diff --git a/examples/device/cdc_dual_ports/src/main.c b/examples/device/cdc_dual_ports/src/main.c index 98f3ab923..1167a5d50 100644 --- a/examples/device/cdc_dual_ports/src/main.c +++ b/examples/device/cdc_dual_ports/src/main.c @@ -31,12 +31,24 @@ #include "bsp/board_api.h" #include "tusb.h" -//------------- prototypes -------------// +/* Blink pattern + * - 250 ms : device not mounted + * - 1000 ms : device mounted + * - 2500 ms : device is suspended + */ +enum { + BLINK_NOT_MOUNTED = 250, + BLINK_MOUNTED = 1000, + BLINK_SUSPENDED = 2500, +}; + +static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED; + +static void led_blinking_task(void); static void cdc_task(void); /*------------- MAIN -------------*/ -int main(void) -{ +int main(void) { board_init(); // init device stack on configured roothub port @@ -46,28 +58,23 @@ int main(void) board_init_after_tusb(); } - while (1) - { + while (1) { tud_task(); // tinyusb device task cdc_task(); + led_blinking_task(); } } // echo to either Serial0 or Serial1 // with Serial0 as all lower case, Serial1 as all upper case -static void echo_serial_port(uint8_t itf, uint8_t buf[], uint32_t count) -{ +static void echo_serial_port(uint8_t itf, uint8_t buf[], uint32_t count) { uint8_t const case_diff = 'a' - 'A'; - for(uint32_t i=0; iname); driver->init(); @@ -418,31 +415,26 @@ bool tud_init (uint8_t rhport) return true; } -static void configuration_reset(uint8_t rhport) -{ - for ( uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++ ) - { - usbd_class_driver_t const * driver = get_driver(i); - TU_ASSERT(driver, ); +static void configuration_reset(uint8_t rhport) { + for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++) { + usbd_class_driver_t const* driver = get_driver(i); + TU_ASSERT(driver,); driver->reset(rhport); } tu_varclr(&_usbd_dev); memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping - memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping + memset(_usbd_dev.ep2drv, DRVID_INVALID, sizeof(_usbd_dev.ep2drv)); // invalid mapping } -static void usbd_reset(uint8_t rhport) -{ +static void usbd_reset(uint8_t rhport) { configuration_reset(rhport); usbd_control_reset(); } -bool tud_task_event_ready(void) -{ +bool tud_task_event_ready(void) { // Skip if stack is not initialized - if ( !tud_inited() ) return false; - + if (!tud_inited()) return false; return !osal_queue_empty(_usbd_q); } @@ -450,53 +442,44 @@ bool tud_task_event_ready(void) * This top level thread manages all device controller event and delegates events to class-specific drivers. * This should be called periodically within the mainloop or rtos thread. * - @code - int main(void) - { + int main(void) { application_init(); tusb_init(); - while(1) // the mainloop - { + while(1) { // the mainloop application_code(); tud_task(); // tinyusb device task } } - @endcode */ -void tud_task_ext(uint32_t timeout_ms, bool in_isr) -{ +void tud_task_ext(uint32_t timeout_ms, bool in_isr) { (void) in_isr; // not implemented yet // Skip if stack is not initialized - if ( !tud_inited() ) return; + if (!tud_inited()) return; // Loop until there is no more events in the queue - while (1) - { + while (1) { dcd_event_t event; - if ( !osal_queue_receive(_usbd_q, &event, timeout_ms) ) return; + if (!osal_queue_receive(_usbd_q, &event, timeout_ms)) return; #if CFG_TUSB_DEBUG >= CFG_TUD_LOG_LEVEL if (event.event_id == DCD_EVENT_SETUP_RECEIVED) TU_LOG_USBD("\r\n"); // extra line for setup TU_LOG_USBD("USBD %s ", event.event_id < DCD_EVENT_COUNT ? _usbd_event_str[event.event_id] : "CORRUPTED"); #endif - switch ( event.event_id ) - { + switch (event.event_id) { case DCD_EVENT_BUS_RESET: TU_LOG_USBD(": %s Speed\r\n", tu_str_speed[event.bus_reset.speed]); usbd_reset(event.rhport); _usbd_dev.speed = event.bus_reset.speed; - break; + break; case DCD_EVENT_UNPLUGGED: TU_LOG_USBD("\r\n"); usbd_reset(event.rhport); - - // invoke callback if (tud_umount_cb) tud_umount_cb(); - break; + break; case DCD_EVENT_SETUP_RECEIVED: TU_LOG_BUF(CFG_TUD_LOG_LEVEL, &event.setup_received, 8); @@ -508,81 +491,72 @@ void tud_task_ext(uint32_t timeout_ms, bool in_isr) // mark both in & out control as free _usbd_dev.ep_status[0][TUSB_DIR_OUT].busy = 0; _usbd_dev.ep_status[0][TUSB_DIR_OUT].claimed = 0; - _usbd_dev.ep_status[0][TUSB_DIR_IN ].busy = 0; - _usbd_dev.ep_status[0][TUSB_DIR_IN ].claimed = 0; + _usbd_dev.ep_status[0][TUSB_DIR_IN].busy = 0; + _usbd_dev.ep_status[0][TUSB_DIR_IN].claimed = 0; // Process control request - if ( !process_control_request(event.rhport, &event.setup_received) ) - { + if (!process_control_request(event.rhport, &event.setup_received)) { TU_LOG_USBD(" Stall EP0\r\n"); // Failed -> stall both control endpoint IN and OUT dcd_edpt_stall(event.rhport, 0); dcd_edpt_stall(event.rhport, 0 | TUSB_DIR_IN_MASK); } - break; + break; - case DCD_EVENT_XFER_COMPLETE: - { + case DCD_EVENT_XFER_COMPLETE: { // Invoke the class callback associated with the endpoint address uint8_t const ep_addr = event.xfer_complete.ep_addr; - uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const ep_dir = tu_edpt_dir(ep_addr); + uint8_t const epnum = tu_edpt_number(ep_addr); + uint8_t const ep_dir = tu_edpt_dir(ep_addr); TU_LOG_USBD("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len); _usbd_dev.ep_status[epnum][ep_dir].busy = 0; _usbd_dev.ep_status[epnum][ep_dir].claimed = 0; - if ( 0 == epnum ) - { - usbd_control_xfer_cb(event.rhport, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete - .len); - } - else - { - usbd_class_driver_t const * driver = get_driver( _usbd_dev.ep2drv[epnum][ep_dir] ); - TU_ASSERT(driver, ); + if (0 == epnum) { + usbd_control_xfer_cb(event.rhport, ep_addr, (xfer_result_t) event.xfer_complete.result, + event.xfer_complete.len); + } else { + usbd_class_driver_t const* driver = get_driver(_usbd_dev.ep2drv[epnum][ep_dir]); + TU_ASSERT(driver,); TU_LOG_USBD(" %s xfer callback\r\n", driver->name); driver->xfer_cb(event.rhport, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len); } + break; } - break; case DCD_EVENT_SUSPEND: // NOTE: When plugging/unplugging device, the D+/D- state are unstable and // can accidentally meet the SUSPEND condition ( Bus Idle for 3ms ), which