, timeout_ms) ) return;
if (!osal_queue_receive(_usbd_q, &event, timeout_ms)) return;
#if CFG_TUSB_DEBUG >= CFG_TUD_LOG_LEVEL
if (event.event_id == DCD_EVENT_SETUP_RECEIVED) TU_LOG_USBD("\r\n"); // extra line for setup
TU_LOG_USBD("USBD %s ", event.event_id < DCD_EVENT_COUNT ? _usbd_event_str[event.event_id] : "CORRUPTED");
#endif
switch ( event.event_id )
{
switch (event.event_id) {
case DCD_EVENT_BUS_RESET:
TU_LOG_USBD(": %s Speed\r\n", tu_str_speed[event.bus_reset.speed]);
usbd_reset(event.rhport);
_usbd_dev.speed = event.bus_reset.speed;
break;
break;
case DCD_EVENT_UNPLUGGED:
TU_LOG_USBD("\r\n");
usbd_reset(event.rhport);
// invoke callback
if (tud_umount_cb) tud_umount_cb();
break;
break;
case DCD_EVENT_SETUP_RECEIVED:
TU_LOG_BUF(CFG_TUD_LOG_LEVEL, &event.setup_received, 8);
@ -508,81 +491,72 @@ void tud_task_ext(uint32_t timeout_ms, bool in_isr)
// mark both in & out control as free
_usbd_dev.ep_status[0][TUSB_DIR_OUT].busy = 0;
_usbd_dev.ep_status[0][TUSB_DIR_OUT].claimed = 0;
_usbd_dev.ep_status[0][TUSB_DIR_IN ].busy = 0;
_usbd_dev.ep_status[0][TUSB_DIR_IN ].claimed = 0;
_usbd_dev.ep_status[0][TUSB_DIR_IN].busy = 0;
_usbd_dev.ep_status[0][TUSB_DIR_IN].claimed = 0;
// Process control request
if ( !process_control_request(event.rhport, &event.setup_received) )
{
if (!process_control_request(event.rhport, &event.setup_received)) {
TU_LOG_USBD(" Stall EP0\r\n");
// Failed -> stall both control endpoint IN and OUT
dcd_edpt_stall(event.rhport, 0);
dcd_edpt_stall(event.rhport, 0 | TUSB_DIR_IN_MASK);
}
break;
break;
case DCD_EVENT_XFER_COMPLETE:
{
case DCD_EVENT_XFER_COMPLETE: {
// Invoke the class callback associated with the endpoint address
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_LOG_USBD("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len);
_usbd_dev.ep_status[epnum][ep_dir].busy = 0;
_usbd_dev.ep_status[epnum][ep_dir].claimed = 0;
if ( 0 == epnum )
{
usbd_control_xfer_cb(event.rhport, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete
.len);
}
else
{
usbd_class_driver_t const * driver = get_driver( _usbd_dev.ep2drv[epnum][ep_dir] );
TU_ASSERT(driver, );
if (0 == epnum) {
usbd_control_xfer_cb(event.rhport, ep_addr, (xfer_result_t) event.xfer_complete.result,
event.xfer_complete.len);
} else {
usbd_class_driver_t const* driver = get_driver(_usbd_dev.ep2drv[epnum][ep_dir]);
TU_ASSERT(driver,);
TU_LOG_USBD(" %s xfer callback\r\n", driver->name);
driver->xfer_cb(event.rhport, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len);
}
break;
}
break;
case DCD_EVENT_SUSPEND:
// NOTE: When plugging/unplugging device, the D+/D- state are unstable and
// can accidentally meet the SUSPEND condition ( Bus Idle for 3ms ), which result in a series of event
// e.g suspend -> resume -> unplug/plug. Skip suspend/resume if not connected
if ( _usbd_dev.connected )
{
if (_usbd_dev.connected) {
TU_LOG_USBD(": Remote Wakeup = %u\r\n", _usbd_dev.remote_wakeup_en);
if (tud_suspend_cb) tud_suspend_cb(_usbd_dev.remote_wakeup_en);
}else
{
} else {
TU_LOG_USBD(" Skipped\r\n");
}
break;
break;
case DCD_EVENT_RESUME:
if ( _usbd_dev.connected )
{
if (_usbd_dev.connected) {
TU_LOG_USBD("\r\n");
if (tud_resume_cb) tud_resume_cb();
}else
{
} else {
TU_LOG_USBD(" Skipped\r\n");
}
break;
break;
case USBD_EVENT_FUNC_CALL:
TU_LOG_USBD("\r\n");
if ( event.func_call.func ) event.func_call.func(event.func_call.param);
break;
if (event.func_call.func) event.func_call.func(event.func_call.param);
break;
case DCD_EVENT_SOF:
default:
TU_BREAKPOINT();
break;
break;
}
#if CFG_TUSB_OS != OPT_OS_NONE && CFG_TUSB_OS != OPT_OS_PICO
@ -597,8 +571,7 @@ void tud_task_ext(uint32_t timeout_ms, bool in_isr)
//--------------------------------------------------------------------+
// Helper to invoke class driver control request handler
static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * driver, tusb_control_request_t const * request)
{
static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * driver, tusb_control_request_t const * request) {
usbd_control_set_complete_callback(driver->control_xfer_cb);
TU_LOG_USBD(" %s control request\r\n", driver->name);
return driver->control_xfer_cb(rhport, CONTROL_STAGE_SETUP, request);
@ -606,15 +579,12 @@ static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * dri
// This handles the actual request and its response.