result in a series of event // e.g suspend -> resume -> unplug/plug. Skip suspend/resume if not connected - if ( _usbd_dev.connected ) - { + if (_usbd_dev.connected) { TU_LOG_USBD(": Remote Wakeup = %u\r\n", _usbd_dev.remote_wakeup_en); if (tud_suspend_cb) tud_suspend_cb(_usbd_dev.remote_wakeup_en); - }else - { + } else { TU_LOG_USBD(" Skipped\r\n"); } - break; + break; case DCD_EVENT_RESUME: - if ( _usbd_dev.connected ) - { + if (_usbd_dev.connected) { TU_LOG_USBD("\r\n"); if (tud_resume_cb) tud_resume_cb(); - }else - { + } else { TU_LOG_USBD(" Skipped\r\n"); } - break; + break; case USBD_EVENT_FUNC_CALL: TU_LOG_USBD("\r\n"); - if ( event.func_call.func ) event.func_call.func(event.func_call.param); - break; + if (event.func_call.func) event.func_call.func(event.func_call.param); + break; case DCD_EVENT_SOF: default: TU_BREAKPOINT(); - break; + break; } #if CFG_TUSB_OS != OPT_OS_NONE && CFG_TUSB_OS != OPT_OS_PICO @@ -597,8 +571,7 @@ void tud_task_ext(uint32_t timeout_ms, bool in_isr) //--------------------------------------------------------------------+ // Helper to invoke class driver control request handler -static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * driver, tusb_control_request_t const * request) -{ +static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * driver, tusb_control_request_t const * request) { usbd_control_set_complete_callback(driver->control_xfer_cb); TU_LOG_USBD(" %s control request\r\n", driver->name); return driver->control_xfer_cb(rhport, CONTROL_STAGE_SETUP, request); @@ -606,15 +579,12 @@ static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * dri // This handles the actual request and its response. // return false will cause its caller to stall control endpoint -static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request) -{ +static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request) { usbd_control_set_complete_callback(NULL); - TU_ASSERT(p_request->bmRequestType_bit.type < TUSB_REQ_TYPE_INVALID); // Vendor request - if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR ) - { + if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR ) { TU_VERIFY(tud_vendor_control_xfer_cb); usbd_control_set_complete_callback(tud_vendor_control_xfer_cb); @@ -622,19 +592,16 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const } #if CFG_TUSB_DEBUG >= CFG_TUD_LOG_LEVEL - if (TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && p_request->bRequest <= TUSB_REQ_SYNCH_FRAME) - { + if (TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && p_request->bRequest <= TUSB_REQ_SYNCH_FRAME) { TU_LOG_USBD(" %s", tu_str_std_request[p_request->bRequest]); if (TUSB_REQ_GET_DESCRIPTOR != p_request->bRequest) TU_LOG_USBD("\r\n"); } #endif - switch ( p_request->bmRequestType_bit.recipient ) - { + switch ( p_request->bmRequestType_bit.recipient ) { //------------- Device Requests e.g in enumeration -------------// case TUSB_REQ_RCPT_DEVICE: - if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type ) - { + if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type ) { uint8_t const itf = tu_u16_low(p_request->wIndex); TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv)); @@ -645,15 +612,13 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const return invoke_class_control(rhport, driver, p_request); } - if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type ) - { + if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type ) { // Non standard request is not supported TU_BREAKPOINT(); return false; } - switch ( p_request->bRequest ) - { + switch ( p_request->bRequest ) { case TUSB_REQ_SET_ADDRESS: // Depending on mcu, status phase could be sent either before or after changing device address, // or even require stack to not response with status at all @@ -664,22 +629,18 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const _usbd_dev.addressed = 1; break; - case TUSB_REQ_GET_CONFIGURATION: - { + case TUSB_REQ_GET_CONFIGURATION: { uint8_t cfg_num = _usbd_dev.cfg_num; tud_control_xfer(rhport, p_request, &cfg_num, 1); } break; - case TUSB_REQ_SET_CONFIGURATION: - { + case TUSB_REQ_SET_CONFIGURATION: { uint8_t const cfg_num = (uint8_t) p_request->wValue; // Only process if new configure is different - if (_usbd_dev.cfg_num != cfg_num) - { - if ( _usbd_dev.cfg_num ) - { + if (_usbd_dev.cfg_num != cfg_num) { + if ( _usbd_dev.cfg_num ) { // already configured: need to clear all endpoints and driver first TU_LOG_USBD(" Clear current Configuration (%u) before switching\r\n", _usbd_dev.cfg_num); @@ -694,15 +655,11 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const } // Handle the new configuration and execute the corresponding callback - if ( cfg_num ) - { + if ( cfg_num ) { // switch to new configuration if not zero TU_ASSERT( process_set_config(rhport, cfg_num) ); - if ( tud_mount_cb ) tud_mount_cb(); - } - else - { + } else { if ( tud_umount_cb ) tud_umount_cb(); } } @@ -738,15 +695,14 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const tud_control_status(rhport, p_request); break; - case TUSB_REQ_GET_STATUS: - { + case TUSB_REQ_GET_STATUS: { // Device status bit mask // - Bit 0: Self Powered // - Bit 1: Remote Wakeup enabled uint16_t status = (uint16_t) ((_usbd_dev.self_powered ? 1u : 0u) | (_usbd_dev.remote_wakeup_en ? 