// return false will cause its caller to stall control endpoint
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request)
{
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request) {
usbd_control_set_complete_callback(NULL);
TU_ASSERT(p_request->bmRequestType_bit.type < TUSB_REQ_TYPE_INVALID);
// Vendor request
if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR )
{
if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR ) {
TU_VERIFY(tud_vendor_control_xfer_cb);
usbd_control_set_complete_callback(tud_vendor_control_xfer_cb);
@ -622,19 +592,16 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
}
#if CFG_TUSB_DEBUG >= CFG_TUD_LOG_LEVEL
if (TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && p_request->bRequest <= TUSB_REQ_SYNCH_FRAME)
{
if (TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && p_request->bRequest <= TUSB_REQ_SYNCH_FRAME) {
TU_LOG_USBD(" %s", tu_str_std_request[p_request->bRequest]);
if (TUSB_REQ_GET_DESCRIPTOR != p_request->bRequest) TU_LOG_USBD("\r\n");
}
#endif
switch ( p_request->bmRequestType_bit.recipient )
{
switch ( p_request->bmRequestType_bit.recipient ) {
//------------- Device Requests e.g in enumeration -------------//
case TUSB_REQ_RCPT_DEVICE:
if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type )
{
if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type ) {
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
@ -645,15 +612,13 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
return invoke_class_control(rhport, driver, p_request);
}
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type ) {
// Non standard request is not supported
TU_BREAKPOINT();
return false;
}
switch ( p_request->bRequest )
{
switch ( p_request->bRequest ) {
case TUSB_REQ_SET_ADDRESS:
// Depending on mcu, status phase could be sent either before or after changing device address,
// or even require stack to not response with status at all
@ -664,22 +629,18 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
_usbd_dev.addressed = 1;
break;
case TUSB_REQ_GET_CONFIGURATION:
{
case TUSB_REQ_GET_CONFIGURATION: {
uint8_t cfg_num = _usbd_dev.cfg_num;
tud_control_xfer(rhport, p_request, &cfg_num, 1);
}
break;
case TUSB_REQ_SET_CONFIGURATION:
{
case TUSB_REQ_SET_CONFIGURATION: {
uint8_t const cfg_num = (uint8_t) p_request->wValue;
// Only process if new configure is different
if (_usbd_dev.cfg_num != cfg_num)
{
if ( _usbd_dev.cfg_num )
{
if (_usbd_dev.cfg_num != cfg_num) {
if ( _usbd_dev.cfg_num ) {
// already configured: need to clear all endpoints and driver first
TU_LOG_USBD(" Clear current Configuration (%u) before switching\r\n", _usbd_dev.cfg_num);
@ -694,15 +655,11 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
}
// Handle the new configuration and execute the corresponding callback
if ( cfg_num )
{
if ( cfg_num ) {
// switch to new configuration if not zero
TU_ASSERT( process_set_config(rhport, cfg_num) );
if ( tud_mount_cb ) tud_mount_cb();
}
else
{
} else {
if ( tud_umount_cb ) tud_umount_cb();
}
}
@ -738,15 +695,14 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_GET_STATUS:
{
case TUSB_REQ_GET_STATUS: {
// Device status bit mask
// - Bit 0: Self Powered
// - Bit 1: Remote Wakeup enabled
uint16_t status = (uint16_t) ((_usbd_dev.self_powered ? 1u : 0u) | (_usbd_dev.remote_wakeup_en ? 2u : 0u));
tud_control_xfer(rhport, p_request, &status, 2);
break;
}
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
@ -754,8 +710,7 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
break;
//------------- Class/Interface Specific Request -------------//
case TUSB_REQ_RCPT_INTERFACE:
{
case TUSB_REQ_RCPT_INTERFACE: {
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
@ -764,25 +719,21 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
// all requests to Interface (STD or Class) is forwarded to class driver.
// notable requests are: GET HID REPORT DESCRIPTOR, SET_INTERFACE, GET_INTERFACE
if ( !invoke_class_control(rhport, driver, p_request) )
{
if ( !invoke_class_control(rhport, driver, p_request) ) {
// For GET_INTERFACE and SET_INTERFACE, it is mandatory to respond even if the class
// driver doesn't use alternate settings or implement this
TU_VERIFY(TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type);
switch(p_request->bRequest)
{
switch(p_request->bRequest) {
case TUSB_REQ_GET_INTERFACE:
case TUSB_REQ_SET_INTERFACE:
// Clear complete callback if driver set since it can also stall the request.
usbd_control_set_complete_callback(NULL);
if (TUSB_REQ_GET_INTERFACE == p_request->bRequest)
{
if (TUSB_REQ_GET_INTERFACE == p_request->bRequest) {
uint8_t alternate = 0;
tud_control_xfer(rhport, p_request, &alternate, 1);
}else
{
}else {
tud_control_status(rhport, p_request);
}
break;
@ -790,54 +741,42 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
default: return false;
}
}
break;
}
break;
//------------- Endpoint Request -------------//
case TUSB_REQ_RCPT_ENDPOINT:
{
case TUSB_REQ_RCPT_ENDPOINT: {
uint8_t const ep_addr = tu_u16_low(p_request->wIndex);
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_ASSERT(ep_num < TU_ARRAY_SIZE(_usbd_dev.ep2drv) );
usbd_class_driver_t const * driver = get_driver(_usbd_dev.ep2drv[ep_num][ep_dir]);
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type ) {
// Forward class request to its driver
TU_VERIFY(driver);
return invoke_class_control(rhport, driver, p_request);
}
else
{
} else {
// Handle STD request to endpoint
switch ( p_request->bRequest )
{
case TUSB_REQ_GET_STATUS:
{
switch ( p_request->bRequest ) {
case TUSB_REQ_GET_STATUS: {
uint16_t status = usbd_edpt_stalled(rhport, ep_addr) ? 0x0001 : 0x0000;
tud_control_xfer(rhport, p_request, &status, 2);
}
break;
case TUSB_REQ_CLEAR_FEATURE:
case TUSB_REQ_SET_FEATURE:
{
if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue )
{
if ( TUSB_REQ_CLEAR_FEATURE == p_request->bRequest )
{
case TUSB_REQ_SET_FEATURE: {
if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue ) {
if ( TUSB_REQ_CLEAR_FEATURE == p_request->bRequest ) {
usbd_edpt_clear_stall(rhport, ep_addr);
}else
{
}else {