2u : 0u)); tud_control_xfer(rhport, p_request, &status, 2); + break; } - break; // Unknown/Unsupported request default: TU_BREAKPOINT(); return false; @@ -754,8 +710,7 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const break; //------------- Class/Interface Specific Request -------------// - case TUSB_REQ_RCPT_INTERFACE: - { + case TUSB_REQ_RCPT_INTERFACE: { uint8_t const itf = tu_u16_low(p_request->wIndex); TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv)); @@ -764,25 +719,21 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const // all requests to Interface (STD or Class) is forwarded to class driver. // notable requests are: GET HID REPORT DESCRIPTOR, SET_INTERFACE, GET_INTERFACE - if ( !invoke_class_control(rhport, driver, p_request) ) - { + if ( !invoke_class_control(rhport, driver, p_request) ) { // For GET_INTERFACE and SET_INTERFACE, it is mandatory to respond even if the class // driver doesn't use alternate settings or implement this TU_VERIFY(TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type); - switch(p_request->bRequest) - { + switch(p_request->bRequest) { case TUSB_REQ_GET_INTERFACE: case TUSB_REQ_SET_INTERFACE: // Clear complete callback if driver set since it can also stall the request. usbd_control_set_complete_callback(NULL); - if (TUSB_REQ_GET_INTERFACE == p_request->bRequest) - { + if (TUSB_REQ_GET_INTERFACE == p_request->bRequest) { uint8_t alternate = 0; tud_control_xfer(rhport, p_request, &alternate, 1); - }else - { + }else { tud_control_status(rhport, p_request); } break; @@ -790,54 +741,42 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const default: return false; } } + break; } - break; //------------- Endpoint Request -------------// - case TUSB_REQ_RCPT_ENDPOINT: - { + case TUSB_REQ_RCPT_ENDPOINT: { uint8_t const ep_addr = tu_u16_low(p_request->wIndex); uint8_t const ep_num = tu_edpt_number(ep_addr); uint8_t const ep_dir = tu_edpt_dir(ep_addr); TU_ASSERT(ep_num < TU_ARRAY_SIZE(_usbd_dev.ep2drv) ); - usbd_class_driver_t const * driver = get_driver(_usbd_dev.ep2drv[ep_num][ep_dir]); - if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type ) - { + if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type ) { // Forward class request to its driver TU_VERIFY(driver); return invoke_class_control(rhport, driver, p_request); - } - else - { + } else { // Handle STD request to endpoint - switch ( p_request->bRequest ) - { - case TUSB_REQ_GET_STATUS: - { + switch ( p_request->bRequest ) { + case TUSB_REQ_GET_STATUS: { uint16_t status = usbd_edpt_stalled(rhport, ep_addr) ? 0x0001 : 0x0000; tud_control_xfer(rhport, p_request, &status, 2); } break; case TUSB_REQ_CLEAR_FEATURE: - case TUSB_REQ_SET_FEATURE: - { - if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue ) - { - if ( TUSB_REQ_CLEAR_FEATURE == p_request->bRequest ) - { + case TUSB_REQ_SET_FEATURE: { + if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue ) { + if ( TUSB_REQ_CLEAR_FEATURE == p_request->bRequest ) { usbd_edpt_clear_stall(rhport, ep_addr); - }else - { + }else { usbd_edpt_stall(rhport, ep_addr); } } - if (driver) - { + if (driver) { // Some classes such as USBTMC needs to clear/re-init its buffer when receiving CLEAR_FEATURE request // We will also forward std request targeted endpoint to class drivers as well @@ -853,14 +792,18 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const break; // Unknown/Unsupported request - default: TU_BREAKPOINT(); return false; + default: + TU_BREAKPOINT(); + return false; } } } break; // Unknown recipient - default: TU_BREAKPOINT(); return false; + default: + TU_BREAKPOINT(); + return false; } return true; @@ -1185,8 +1128,7 @@ void usbd_defer_func(osal_task_func_t func, void* param, bool in_isr) { // USBD Endpoint API //--------------------------------------------------------------------+ -bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep) -{ +bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_ep) { rhport = _usbd_rhport; TU_ASSERT(tu_edpt_number(desc_ep->bEndpointAddress) < CFG_TUD_ENDPPOINT_MAX); @@ -1195,37 +1137,34 @@ bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep) return dcd_edpt_open(rhport, desc_ep); } -bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr) -{ +bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr) { (void) rhport; // TODO add this check later, also make sure we don't starve an out endpoint while suspending // TU_VERIFY(tud_ready()); - uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const dir = tu_edpt_dir(ep_addr); + uint8_t const epnum = tu_edpt_number(ep_addr); + uint8_t const dir = tu_edpt_dir(ep_addr); tu_edpt_state_t* ep_state = &_usbd_dev.ep_status[epnum][dir]; return tu_edpt_claim(ep_state, _usbd_mutex); } -bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr) -{ +bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr) { (void) rhport; - uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const dir = tu_edpt_dir(ep_addr); + uint8_t const epnum = tu_edpt_number(ep_addr); + uint8_t const dir = tu_edpt_dir(ep_addr); tu_edpt_state_t* ep_state = &_usbd_dev.ep_status[epnum][dir]; return tu_edpt_release(ep_state, _usbd_mutex); } -bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) -{ +bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { rhport = _usbd_rhport; uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const dir = tu_edpt_dir(ep_addr); + uint8_t const dir = tu_edpt_dir(ep_addr); // TODO skip ready() check for now since enumeration also use this API // TU_VERIFY(tud_ready()); @@ -1239,11 +1178,9 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t // could return and USBD task can preempt and clear the busy _usbd_dev.ep_status[epnum][dir].busy = 1; - if ( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) ) - { + if (dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes)) { return true; - }else - { + } else { // DCD error, mark endpoint as ready to allow next transfer _usbd_dev.ep_status[epnum][dir].busy = 0; _usbd_dev.ep_status[epnum][dir].claimed = 0; @@ -1257,12 +1194,11 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t // bytes should be written and second to keep the return value free to give back a boolean // success message. If total_bytes is too big, the FIFO will copy only what is available // into the USB buffer! -bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes) -{ +bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t* ff, uint16_t total_bytes) { rhport = _usbd_rhport; uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const dir = tu_edpt_dir(ep_addr); + uint8_t const dir = tu_edpt_dir(ep_addr); TU_LOG_USBD(" Queue ISO EP %02X with %u bytes ... ", ep_addr, total_bytes); @@ -1273,12 +1209,10 @@ bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16 // and usbd task can preempt and clear the busy _usbd_dev.ep_status[epnum][dir].busy = 1; - if (dcd_edpt_xfer_fifo(rhport, ep_addr, ff, total_bytes)) - { + if (dcd_edpt_xfer_fifo(rhport, ep_addr, ff, total_bytes)) { TU_LOG_USBD("OK\r\n"); return true; - }else - { + } else { // DCD error, mark endpoint as ready to allow next transfer _usbd_dev.ep_status[epnum][dir].busy = 0; _usbd_dev.ep_status[epnum][dir].claimed = 0; @@ -1288,26 +1222,23 @@ bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16 } } -bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr) -{ +bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const dir = tu_edpt_dir(ep_addr); + uint8_t const dir = tu_edpt_dir(ep_addr); return _usbd_dev.ep_status[epnum][dir].busy; } -void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr) -{ +void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { rhport = _usbd_rhport; uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const dir = tu_edpt_dir(ep_addr); + uint8_t const dir = tu_edpt_dir(ep_addr); // only stalled if currently cleared - if ( !_usbd_dev.ep_status[epnum][dir].stalled ) - { + if (!_usbd_dev.ep_status[epnum][dir].stalled) { TU_LOG_USBD(" Stall EP %02X\r\n", ep_addr); dcd_edpt_stall(rhport, ep_addr); _usbd_dev.ep_status[epnum][dir].stalled = 1; @@ -1315,16 +1246,14 @@ void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr) } } -void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) -{ +void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { rhport = _usbd_rhport; uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const dir = tu_edpt_dir(ep_addr); + uint8_t const dir = tu_edpt_dir(ep_addr); // only clear if currently stalled - if ( _usbd_dev.ep_status[epnum][dir].stalled ) - { + if (_usbd_dev.ep_status[epnum][dir].stalled) { TU_LOG_USBD(" Clear Stall EP %02X\r\n", ep_addr); dcd_edpt_clear_stall(rhport, ep_addr); _usbd_dev.ep_status[epnum][dir].stalled = 0; @@ -1332,31 +1261,27 @@ void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) } } -bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr) -{ +bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const dir = tu_edpt_dir(ep_addr); + uint8_t const dir = tu_edpt_dir(ep_addr); return _usbd_dev.ep_status[epnum][dir].stalled; } /** * usbd_edpt_close will disable an endpoint. - * * In progress transfers on this EP may be delivered after this call. - * */ -void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr) -{ +void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr) { rhport = _usbd_rhport; TU_ASSERT(dcd_edpt_close, /**/); TU_LOG_USBD(" CLOSING Endpoint: 0x%02X\r\n", ep_addr); uint8_t const epnum = tu_edpt_number(ep_addr); - uint8_t const dir = tu_edpt_dir(ep_addr); + uint8_t const dir = tu_edpt_dir(ep_addr); dcd_edpt_close(rhport, ep_addr); _usbd_dev.ep_status[epnum][dir].stalled = 0; @@ -1366,8 +1291,7 @@ void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr) return; } -void usbd_sof_enable(uint8_t rhport, bool en) -{ +void usbd_sof_enable(uint8_t rhport, bool en) { rhport = _usbd_rhport; // TODO: Check needed if all drivers including the user sof_cb does not need an active SOF ISR any more. @@ -1375,8 +1299,7 @@ void usbd_sof_enable(uint8_t rhport, bool en) dcd_sof_enable(rhport, en); } -bool usbd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) -{ +bool usbd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) { rhport = _usbd_rhport; TU_ASSERT(dcd_edpt_iso_alloc); @@ -1385,12 +1308,11 @@ bool usbd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packe return dcd_edpt_iso_alloc(rhport, ep_addr, largest_packet_size); } -bool usbd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep) -{ +bool usbd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const* desc_ep) { rhport = _usbd_rhport; uint8_t const epnum = tu_edpt_number(desc_ep->bEndpointAddress); - uint8_t const dir = tu_edpt_dir(desc_ep->bEndpointAddress); + uint8_t const dir = tu_edpt_dir(desc_ep->bEndpointAddress); TU_ASSERT(dcd_edpt_iso_activate); TU_ASSERT(epnum < CFG_TUD_ENDPPOINT_MAX); diff --git a/src/portable/raspberrypi/rp2040/dcd_rp2040.c b/src/portable/raspberrypi/rp2040/dcd_rp2040.c index e8cee73fd..ba7e9f912 100644 --- a/src/portable/raspberrypi/rp2040/dcd_rp2040.c +++ b/src/portable/raspberrypi/rp2040/dcd_rp2040.c @@ -48,7 +48,7 @@ *------------------------------------------------------------------*/ // Init these in dcd_init -static uint8_t *next_buffer_ptr; +static uint8_t* next_buffer_ptr; // USB_MAX_ENDPOINTS Endpoints, direction TUSB_DIR_OUT for out and TUSB_DIR_IN for in. static struct hw_endpoint hw_endpoints[USB_MAX_ENDPOINTS][2]; @@ -56,79 +56,70 @@ static struct hw_endpoint hw_endpoints[USB_MAX_ENDPOINTS][2]; // SOF may be used by remote wakeup as RESUME, this indicate whether SOF is actually used by usbd static bool _sof_enable = false; -TU_ATTR_ALWAYS_INLINE static inline struct hw_endpoint *hw_endpoint_get_by_num(uint8_t num, tusb_dir_t dir) -{ +TU_ATTR_ALWAYS_INLINE static inline struct hw_endpoint* hw_endpoint_get_by_num(uint8_t num, tusb_dir_t dir) { return &hw_endpoints[num][dir]; } -static struct hw_endpoint *hw_endpoint_get_by_addr(uint8_t ep_addr) -{ +static struct hw_endpoint* hw_endpoint_get_by_addr(uint8_t ep_addr) { uint8_t num = tu_edpt_number(ep_addr); tusb_dir_t dir = tu_edpt_dir(ep_addr); return hw_endpoint_get_by_num(num, dir); } -static void _hw_endpoint_alloc(struct hw_endpoint *ep, uint8_t transfer_type) -{ +static void _hw_endpoint_alloc(struct hw_endpoint* ep, uint8_t transfer_type) { // size must be multiple of 64 uint size = tu_div_ceil(ep->wMaxPacketSize, 64) * 64u; // double buffered Bulk endpoint - if ( transfer_type == TUSB_XFER_BULK ) - { + if (transfer_type == TUSB_XFER_BULK) { size *= 2u; } ep->hw_data_buf = next_buffer_ptr; next_buffer_ptr += size; - assert(((uintptr_t )next_buffer_ptr & 0b111111u) == 0); + assert(((uintptr_t) next_buffer_ptr & 0b111111u) == 0); uint dpram_offset = hw_data_offset(ep->hw_data_buf); hard_assert(hw_data_offset(next_buffer_ptr) <= USB_DPRAM_MAX); pico_info(" Allocated %d bytes at offset 0x%x (0x%p)\r\n", size, dpram_offset, ep->hw_data_buf); // Fill in endpoint control register with buffer offset - uint32_t const reg = EP_CTRL_ENABLE_BITS | ((uint)transfer_type << EP_CTRL_BUFFER_TYPE_LSB) | dpram_offset; + uint32_t const reg = EP_CTRL_ENABLE_BITS | ((uint) transfer_type << EP_CTRL_BUFFER_TYPE_LSB) | dpram_offset; *ep->endpoint_control = reg; } -static void _hw_endpoint_close(struct hw_endpoint *ep) -{ - // Clear hardware registers and then zero