usbd_edpt_stall(rhport, ep_addr);
}
}
if (driver)
{
if (driver) {
// Some classes such as USBTMC needs to clear/re-init its buffer when receiving CLEAR_FEATURE request
// We will also forward std request targeted endpoint to class drivers as well
@ -853,14 +792,18 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
default:
TU_BREAKPOINT();
return false;
}
}
}
break;
// Unknown recipient
default: TU_BREAKPOINT(); return false;
default:
TU_BREAKPOINT();
return false;
}
return true;
@ -1185,8 +1128,7 @@ void usbd_defer_func(osal_task_func_t func, void* param, bool in_isr) {
// USBD Endpoint API
//--------------------------------------------------------------------+
bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep)
{
bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_ep) {
rhport = _usbd_rhport;
TU_ASSERT(tu_edpt_number(desc_ep->bEndpointAddress) < CFG_TUD_ENDPPOINT_MAX);
@ -1195,37 +1137,34 @@ bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep)
return dcd_edpt_open(rhport, desc_ep);
}
bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr)
{
bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
// TODO add this check later, also make sure we don't starve an out endpoint while suspending
// TU_VERIFY(tud_ready());
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
tu_edpt_state_t* ep_state = &_usbd_dev.ep_status[epnum][dir];
return tu_edpt_claim(ep_state, _usbd_mutex);
}
bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr)
{
bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
tu_edpt_state_t* ep_state = &_usbd_dev.ep_status[epnum][dir];
return tu_edpt_release(ep_state, _usbd_mutex);
}
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// TODO skip ready() check for now since enumeration also use this API
// TU_VERIFY(tud_ready());
@ -1239,11 +1178,9 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
// could return and USBD task can preempt and clear the busy
_usbd_dev.ep_status[epnum][dir].busy = 1;
if ( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) )
{
if (dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes)) {
return true;
}else
{
} else {
// DCD error, mark endpoint as ready to allow next transfer
_usbd_dev.ep_status[epnum][dir].busy = 0;
_usbd_dev.ep_status[epnum][dir].claimed = 0;
@ -1257,12 +1194,11 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t* ff, uint16_t total_bytes) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_LOG_USBD(" Queue ISO EP %02X with %u bytes ... ", ep_addr, total_bytes);
@ -1273,12 +1209,10 @@ bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16
// and usbd task can preempt and clear the busy
_usbd_dev.ep_status[epnum][dir].busy = 1;
if (dcd_edpt_xfer_fifo(rhport, ep_addr, ff, total_bytes))
{
if (dcd_edpt_xfer_fifo(rhport, ep_addr, ff, total_bytes)) {
TU_LOG_USBD("OK\r\n");
return true;
}else
{
} else {
// DCD error, mark endpoint as ready to allow next transfer
_usbd_dev.ep_status[epnum][dir].busy = 0;
_usbd_dev.ep_status[epnum][dir].claimed = 0;
@ -1288,26 +1222,23 @@ bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16
}
}
bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr)
{
bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return _usbd_dev.ep_status[epnum][dir].busy;
}
void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// only stalled if currently cleared
if ( !_usbd_dev.ep_status[epnum][dir].stalled )
{
if (!_usbd_dev.ep_status[epnum][dir].stalled) {
TU_LOG_USBD(" Stall EP %02X\r\n", ep_addr);
dcd_edpt_stall(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = 1;
@ -1315,16 +1246,14 @@ void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
}
}
void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// only clear if currently stalled
if ( _usbd_dev.ep_status[epnum][dir].stalled )
{
if (_usbd_dev.ep_status[epnum][dir].stalled) {
TU_LOG_USBD(" Clear Stall EP %02X\r\n", ep_addr);
dcd_edpt_clear_stall(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = 0;
@ -1332,31 +1261,27 @@ void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
}
}
bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr)
{
bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return _usbd_dev.ep_status[epnum][dir].stalled;
}
/**
* usbd_edpt_close will disable an endpoint.
*
* In progress transfers on this EP may be delivered after this call.
*
*/
void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
rhport = _usbd_rhport;
TU_ASSERT(dcd_edpt_close, /**/);
TU_LOG_USBD(" CLOSING Endpoint: 0x%02X\r\n", ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_close(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = 0;
@ -1366,8 +1291,7 @@ void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr)
return;
}
void usbd_sof_enable(uint8_t rhport, bool en)
{
void usbd_sof_enable(uint8_t rhport, bool en) {
rhport = _usbd_rhport;
// TODO: Check needed if all drivers including the user sof_cb does not need an active SOF ISR any more.
@ -1375,8 +1299,7 @@ void usbd_sof_enable(uint8_t rhport, bool en)
dcd_sof_enable(rhport, en);
}
bool usbd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size)
{
bool usbd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) {
rhport = _usbd_rhport;
TU_ASSERT(dcd_edpt_iso_alloc);
@ -1385,12 +1308,11 @@ bool usbd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packe
return dcd_edpt_iso_alloc(rhport, ep_addr, largest_packet_size);
}
bool usbd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep)
{
bool usbd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const* desc_ep) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(desc_ep->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_ep->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_ep->bEndpointAddress);
TU_ASSERT(dcd_edpt_iso_activate);
TU_ASSERT(epnum < CFG_TUD_ENDPPOINT_MAX);

View File

@ -48,7 +48,7 @@
*------------------------------------------------------------------*/
// Init these in dcd_init
static uint8_t *next_buffer_ptr;
static uint8_t* next_buffer_ptr;
// USB_MAX_ENDPOINTS Endpoints, direction TUSB_DIR_OUT for out and TUSB_DIR_IN for in.