the struct - // Clears endpoint enable - *ep->endpoint_control = 0; - // Clears buffer available, etc - *ep->buffer_control = 0; - // Clear any endpoint state - memset(ep, 0, sizeof(struct hw_endpoint)); +static void _hw_endpoint_close(struct hw_endpoint* ep) { + // Clear hardware registers and then zero the struct + // Clears endpoint enable + *ep->endpoint_control = 0; + // Clears buffer available, etc + *ep->buffer_control = 0; + // Clear any endpoint state + memset(ep, 0, sizeof(struct hw_endpoint)); - // Reclaim buffer space if all endpoints are closed - bool reclaim_buffers = true; - for ( uint8_t i = 1; i < USB_MAX_ENDPOINTS; i++ ) - { - if (hw_endpoint_get_by_num(i, TUSB_DIR_OUT)->hw_data_buf != NULL || hw_endpoint_get_by_num(i, TUSB_DIR_IN)->hw_data_buf != NULL) - { - reclaim_buffers = false; - break; - } - } - if (reclaim_buffers) - { - next_buffer_ptr = &usb_dpram->epx_data[0]; + // Reclaim buffer space if all endpoints are closed + bool reclaim_buffers = true; + for (uint8_t i = 1; i < USB_MAX_ENDPOINTS; i++) { + if (hw_endpoint_get_by_num(i, TUSB_DIR_OUT)->hw_data_buf != NULL || + hw_endpoint_get_by_num(i, TUSB_DIR_IN)->hw_data_buf != NULL) { + reclaim_buffers = false; + break; } + } + if (reclaim_buffers) { + next_buffer_ptr = &usb_dpram->epx_data[0]; + } } -static void hw_endpoint_close(uint8_t ep_addr) -{ - struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); - _hw_endpoint_close(ep); +static void hw_endpoint_close(uint8_t ep_addr) { + struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr); + _hw_endpoint_close(ep); } -static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t transfer_type) -{ - struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); +static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t transfer_type) { + struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr); const uint8_t num = tu_edpt_number(ep_addr); const tusb_dir_t dir = tu_edpt_dir(ep_addr); @@ -143,35 +134,26 @@ static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t t ep->transfer_type = transfer_type; // Every endpoint has a buffer control register in dpram - if ( dir == TUSB_DIR_IN ) - { + if (dir == TUSB_DIR_IN) { ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].in; - } - else - { + } else { ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].out; } // Clear existing buffer control state *ep->buffer_control = 0; - if ( num == 0 ) - { + if (num == 0) { // EP0 has no endpoint control register because the buffer offsets are fixed ep->endpoint_control = NULL; // Buffer offset is fixed (also double buffered) ep->hw_data_buf = (uint8_t*) &usb_dpram->ep0_buf_a[0]; - } - else - { + } else { // Set the endpoint control register (starts at EP1, hence num-1) - if ( dir == TUSB_DIR_IN ) - { + if (dir == TUSB_DIR_IN) { ep->endpoint_control = &usb_dpram->ep_ctrl[num - 1].in; - } - else - { + } else { ep->endpoint_control = &usb_dpram->ep_ctrl[num - 1].out; } @@ -180,76 +162,65 @@ static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t t } } -static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes) -{ - struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); - hw_endpoint_xfer_start(ep, buffer, total_bytes); +static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { + struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr); + hw_endpoint_xfer_start(ep, buffer, total_bytes); } -static void __tusb_irq_path_func(hw_handle_buff_status)(void) -{ - uint32_t remaining_buffers = usb_hw->buf_status; - pico_trace("buf_status = 0x%08lx\r\n", remaining_buffers); - uint bit = 1u; - for (uint8_t i = 0; remaining_buffers && i < USB_MAX_ENDPOINTS * 2; i++) - { - if (remaining_buffers & bit) - { - // clear this in advance - usb_hw_clear->buf_status = bit; +static void __tusb_irq_path_func(hw_handle_buff_status)(void) { + uint32_t remaining_buffers = usb_hw->buf_status; + pico_trace("buf_status = 0x%08lx\r\n", remaining_buffers); + uint bit = 1u; + for (uint8_t i = 0; remaining_buffers && i < USB_MAX_ENDPOINTS * 2; i++) { + if (remaining_buffers & bit) { + // clear this in advance + usb_hw_clear->buf_status = bit; - // IN transfer for even i, OUT transfer for odd i - struct hw_endpoint *ep = hw_endpoint_get_by_num(i >> 1u, (i & 1u) ? TUSB_DIR_OUT : TUSB_DIR_IN); + // IN transfer for even i, OUT transfer for odd i + struct hw_endpoint* ep = hw_endpoint_get_by_num(i >> 1u, (i & 1u) ? TUSB_DIR_OUT : TUSB_DIR_IN); - // Continue xfer - bool done = hw_endpoint_xfer_continue(ep); - if (done) - { - // Notify - dcd_event_xfer_complete(0, ep->ep_addr, ep->xferred_len, XFER_RESULT_SUCCESS, true); - hw_endpoint_reset_transfer(ep); - } - remaining_buffers &= ~bit; - } - bit <<= 1u; + // Continue xfer + bool done = hw_endpoint_xfer_continue(ep); + if (done) { + // Notify + dcd_event_xfer_complete(0, ep->ep_addr, ep->xferred_len, XFER_RESULT_SUCCESS, true); + hw_endpoint_reset_transfer(ep); + } + remaining_buffers &= ~bit; } + bit <<= 1u; + } } -TU_ATTR_ALWAYS_INLINE static inline void reset_ep0_pid(void) -{ - // If we have finished this transfer on EP0 set pid back to 1 for next - // setup transfer. Also clear a stall in case - uint8_t addrs[] = {0x0, 0x80}; - for (uint i = 0 ; i < TU_ARRAY_SIZE(addrs); i++) - { - struct hw_endpoint *ep = hw_endpoint_get_by_addr(addrs[i]); - ep->next_pid = 1u; - } +TU_ATTR_ALWAYS_INLINE static inline void reset_ep0_pid(void) { + // If we have finished this transfer on EP0 set pid back to 1 for next + // setup transfer. Also clear a stall in case + uint8_t addrs[] = {0x0, 0x80}; + for (uint i = 0; i < TU_ARRAY_SIZE(addrs); i++) { + struct hw_endpoint* ep = hw_endpoint_get_by_addr(addrs[i]); + ep->next_pid = 1u; + } } -static void __tusb_irq_path_func(reset_non_control_endpoints)(void) -{ +static void __tusb_irq_path_func(reset_non_control_endpoints)(void) { // Disable all non-control - for ( uint8_t i = 0; i < USB_MAX_ENDPOINTS-1; i++ ) - { + for (uint8_t i = 0; i < USB_MAX_ENDPOINTS - 1; i++) { usb_dpram->ep_ctrl[i].in = 0; usb_dpram->ep_ctrl[i].out = 0; } // clear non-control hw endpoints - tu_memclr(hw_endpoints[1], sizeof(hw_endpoints) - 2*sizeof(hw_endpoint_t)); + tu_memclr(hw_endpoints[1], sizeof(hw_endpoints) - 2 * sizeof(hw_endpoint_t)); // reclaim buffer space next_buffer_ptr = &usb_dpram->epx_data[0]; } -static void __tusb_irq_path_func(dcd_rp2040_irq)(void) -{ +static void __tusb_irq_path_func(dcd_rp2040_irq)(void) { uint32_t const status = usb_hw->ints; uint32_t handled = 0; - if ( status & USB_INTF_DEV_SOF_BITS ) - { + if (status & USB_INTF_DEV_SOF_BITS) { bool keep_sof_alive = false; handled |= USB_INTF_DEV_SOF_BITS; @@ -258,20 +229,17 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void) // Errata 15 workaround for Device Bulk-In endpoint e15_last_sof = time_us_32(); - for ( uint8_t i = 0; i < USB_MAX_ENDPOINTS; i++ ) - { - struct hw_endpoint * ep = hw_endpoint_get_by_num(i, TUSB_DIR_IN); + for (uint8_t i = 0; i < USB_MAX_ENDPOINTS; i++) { + struct hw_endpoint* ep = hw_endpoint_get_by_num(i, TUSB_DIR_IN); // Active Bulk IN endpoint requires SOF - if ( (ep->transfer_type == TUSB_XFER_BULK) && ep->active ) - { + if ((ep->transfer_type == TUSB_XFER_BULK) && ep->active) { keep_sof_alive = true; hw_endpoint_lock_update(ep, 1); // Deferred enable? - if ( ep->pending ) - { + if (ep->pending) { ep->pending = 0; hw_endpoint_start_next_buffer(ep); } @@ -282,23 +250,21 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void) #endif // disable SOF interrupt if it is used for RESUME in remote wakeup - if ( !keep_sof_alive && !_sof_enable ) usb_hw_clear->inte = USB_INTS_DEV_SOF_BITS; + if (!keep_sof_alive && !_sof_enable) usb_hw_clear->inte = USB_INTS_DEV_SOF_BITS; dcd_event_sof(0, usb_hw->sof_rd & USB_SOF_RD_BITS, true); } // xfer events are handled before setup req. So if a transfer completes immediately // before closing the EP, the events will be delivered in same order. - if ( status & USB_INTS_BUFF_STATUS_BITS ) - { + if (status & USB_INTS_BUFF_STATUS_BITS) { handled |= USB_INTS_BUFF_STATUS_BITS; hw_handle_buff_status(); } - if ( status & USB_INTS_SETUP_REQ_BITS ) - { + if (status & USB_INTS_SETUP_REQ_BITS) { handled |= USB_INTS_SETUP_REQ_BITS; - uint8_t const * setup = remove_volatile_cast(uint8_t const*, &usb_dpram->setup_packet); + uint8_t const* setup = remove_volatile_cast(uint8_t const*, &usb_dpram->setup_packet); // reset pid to both 1 (data and ack) reset_ep0_pid(); @@ -329,8 +295,7 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void) #endif // SE0 for 2.5 us or more (will last at least 10ms) - if ( status & USB_INTS_BUS_RESET_BITS ) - { + if (status & USB_INTS_BUS_RESET_BITS) { pico_trace("BUS RESET\r\n"); handled |= USB_INTS_BUS_RESET_BITS; @@ -342,7 +307,7 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void) #if TUD_OPT_RP2040_USB_DEVICE_ENUMERATION_FIX // Only run enumeration workaround if pull up is enabled - if ( usb_hw->sie_ctrl & USB_SIE_CTRL_PULLUP_EN_BITS ) rp2040_usb_device_enumeration_fix(); + if (usb_hw->sie_ctrl & USB_SIE_CTRL_PULLUP_EN_BITS) rp2040_usb_device_enumeration_fix(); #endif } @@ -354,22 +319,19 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void) * because without VBUS detection, it is impossible to tell the difference between * being disconnected and suspended. */ - if ( status & USB_INTS_DEV_SUSPEND_BITS ) - { + if (status & USB_INTS_DEV_SUSPEND_BITS) { handled |= USB_INTS_DEV_SUSPEND_BITS; dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true); usb_hw_clear->sie_status = USB_SIE_STATUS_SUSPENDED_BITS; } - if ( status & USB_INTS_DEV_RESUME_FROM_HOST_BITS ) - { + if (status & USB_INTS_DEV_RESUME_FROM_HOST_BITS) { handled |= USB_INTS_DEV_RESUME_FROM_HOST_BITS; dcd_event_bus_signal(0, DCD_EVENT_RESUME, true); usb_hw_clear->sie_status = USB_SIE_STATUS_RESUME_BITS; } - if ( status ^ handled ) - { + if (status ^ handled) { panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled)); } } @@ -390,8 +352,7 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void) #define PICO_SHARED_IRQ_HANDLER_HIGHEST_ORDER_PRIORITY 0xff #endif -void dcd_init (uint8_t rhport) -{ +void dcd_init(uint8_t rhport) { assert(rhport == 0); // Reset hardware to default state @@ -405,7 +366,7 @@ void dcd_init (uint8_t rhport) irq_add_shared_handler(USBCTRL_IRQ, dcd_rp2040_irq, PICO_SHARED_IRQ_HANDLER_HIGHEST_ORDER_PRIORITY); // Init control endpoints - tu_memclr(hw_endpoints[0], 2*sizeof(hw_endpoint_t)); + tu_memclr(hw_endpoints[0], 2 * sizeof(hw_endpoint_t)); hw_endpoint_init(0x0, 64, TUSB_XFER_CONTROL); hw_endpoint_init(0x80, 64, TUSB_XFER_CONTROL); @@ -420,27 +381,24 @@ void dcd_init (uint8_t rhport) // for the global interrupt enable... // Note: Force VBUS detect cause disconnection not detectable usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS; - usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS | USB_INTS_SETUP_REQ_BITS | - USB_INTS_DEV_SUSPEND_BITS | USB_INTS_DEV_RESUME_FROM_HOST_BITS | - (FORCE_VBUS_DETECT ? 0 : USB_INTS_DEV_CONN_DIS_BITS); + usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS | USB_INTS_SETUP_REQ_BITS | + USB_INTS_DEV_SUSPEND_BITS | USB_INTS_DEV_RESUME_FROM_HOST_BITS | + (FORCE_VBUS_DETECT ? 0 : USB_INTS_DEV_CONN_DIS_BITS); dcd_connect(rhport); } -void dcd_int_enable(__unused uint8_t rhport) -{ - assert(rhport == 0); - irq_set_enabled(USBCTRL_IRQ, true); +void dcd_int_enable(__unused uint8_t rhport) { + assert(rhport == 0); + irq_set_enabled(USBCTRL_IRQ, true); } -void dcd_int_disable(__unused uint8_t rhport) -{ - assert(rhport == 0); - irq_set_enabled(USBCTRL_IRQ, false); +void dcd_int_disable(__unused uint8_t rhport) { + assert(rhport == 0); + irq_set_enabled(USBCTRL_IRQ, false); } -void dcd_set_address (__unused uint8_t rhport, __unused uint8_t dev_addr) -{ +void dcd_set_address(__unused uint8_t rhport, __unused uint8_t dev_addr) { assert(rhport == 0); // Can't set device address in hardware until status xfer has complete @@ -448,8 +406,7 @@ void dcd_set_address (__unused uint8_t rhport, __unused uint8_t dev_addr) hw_endpoint_xfer(0x80, NULL, 0); } -void dcd_remote_wakeup(__unused uint8_t rhport) -{ +void dcd_remote_wakeup(__unused uint8_t rhport) { pico_info("dcd_remote_wakeup %d\n", rhport); assert(rhport == 0); @@ -460,100 +417,88 @@ void dcd_remote_wakeup(__unused uint8_t rhport) } // disconnect by disabling internal pull-up resistor on D+/D- -void dcd_disconnect(__unused uint8_t rhport) -{ +void dcd_disconnect(__unused