static struct hw_endpoint hw_endpoints[USB_MAX_ENDPOINTS][2];
@ -56,79 +56,70 @@ static struct hw_endpoint hw_endpoints[USB_MAX_ENDPOINTS][2];
// SOF may be used by remote wakeup as RESUME, this indicate whether SOF is actually used by usbd
static bool _sof_enable = false;
TU_ATTR_ALWAYS_INLINE static inline struct hw_endpoint *hw_endpoint_get_by_num(uint8_t num, tusb_dir_t dir)
{
TU_ATTR_ALWAYS_INLINE static inline struct hw_endpoint* hw_endpoint_get_by_num(uint8_t num, tusb_dir_t dir) {
return &hw_endpoints[num][dir];
}
static struct hw_endpoint *hw_endpoint_get_by_addr(uint8_t ep_addr)
{
static struct hw_endpoint* hw_endpoint_get_by_addr(uint8_t ep_addr) {
uint8_t num = tu_edpt_number(ep_addr);
tusb_dir_t dir = tu_edpt_dir(ep_addr);
return hw_endpoint_get_by_num(num, dir);
}
static void _hw_endpoint_alloc(struct hw_endpoint *ep, uint8_t transfer_type)
{
static void _hw_endpoint_alloc(struct hw_endpoint* ep, uint8_t transfer_type) {
// size must be multiple of 64
uint size = tu_div_ceil(ep->wMaxPacketSize, 64) * 64u;
// double buffered Bulk endpoint
if ( transfer_type == TUSB_XFER_BULK )
{
if (transfer_type == TUSB_XFER_BULK) {
size *= 2u;
}
ep->hw_data_buf = next_buffer_ptr;
next_buffer_ptr += size;
assert(((uintptr_t )next_buffer_ptr & 0b111111u) == 0);
assert(((uintptr_t) next_buffer_ptr & 0b111111u) == 0);
uint dpram_offset = hw_data_offset(ep->hw_data_buf);
hard_assert(hw_data_offset(next_buffer_ptr) <= USB_DPRAM_MAX);
pico_info(" Allocated %d bytes at offset 0x%x (0x%p)\r\n", size, dpram_offset, ep->hw_data_buf);
// Fill in endpoint control register with buffer offset
uint32_t const reg = EP_CTRL_ENABLE_BITS | ((uint)transfer_type << EP_CTRL_BUFFER_TYPE_LSB) | dpram_offset;
uint32_t const reg = EP_CTRL_ENABLE_BITS | ((uint) transfer_type << EP_CTRL_BUFFER_TYPE_LSB) | dpram_offset;
*ep->endpoint_control = reg;
}
static void _hw_endpoint_close(struct hw_endpoint *ep)
{
// Clear hardware registers and then zero the struct
// Clears endpoint enable
*ep->endpoint_control = 0;
// Clears buffer available, etc
*ep->buffer_control = 0;
// Clear any endpoint state
memset(ep, 0, sizeof(struct hw_endpoint));
static void _hw_endpoint_close(struct hw_endpoint* ep) {
// Clear hardware registers and then zero the struct
// Clears endpoint enable
*ep->endpoint_control = 0;
// Clears buffer available, etc
*ep->buffer_control = 0;
// Clear any endpoint state
memset(ep, 0, sizeof(struct hw_endpoint));
// Reclaim buffer space if all endpoints are closed
bool reclaim_buffers = true;
for ( uint8_t i = 1; i < USB_MAX_ENDPOINTS; i++ )
{
if (hw_endpoint_get_by_num(i, TUSB_DIR_OUT)->hw_data_buf != NULL || hw_endpoint_get_by_num(i, TUSB_DIR_IN)->hw_data_buf != NULL)
{
reclaim_buffers = false;
break;
}
}
if (reclaim_buffers)
{
next_buffer_ptr = &usb_dpram->epx_data[0];
// Reclaim buffer space if all endpoints are closed
bool reclaim_buffers = true;
for (uint8_t i = 1; i < USB_MAX_ENDPOINTS; i++) {
if (hw_endpoint_get_by_num(i, TUSB_DIR_OUT)->hw_data_buf != NULL ||
hw_endpoint_get_by_num(i, TUSB_DIR_IN)->hw_data_buf != NULL) {
reclaim_buffers = false;
break;
}
}
if (reclaim_buffers) {
next_buffer_ptr = &usb_dpram->epx_data[0];
}
}
static void hw_endpoint_close(uint8_t ep_addr)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_close(ep);
static void hw_endpoint_close(uint8_t ep_addr) {
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_close(ep);
}
static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t transfer_type)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t transfer_type) {
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
const uint8_t num = tu_edpt_number(ep_addr);
const tusb_dir_t dir = tu_edpt_dir(ep_addr);
@ -143,35 +134,26 @@ static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t t
ep->transfer_type = transfer_type;
// Every endpoint has a buffer control register in dpram
if ( dir == TUSB_DIR_IN )
{
if (dir == TUSB_DIR_IN) {
ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].in;
}
else
{
} else {
ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].out;
}
// Clear existing buffer control state
*ep->buffer_control = 0;
if ( num == 0 )
{
if (num == 0) {
// EP0 has no endpoint control register because the buffer offsets are fixed
ep->endpoint_control = NULL;
// Buffer offset is fixed (also double buffered)
ep->hw_data_buf = (uint8_t*) &usb_dpram->ep0_buf_a[0];
}
else
{
} else {
// Set the endpoint control register (starts at EP1, hence num-1)
if ( dir == TUSB_DIR_IN )
{
if (dir == TUSB_DIR_IN) {
ep->endpoint_control = &usb_dpram->ep_ctrl[num - 1].in;
}
else
{
} else {
ep->endpoint_control = &usb_dpram->ep_ctrl[num - 1].out;
}
@ -180,76 +162,65 @@ static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t t
}
}
static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
hw_endpoint_xfer_start(ep, buffer, total_bytes);
static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
hw_endpoint_xfer_start(ep, buffer, total_bytes);
}
static void __tusb_irq_path_func(hw_handle_buff_status)(void)
{
uint32_t remaining_buffers = usb_hw->buf_status;
pico_trace("buf_status = 0x%08lx\r\n", remaining_buffers);
uint bit = 1u;
for (uint8_t i = 0; remaining_buffers && i < USB_MAX_ENDPOINTS * 2; i++)
{
if (remaining_buffers & bit)
{
// clear this in advance
usb_hw_clear->buf_status = bit;
static void __tusb_irq_path_func(hw_handle_buff_status)(void) {
uint32_t remaining_buffers = usb_hw->buf_status;
pico_trace("buf_status = 0x%08lx\r\n", remaining_buffers);
uint bit = 1u;
for (uint8_t i = 0; remaining_buffers && i < USB_MAX_ENDPOINTS * 2; i++) {
if (remaining_buffers & bit) {
// clear this in advance
usb_hw_clear->buf_status = bit;
// IN transfer for even i, OUT transfer for odd i
struct hw_endpoint *ep = hw_endpoint_get_by_num(i >> 1u, (i & 1u) ? TUSB_DIR_OUT : TUSB_DIR_IN);
// IN transfer for even i, OUT transfer for odd i
struct hw_endpoint* ep = hw_endpoint_get_by_num(i >> 1u, (i & 1u) ? TUSB_DIR_OUT : TUSB_DIR_IN);
// Continue xfer
bool done = hw_endpoint_xfer_continue(ep);
if (done)
{
// Notify
dcd_event_xfer_complete(0, ep->ep_addr, ep->xferred_len, XFER_RESULT_SUCCESS, true);
hw_endpoint_reset_transfer(ep);
}
remaining_buffers &= ~bit;
}
bit <<= 1u;
// Continue xfer
bool done = hw_endpoint_xfer_continue(ep);
if (done) {
// Notify
dcd_event_xfer_complete(0, ep->ep_addr, ep->xferred_len, XFER_RESULT_SUCCESS, true);
hw_endpoint_reset_transfer(ep);
}
remaining_buffers &= ~bit;
}
bit <<= 1u;
}
}
TU_ATTR_ALWAYS_INLINE static inline void reset_ep0_pid(void)
{
// If we have finished this transfer on EP0 set pid back to 1 for next
// setup transfer. Also clear a stall in case
uint8_t addrs[] = {0x0, 0x80};
for (uint i = 0 ; i < TU_ARRAY_SIZE(addrs); i++)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(addrs[i]);
ep->next_pid = 1u;
}
TU_ATTR_ALWAYS_INLINE static inline void reset_ep0_pid(void) {
// If we have finished this transfer on EP0 set pid back to 1 for next
// setup transfer. Also clear a stall in case
uint8_t addrs[] = {0x0, 0x80};
for (uint i = 0; i < TU_ARRAY_SIZE(addrs); i++) {
struct hw_endpoint* ep = hw_endpoint_get_by_addr(addrs[i]);
ep->next_pid = 1u;
}
}
static void __tusb_irq_path_func(reset_non_control_endpoints)(void)
{
static void __tusb_irq_path_func(reset_non_control_endpoints)(void) {
// Disable all non-control
for ( uint8_t i = 0; i < USB_MAX_ENDPOINTS-1; i++ )
{
for (uint8_t i = 0; i < USB_MAX_ENDPOINTS - 1; i++) {
usb_dpram->ep_ctrl[i].in = 0;
usb_dpram->ep_ctrl[i].out = 0;
}
// clear non-control hw endpoints
tu_memclr(hw_endpoints[1], sizeof(hw_endpoints) - 2*sizeof(hw_endpoint_t));
tu_memclr(hw_endpoints[1], sizeof(hw_endpoints) - 2 * sizeof(hw_endpoint_t));
// reclaim buffer space
next_buffer_ptr = &usb_dpram->epx_data[0];
}
static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
{
static void __tusb_irq_path_func(dcd_rp2040_irq)(void) {
uint32_t const status = usb_hw->ints;
uint32_t handled = 0;
if ( status & USB_INTF_DEV_SOF_BITS )
{
if (status & USB_INTF_DEV_SOF_BITS) {
bool keep_sof_alive = false;
handled |= USB_INTF_DEV_SOF_BITS;
@ -258,20 +229,17 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
// Errata 15 workaround for Device Bulk-In endpoint
e15_last_sof = time_us_32();
for ( uint8_t i = 0; i < USB_MAX_ENDPOINTS; i++ )
{
struct hw_endpoint * ep = hw_endpoint_get_by_num(i, TUSB_DIR_IN);
for (uint8_t i = 0; i < USB_MAX_ENDPOINTS; i++) {
struct hw_endpoint* ep = hw_endpoint_get_by_num(i, TUSB_DIR_IN);
// Active Bulk IN endpoint requires SOF
if ( (ep->transfer_type == TUSB_XFER_BULK) && ep->active )
{
if ((ep->transfer_type == TUSB_XFER_BULK) && ep->active) {
keep_sof_alive = true;
hw_endpoint_lock_update(ep, 1);
// Deferred enable?
if ( ep->pending )
{
if (ep->pending) {
ep->pending = 0;
hw_endpoint_start_next_buffer(ep);
}
@ -282,23 +250,21 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
#endif
// disable SOF interrupt if it is used for RESUME in remote wakeup
if ( !keep_sof_alive && !_sof_enable ) usb_hw_clear->inte = USB_INTS_DEV_SOF_BITS;
if (!keep_sof_alive && !_sof_enable) usb_hw_clear->inte = USB_INTS_DEV_SOF_BITS;
dcd_event_sof(0, usb_hw->sof_rd & USB_SOF_RD_BITS, true);
}
// xfer events are handled before setup req. So if a transfer completes immediately
// before closing the EP, the events will be delivered in same order.
if ( status & USB_INTS_BUFF_STATUS_BITS )
{
if (status & USB_INTS_BUFF_STATUS_BITS) {
handled |= USB_INTS_BUFF_STATUS_BITS;
hw_handle_buff_status();
}
if ( status & USB_INTS_SETUP_REQ_BITS )
{
if (status & USB_INTS_SETUP_REQ_BITS) {
handled |= USB_INTS_SETUP_REQ_BITS;
uint8_t const * setup = remove_volatile_cast(uint8_t const*, &usb_dpram->setup_packet);
uint8_t const* setup = remove_volatile_cast(uint8_t const*, &usb_dpram->setup_packet);
// reset pid to both 1 (data and ack)
reset_ep0_pid();
@ -329,8 +295,7 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
#endif
// SE0 for 2.5 us or more (will last at least 10ms)
if ( status & USB_INTS_BUS_RESET_BITS )
{
if (status & USB_INTS_BUS_RESET_BITS) {
pico_trace("BUS RESET\r\n");
handled |= USB_INTS_BUS_RESET_BITS;
@ -342,7 +307,7 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
#if TUD_OPT_RP2040_USB_DEVICE_ENUMERATION_FIX
// Only run enumeration workaround if pull up is enabled
if ( usb_hw->sie_ctrl & USB_SIE_CTRL_PULLUP_EN_BITS ) rp2040_usb_device_enumeration_fix();
if (usb_hw->sie_ctrl & USB_SIE_CTRL_PULLUP_EN_BITS) rp2040_usb_device_enumeration_fix();
#endif
}
@ -354,22 +319,19 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
* because without VBUS detection, it is impossible to tell the difference between
* being disconnected and suspended.
*/
if ( status & USB_INTS_DEV_SUSPEND_BITS )
{
if (status & USB_INTS_DEV_SUSPEND_BITS) {
handled |= USB_INTS_DEV_SUSPEND_BITS;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
usb_hw_clear->sie_status = USB_SIE_STATUS_SUSPENDED_BITS;
}
if ( status & USB_INTS_DEV_RESUME_FROM_HOST_BITS )
{
if (status & USB_INTS_DEV_RESUME_FROM_HOST_BITS) {
handled |= USB_INTS_DEV_RESUME_FROM_HOST_BITS;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
usb_hw_clear->sie_status = USB_SIE_STATUS_RESUME_BITS;
}
if ( status ^ handled )
{
if (status ^ handled) {
panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled));
}
}
@ -390,8 +352,7 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
#define PICO_SHARED_IRQ_HANDLER_HIGHEST_ORDER_PRIORITY 0xff
#endif
void dcd_init (uint8_t rhport)
{
void dcd_init(uint8_t rhport) {
assert(rhport == 0);
// Reset hardware to default state
@ -405,7 +366,7 @@ void dcd_init (uint8_t rhport)
irq_add_shared_handler(USBCTRL_IRQ, dcd_rp2040_irq, PICO_SHARED_IRQ_HANDLER_HIGHEST_ORDER_PRIORITY);
// Init control endpoints
tu_memclr(hw_endpoints[0], 2*sizeof(hw_endpoint_t));
tu_memclr(hw_endpoints[0], 2 * sizeof(hw_endpoint_t));
hw_endpoint_init(0x0, 64, TUSB_XFER_CONTROL);
hw_endpoint_init(0x80, 64, TUSB_XFER_CONTROL);
@ -420,27 +381,24 @@ void dcd_init (uint8_t rhport)
// for the global interrupt enable...
// Note: Force VBUS detect cause disconnection not detectable
usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS;
usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS | USB_INTS_SETUP_REQ_BITS |
USB_INTS_DEV_SUSPEND_BITS | USB_INTS_DEV_RESUME_FROM_HOST_BITS |
(FORCE_VBUS_DETECT ? 0 : USB_INTS_DEV_CONN_DIS_BITS);
usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS | USB_INTS_SETUP_REQ_BITS |
USB_INTS_DEV_SUSPEND_BITS | USB_INTS_DEV_RESUME_FROM_HOST_BITS |
(FORCE_VBUS_DETECT ? 0 : USB_INTS_DEV_CONN_DIS_BITS);
dcd_connect(rhport);
}
void dcd_int_enable(__unused uint8_t rhport)
{
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, true);
void dcd_int_enable(__unused uint8_t rhport) {
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, true);
}
void dcd_int_disable(__unused uint8_t rhport)
{
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, false);
void dcd_int_disable(__unused uint8_t rhport) {
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, false);
}
void dcd_set_address (__unused uint8_t rhport, __unused uint8_t dev_addr)
{
void dcd_set_address(__unused uint8_t rhport, __unused uint8_t dev_addr) {
assert(rhport == 0);
// Can't set device address in hardware until status xfer has complete
@ -448,8 +406,7 @@ void dcd_set_address (__unused uint8_t rhport, __unused uint8_t dev_addr)
hw_endpoint_xfer(0x80, NULL, 0);
}
void dcd_remote_wakeup(__unused uint8_t rhport)
{
void dcd_remote_wakeup(__unused uint8_t rhport) {
pico_info("dcd_remote_wakeup %d\n", rhport);
assert(rhport == 0);
@ -460,100 +417,88 @@ void dcd_remote_wakeup(__unused uint8_t rhport)
}
// disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(__unused uint8_t rhport)
{
void dcd_disconnect(__unused uint8_t rhport) {
(void) rhport;
usb_hw_clear->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
}
// connect by enabling internal pull-up resistor on D+/D-
void dcd_connect(__unused uint8_t rhport)
{
void dcd_connect(__unused uint8_t rhport) {
(void) rhport;
usb_hw_set->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
void dcd_sof_enable(uint8_t rhport, bool en) {
(void) rhport;
_sof_enable = en;
if (en)
{
if (en) {
usb_hw_set->inte = USB_INTS_DEV_SOF_BITS;
}else
{
}
#if !TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX
else {
// Don't clear immediately if the SOF workaround is in use.
// The SOF handler will conditionally disable the interrupt.
#if !TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX
usb_hw_clear->inte = USB_INTS_DEV_SOF_BITS;
#endif
}
#endif
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const* request) {
(void) rhport;
if ( request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS) {
usb_hw->dev_addr_ctrl = (uint8_t) request->wValue;
}
}
bool dcd_edpt_open (__unused uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
assert(rhport == 0);
hw_endpoint_init(desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt), desc_edpt->bmAttributes.xfer);
return true;
bool dcd_edpt_open(__unused uint8_t rhport, tusb_desc_endpoint_t const* desc_edpt) {
assert(rhport == 0);
hw_endpoint_init(desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt), desc_edpt->bmAttributes.xfer);
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
void dcd_edpt_close_all(uint8_t rhport) {
(void) rhport;
// may need to use EP Abort
reset_non_control_endpoints();
}
bool dcd_edpt_xfer(__unused uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
assert(rhport == 0);
hw_endpoint_xfer(ep_addr, buffer, total_bytes);
return true;
bool dcd_edpt_xfer(__unused uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
assert(rhport == 0);
hw_endpoint_xfer(ep_addr, buffer, total_bytes);
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
if ( tu_edpt_number(ep_addr) == 0 )
{
if (tu_edpt_number(ep_addr) == 0) {
// A stall on EP0 has to be armed so it can be cleared on the next setup packet
usb_hw_set->ep_stall_arm = (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) ? USB_EP_STALL_ARM_EP0_IN_BITS : USB_EP_STALL_ARM_EP0_OUT_BITS;
usb_hw_set->ep_stall_arm = (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) ? USB_EP_STALL_ARM_EP0_IN_BITS
: USB_EP_STALL_ARM_EP0_OUT_BITS;
}
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
// stall and clear current pending buffer
// may need to use EP_ABORT
_hw_endpoint_buffer_control_set_value32(ep, USB_BUF_CTRL_STALL);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
if (tu_edpt_number(ep_addr))
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
if (tu_edpt_number(ep_addr)) {
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
// clear stall also reset toggle to DATA0, ready for next transfer
ep->next_pid = 0;
@ -561,16 +506,13 @@ void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
}
}
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
pico_trace("dcd_edpt_close %02x\r\n", ep_addr);
hw_endpoint_close(ep_addr);
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
pico_trace("dcd_edpt_close %02x\r\n", ep_addr);
hw_endpoint_close(ep_addr);
}
void __tusb_irq_path_func(dcd_int_handler)(uint8_t rhport)
{
void __tusb_irq_path_func(dcd_int_handler)(uint8_t rhport) {
(void) rhport;
dcd_rp2040_irq();
}

View File

@ -37,24 +37,23 @@
//--------------------------------------------------------------------+
// Direction strings for debug
const char *ep_dir_string[] = {
"out",
"in",
const char* ep_dir_string[] = {
"out",
"in",
};
static void _hw_endpoint_xfer_sync(struct hw_endpoint *ep);
static void _hw_endpoint_xfer_sync(struct hw_endpoint* ep);
#if TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX
static bool e15_is_bulkin_ep(struct hw_endpoint *ep);
static bool e15_is_critical_frame_period(struct hw_endpoint *ep);
static bool e15_is_bulkin_ep(struct hw_endpoint* ep);
static bool e15_is_critical_frame_period(struct hw_endpoint* ep);
#else
#define e15_is_bulkin_ep(x) (false)
#define e15_is_critical_frame_period(x) (false)
#endif
// if usb hardware is in host mode
TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void)
{
TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void) {
return (usb_hw->main_ctrl & USB_MAIN_CTRL_HOST_NDEVICE_BITS) ? true : false;
}
@ -62,8 +61,7 @@ TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void)
// Implementation
//--------------------------------------------------------------------+
void rp2040_usb_init(void)
{
void rp2040_usb_init(void) {
// Reset usb controller
reset_block(RESETS_RESET_USBCTRL_BITS);
unreset_block_wait(RESETS_RESET_USBCTRL_BITS);
@ -88,45 +86,40 @@ void rp2040_usb_init(void)
TU_LOG2_INT(sizeof(hw_endpoint_t));
}
void __tusb_irq_path_func(hw_endpoint_reset_transfer)(struct hw_endpoint *ep)
{
void __tusb_irq_path_func(hw_endpoint_reset_transfer)(struct hw_endpoint* ep) {
ep->active = false;
ep->remaining_len = 0;
ep->xferred_len = 0;
ep->user_buf = 0;
}
void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoint *ep, uint32_t and_mask, uint32_t or_mask)
{
void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoint* ep, uint32_t and_mask,
uint32_t or_mask) {
uint32_t value = 0;
if ( and_mask )
{
if (and_mask) {
value = *ep->buffer_control & and_mask;
}
if ( or_mask )
{
if (or_mask) {
value |= or_mask;
if ( or_mask & USB_BUF_CTRL_AVAIL )
{
if ( *ep->buffer_control & USB_BUF_CTRL_AVAIL )
{
if (or_mask & USB_BUF_CTRL_AVAIL) {
if (*ep->buffer_control & USB_BUF_CTRL_AVAIL) {
panic("ep %d %s was already available", tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
}
*ep->buffer_control = value & ~USB_BUF_CTRL_AVAIL;
// 12 cycle delay.. (should be good for 48*12Mhz = 576Mhz)
// Don't need delay in host mode as host is in charge
#if !CFG_TUH_ENABLED
__asm volatile (
"b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1:\n"
: : : "memory");
__asm volatile (
"b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1:\n"
: : : "memory");
#endif
}
}
@ -135,10 +128,9 @@ void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoi
}
// prepare buffer, return buffer control
static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep, uint8_t buf_id)
{
static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint* ep, uint8_t buf_id) {
uint16_t const buflen = tu_min16(ep->remaining_len, ep->wMaxPacketSize);
ep->remaining_len = (uint16_t)(ep->remaining_len - buflen);
ep->remaining_len = (uint16_t) (ep->remaining_len - buflen);
uint32_t buf_ctrl = buflen | USB_BUF_CTRL_AVAIL;
@ -146,10 +138,9 @@ static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep,
buf_ctrl |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID;
ep->next_pid ^= 1u;
if ( !ep->rx )
{
if (!ep->rx) {
// Copy data from user buffer to hw buffer
memcpy(ep->hw_data_buf + buf_id*64, ep->user_buf, buflen);
memcpy(ep->hw_data_buf + buf_id * 64, ep->user_buf, buflen);
ep->user_buf += buflen;
// Mark as full
@ -159,8 +150,7 @@ static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep,
// Is this the last buffer? Only really matters for host mode. Will trigger
// the trans complete irq but also stop it polling. We only really care about
// trans complete for setup packets being sent
if (ep->remaining_len == 0)
{
if (ep->remaining_len == 0) {
buf_ctrl |= USB_BUF_CTRL_LAST;
}
@ -170,8 +160,7 @@ static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep,
}
// Prepare buffer control register value
void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep)
{
void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint* ep) {
uint32_t ep_ctrl = *ep->endpoint_control;
// always compute and start with buffer 0
@ -186,8 +175,7 @@ void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep)
bool const force_single = (!is_host && !tu_edpt_dir(ep->ep_addr)) ||
(is_host && tu_edpt_number(ep->ep_addr) != 0);
if(ep->remaining_len && !force_single)
{
if (ep->remaining_len && !force_single) {
// Use buffer 1 (double buffered) if there is still data
// TODO: Isochronous for buffer1 bit-field is different than CBI (control bulk, interrupt)
@ -196,8 +184,7 @@ void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep)
// Set endpoint control double buffered bit if needed
ep_ctrl &= ~EP_CTRL_INTERRUPT_PER_BUFFER;
ep_ctrl |= EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER;
}else
{
} else {
// Single buffered since 1 is enough
ep_ctrl &= ~(EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER);
ep_ctrl |= EP_CTRL_INTERRUPT_PER_BUFFER;
@ -212,35 +199,30 @@ void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep)
_hw_endpoint_buffer_control_set_value32(ep, buf_ctrl);
}
void hw_endpoint_xfer_start(struct hw_endpoint *ep, uint8_t *buffer, uint16_t total_len)
{
void hw_endpoint_xfer_start(struct hw_endpoint* ep, uint8_t* buffer, uint16_t total_len) {
hw_endpoint_lock_update(ep, 1);
if ( ep->active )
{
if (ep->active) {
// TODO: Is this acceptable for interrupt packets?
TU_LOG(1, "WARN: starting new transfer on already active ep %d %s\r\n", tu_edpt_number(ep->ep_addr),
ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
hw_endpoint_reset_transfer(ep);
}
// Fill in info now that we're kicking off the hw
ep->remaining_len = total_len;
ep->xferred_len = 0;
ep->active = true;
ep->user_buf = buffer;
ep->xferred_len = 0;
ep->active = true;
ep->user_buf = buffer;
if ( e15_is_bulkin_ep(ep) )
{
if (e15_is_bulkin_ep(ep)) {
usb_hw_set->inte = USB_INTS_DEV_SOF_BITS;
}
if ( e15_is_critical_frame_period(ep) )
{
if (e15_is_critical_frame_period(ep)) {
ep->pending = 1;
} else
{
} else {
hw_endpoint_start_next_buffer(ep);
}
@ -248,34 +230,30 @@ void hw_endpoint_xfer_start(struct hw_endpoint *ep, uint8_t *buffer, uint16_t to
}
// sync endpoint buffer and return transferred bytes
static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint *ep, uint8_t buf_id)
{
static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint* ep, uint8_t buf_id) {
uint32_t buf_ctrl = _hw_endpoint_buffer_control_get_value32(ep);
if (buf_id) buf_ctrl = buf_ctrl >> 16;
if (buf_id) buf_ctrl = buf_ctrl >> 16;
uint16_t xferred_bytes = buf_ctrl & USB_BUF_CTRL_LEN_MASK;
if ( !ep->rx )
{
if (!ep->rx) {
// We are continuing a transfer here. If we are TX, we have successfully
// sent some data can increase the length we have sent
assert(!(buf_ctrl & USB_BUF_CTRL_FULL));
ep->xferred_len = (uint16_t)(ep->xferred_len + xferred_bytes);
}else
{
ep->xferred_len = (uint16_t) (ep->xferred_len + xferred_bytes);
} else {
// If we have received some data, so can increase the length
// we have received AFTER we have copied it to the user buffer at the appropriate offset
assert(buf_ctrl & USB_BUF_CTRL_FULL);
memcpy(ep->user_buf, ep->hw_data_buf + buf_id*64, xferred_bytes);
ep->xferred_len = (uint16_t)(ep->xferred_len + xferred_bytes);
memcpy(ep->user_buf, ep->hw_data_buf + buf_id * 64, xferred_bytes);
ep->xferred_len = (uint16_t) (ep->xferred_len + xferred_bytes);
ep->user_buf += xferred_bytes;
}
// Short packet
if (xferred_bytes < ep->wMaxPacketSize)
{
if (xferred_bytes < ep->wMaxPacketSize) {
pico_trace(" Short packet on buffer %d with %u bytes\r\n", buf_id, xferred_bytes);
// Reduce total length as this is last packet
ep->remaining_len = 0;
@ -284,8 +262,7 @@ static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint *ep, uin
return xferred_bytes;
}
static void __tusb_irq_path_func(_hw_endpoint_xfer_sync) (struct hw_endpoint *ep)
{
static void __tusb_irq_path_func(_hw_endpoint_xfer_sync)(struct hw_endpoint* ep) {
// Update hw endpoint struct with info from hardware
// after a buff status interrupt
@ -296,14 +273,11 @@ static void __tusb_irq_path_func(_hw_endpoint_xfer_sync) (struct hw_endpoint *ep
uint16_t buf0_bytes = sync_ep_buffer(ep, 0);
// sync buffer 1 if double buffered
if ( (*ep->endpoint_control) & EP_CTRL_DOUBLE_BUFFERED_BITS )
{
if (buf0_bytes == ep->wMaxPacketSize)
{
if ((*ep->endpoint_control) & EP_CTRL_DOUBLE_BUFFERED_BITS) {
if (buf0_bytes == ep->wMaxPacketSize) {
// sync buffer 1 if not short packet
sync_ep_buffer(ep, 1);
}else
{
} else {
// short packet on buffer 0
// TODO couldn't figure out how to handle this case which happen with net_lwip_webserver example
// At this time (currently trigger per 2 buffer), the buffer1 is probably filled with data from
@ -335,14 +309,13 @@ static void __tusb_irq_path_func(_hw_endpoint_xfer_sync) (struct hw_endpoint *ep
}
// Returns true if transfer is complete
bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint *ep)
{
bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint* ep) {
hw_endpoint_lock_update(ep, 1);
// Part way through a transfer
if (!ep->active)
{
panic("Can't continue xfer on inactive ep %d %s", tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
if (!ep->active) {
panic("Can't continue xfer on inactive ep %d %s", tu_edpt_number(ep->ep_addr),
ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
}
// Update EP struct from hardware state
@ -350,21 +323,16 @@ bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint *ep)
// Now we have synced our state with the hardware. Is there more data to transfer?
// If we are done then notify tinyusb
if (ep->remaining_len == 0)
{
if (ep->remaining_len == 0) {
pico_trace("Completed transfer of %d bytes on ep %d %s\r\n",
ep->xferred_len, tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
// Notify caller we are done so it can notify the tinyusb stack
hw_endpoint_lock_update(ep, -1);
return true;
}
else
{
if ( e15_is_critical_frame_period(ep) )
{
} else {
if (e15_is_critical_frame_period(ep)) {
ep->pending = 1;
} else
{
} else {
hw_endpoint_start_next_buffer(ep);
}
}
@ -399,16 +367,14 @@ bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint *ep)
volatile uint32_t e15_last_sof = 0;
// check if Errata 15 is needed for this endpoint i.e device bulk-in
static bool __tusb_irq_path_func(e15_is_bulkin_ep) (struct hw_endpoint *ep)
{
static bool __tusb_irq_path_func(e15_is_bulkin_ep)(struct hw_endpoint* ep) {
return (!is_host_mode() && tu_edpt_dir(ep->ep_addr) == TUSB_DIR_IN &&
ep->transfer_type == TUSB_XFER_BULK);
}
// check if we need to apply Errata 15 workaround : i.e
// Endpoint is BULK IN and is currently in critical frame period i.e 20% of last usb frame
static bool __tusb_irq_path_func(e15_is_critical_frame_period) (struct hw_endpoint *ep)
{
static bool __tusb_irq_path_func(e15_is_critical_frame_period)(struct hw_endpoint* ep) {
TU_VERIFY(e15_is_bulkin_ep(ep));
/* Avoid the last 200us (uframe 6.5-7) of a frame, up to the EOF2 point.
@ -419,11 +385,10 @@ static bool __tusb_irq_path_func(e15_is_critical_frame_period) (struct hw_endpoi
if (delta < 800 || delta > 998) {
return false;
}
TU_LOG(3, "Avoiding sof %lu now %lu last %lu\r\n", (usb_hw->sof_rd + 1) & USB_SOF_RD_BITS, time_us_32(), e15_last_sof);
TU_LOG(3, "Avoiding sof %lu now %lu last %lu\r\n", (usb_hw->sof_rd + 1) & USB_SOF_RD_BITS, time_us_32(),
e15_last_sof);
return true;
}
#endif
#endif // TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX
#endif