uint8_t rhport) { (void) rhport; usb_hw_clear->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS; } // connect by enabling internal pull-up resistor on D+/D- -void dcd_connect(__unused uint8_t rhport) -{ +void dcd_connect(__unused uint8_t rhport) { (void) rhport; usb_hw_set->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS; } -void dcd_sof_enable(uint8_t rhport, bool en) -{ +void dcd_sof_enable(uint8_t rhport, bool en) { (void) rhport; _sof_enable = en; - if (en) - { + if (en) { usb_hw_set->inte = USB_INTS_DEV_SOF_BITS; - }else - { + } +#if !TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX + else { // Don't clear immediately if the SOF workaround is in use. // The SOF handler will conditionally disable the interrupt. -#if !TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX usb_hw_clear->inte = USB_INTS_DEV_SOF_BITS; -#endif } +#endif } /*------------------------------------------------------------------*/ /* DCD Endpoint port *------------------------------------------------------------------*/ -void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request) -{ +void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const* request) { (void) rhport; - if ( request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE && - request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD && - request->bRequest == TUSB_REQ_SET_ADDRESS ) - { + if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE && + request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD && + request->bRequest == TUSB_REQ_SET_ADDRESS) { usb_hw->dev_addr_ctrl = (uint8_t) request->wValue; } } -bool dcd_edpt_open (__unused uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt) -{ - assert(rhport == 0); - hw_endpoint_init(desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt), desc_edpt->bmAttributes.xfer); - return true; +bool dcd_edpt_open(__unused uint8_t rhport, tusb_desc_endpoint_t const* desc_edpt) { + assert(rhport == 0); + hw_endpoint_init(desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt), desc_edpt->bmAttributes.xfer); + return true; } -void dcd_edpt_close_all (uint8_t rhport) -{ +void dcd_edpt_close_all(uint8_t rhport) { (void) rhport; // may need to use EP Abort reset_non_control_endpoints(); } -bool dcd_edpt_xfer(__unused uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) -{ - assert(rhport == 0); - hw_endpoint_xfer(ep_addr, buffer, total_bytes); - return true; +bool dcd_edpt_xfer(__unused uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { + assert(rhport == 0); + hw_endpoint_xfer(ep_addr, buffer, total_bytes); + return true; } -void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) -{ +void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; - if ( tu_edpt_number(ep_addr) == 0 ) - { + if (tu_edpt_number(ep_addr) == 0) { // A stall on EP0 has to be armed so it can be cleared on the next setup packet - usb_hw_set->ep_stall_arm = (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) ? USB_EP_STALL_ARM_EP0_IN_BITS : USB_EP_STALL_ARM_EP0_OUT_BITS; + usb_hw_set->ep_stall_arm = (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) ? USB_EP_STALL_ARM_EP0_IN_BITS + : USB_EP_STALL_ARM_EP0_OUT_BITS; } - struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); + struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr); // stall and clear current pending buffer // may need to use EP_ABORT _hw_endpoint_buffer_control_set_value32(ep, USB_BUF_CTRL_STALL); } -void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) -{ +void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; - if (tu_edpt_number(ep_addr)) - { - struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr); + if (tu_edpt_number(ep_addr)) { + struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr); // clear stall also reset toggle to DATA0, ready for next transfer ep->next_pid = 0; @@ -561,16 +506,13 @@ void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) } } -void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr) -{ - (void) rhport; - - pico_trace("dcd_edpt_close %02x\r\n", ep_addr); - hw_endpoint_close(ep_addr); +void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) { + (void) rhport; + pico_trace("dcd_edpt_close %02x\r\n", ep_addr); + hw_endpoint_close(ep_addr); } -void __tusb_irq_path_func(dcd_int_handler)(uint8_t rhport) -{ +void __tusb_irq_path_func(dcd_int_handler)(uint8_t rhport) { (void) rhport; dcd_rp2040_irq(); } diff --git a/src/portable/raspberrypi/rp2040/rp2040_usb.c b/src/portable/raspberrypi/rp2040/rp2040_usb.c index a512dc34f..b5bace972 100644 --- a/src/portable/raspberrypi/rp2040/rp2040_usb.c +++ b/src/portable/raspberrypi/rp2040/rp2040_usb.c @@ -37,24 +37,23 @@ //--------------------------------------------------------------------+ // Direction strings for debug -const char *ep_dir_string[] = { - "out", - "in", +const char* ep_dir_string[] = { + "out", + "in", }; -static void _hw_endpoint_xfer_sync(struct hw_endpoint *ep); +static void _hw_endpoint_xfer_sync(struct hw_endpoint* ep); #if TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX - static bool e15_is_bulkin_ep(struct hw_endpoint *ep); - static bool e15_is_critical_frame_period(struct hw_endpoint *ep); + static bool e15_is_bulkin_ep(struct hw_endpoint* ep); + static bool e15_is_critical_frame_period(struct hw_endpoint* ep); #else #define e15_is_bulkin_ep(x) (false) #define e15_is_critical_frame_period(x) (false) #endif // if usb hardware is in host mode -TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void) -{ +TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void) { return (usb_hw->main_ctrl & USB_MAIN_CTRL_HOST_NDEVICE_BITS) ? true : false; } @@ -62,8 +61,7 @@ TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void) // Implementation //--------------------------------------------------------------------+ -void rp2040_usb_init(void) -{ +void rp2040_usb_init(void) { // Reset usb controller reset_block(RESETS_RESET_USBCTRL_BITS); unreset_block_wait(RESETS_RESET_USBCTRL_BITS); @@ -88,45 +86,40 @@ void rp2040_usb_init(void) TU_LOG2_INT(sizeof(hw_endpoint_t)); } -void __tusb_irq_path_func(hw_endpoint_reset_transfer)(struct hw_endpoint *ep) -{ +void __tusb_irq_path_func(hw_endpoint_reset_transfer)(struct hw_endpoint* ep) { ep->active = false; ep->remaining_len = 0; ep->xferred_len = 0; ep->user_buf = 0; } -void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoint *ep, uint32_t and_mask, uint32_t or_mask) -{ +void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoint* ep, uint32_t and_mask, + uint32_t or_mask) { uint32_t value = 0; - if ( and_mask ) - { + if (and_mask) { value = *ep->buffer_control & and_mask; } - if ( or_mask ) - { + if (or_mask) { value |= or_mask; - if ( or_mask & USB_BUF_CTRL_AVAIL ) - { - if ( *ep->buffer_control & USB_BUF_CTRL_AVAIL ) - { + if (or_mask & USB_BUF_CTRL_AVAIL) { + if (*ep->buffer_control & USB_BUF_CTRL_AVAIL) { panic("ep %d %s was already available", tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]); } *ep->buffer_control = value & ~USB_BUF_CTRL_AVAIL; // 12 cycle delay.. (should be good for 48*12Mhz = 576Mhz) // Don't need delay in host mode as host is in charge #if !CFG_TUH_ENABLED - __asm volatile ( - "b 1f\n" - "1: b 1f\n" - "1: b 1f\n" - "1: b 1f\n" - "1: b 1f\n" - "1: b 1f\n" - "1:\n" - : : : "memory"); + __asm volatile ( + "b 1f\n" + "1: b 1f\n" + "1: b 1f\n" + "1: b 1f\n" + "1: b 1f\n" + "1: b 1f\n" + "1:\n" + : : : "memory"); #endif } } @@ -135,10 +128,9 @@ void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoi } // prepare buffer, return buffer control -static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep, uint8_t buf_id) -{ +static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint* ep, uint8_t buf_id) { uint16_t const buflen = tu_min16(ep->remaining_len, ep->wMaxPacketSize); - ep->remaining_len = (uint16_t)(ep->remaining_len - buflen); + ep->remaining_len = (uint16_t) (ep->remaining_len - buflen); uint32_t buf_ctrl = buflen | USB_BUF_CTRL_AVAIL; @@ -146,10 +138,9 @@ static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep, buf_ctrl |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID; ep->next_pid ^= 1u; - if ( !ep->rx ) - { + if (!ep->rx) { // Copy data from user buffer to hw buffer - memcpy(ep->hw_data_buf + buf_id*64, ep->user_buf, buflen); + memcpy(ep->hw_data_buf + buf_id * 64, ep->user_buf, buflen); ep->user_buf += buflen; // Mark as full @@ -159,8 +150,7 @@ static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep, // Is this the last buffer? Only really matters for host mode. Will trigger // the trans complete irq but also stop it polling. We only really care about // trans complete for setup packets being sent - if (ep->remaining_len == 0) - { + if (ep->remaining_len == 0) { buf_ctrl |= USB_BUF_CTRL_LAST; } @@ -170,8 +160,7 @@ static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep, } // Prepare buffer control register value -void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep) -{ +void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint* ep) { uint32_t ep_ctrl = *ep->endpoint_control; // always compute and start with buffer 0 @@ -186,8 +175,7 @@ void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep) bool const force_single = (!is_host && !tu_edpt_dir(ep->ep_addr)) || (is_host && tu_edpt_number(ep->ep_addr) != 0); - if(ep->remaining_len && !force_single) - { + if (ep->remaining_len && !force_single) { // Use buffer 1 (double buffered) if there is still data // TODO: Isochronous for buffer1 bit-field is different than CBI (control bulk, interrupt) @@ -196,8 +184,7 @@ void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep) // Set endpoint control double buffered bit if needed ep_ctrl &= ~EP_CTRL_INTERRUPT_PER_BUFFER; ep_ctrl |= EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER; - }else - { + } else { // Single buffered since 1 is enough ep_ctrl &= ~(EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER); ep_ctrl |= EP_CTRL_INTERRUPT_PER_BUFFER; @@ -212,35 +199,30 @@ void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep) _hw_endpoint_buffer_control_set_value32(ep, buf_ctrl); } -void hw_endpoint_xfer_start(struct hw_endpoint *ep, uint8_t *buffer, uint16_t total_len) -{ +void hw_endpoint_xfer_start(struct hw_endpoint* ep, uint8_t* buffer, uint16_t total_len) { hw_endpoint_lock_update(ep, 1); - if ( ep->active ) - { + if (ep->active) { // TODO: Is this acceptable for interrupt packets? TU_LOG(1, "WARN: starting new transfer on already active ep %d %s\r\n", tu_edpt_number(ep->ep_addr), - ep_dir_string[tu_edpt_dir(ep->ep_addr)]); + ep_dir_string[tu_edpt_dir(ep->ep_addr)]); hw_endpoint_reset_transfer(ep); } // Fill in info now that we're kicking off the hw ep->remaining_len = total_len; - ep->xferred_len = 0; - ep->active = true; - ep->user_buf = buffer; + ep->xferred_len = 0; + ep->active = true; + ep->user_buf = buffer; - if ( e15_is_bulkin_ep(ep) ) - { + if (e15_is_bulkin_ep(ep)) { usb_hw_set->inte = USB_INTS_DEV_SOF_BITS; } - if ( e15_is_critical_frame_period(ep) ) - { + if (e15_is_critical_frame_period(ep)) { ep->pending = 1; - } else - { + } else { hw_endpoint_start_next_buffer(ep); } @@ -248,34 +230,30 @@ void hw_endpoint_xfer_start(struct hw_endpoint *ep, uint8_t *buffer, uint16_t to } // sync endpoint buffer and return transferred bytes -static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint *ep, uint8_t buf_id) -{ +static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint* ep, uint8_t buf_id) { uint32_t buf_ctrl = _hw_endpoint_buffer_control_get_value32(ep); - if (buf_id) buf_ctrl = buf_ctrl >> 16; + if (buf_id) buf_ctrl = buf_ctrl >> 16; uint16_t xferred_bytes = buf_ctrl & USB_BUF_CTRL_LEN_MASK; - if ( !ep->rx ) - { + if (!ep->rx) { // We are continuing a transfer here. If we are TX, we have successfully // sent some data can increase the length we have sent assert(!(buf_ctrl & USB_BUF_CTRL_FULL)); - ep->xferred_len = (uint16_t)(ep->xferred_len + xferred_bytes); - }else - { + ep->xferred_len = (uint16_t) (ep->xferred_len + xferred_bytes); + } else { // If we have received some data, so can increase the length // we have received AFTER we have copied it to the user buffer at the appropriate offset assert(buf_ctrl & USB_BUF_CTRL_FULL); - memcpy(ep->user_buf, ep->hw_data_buf + buf_id*64, xferred_bytes); - ep->xferred_len = (uint16_t)(ep->xferred_len + xferred_bytes); + memcpy(ep->user_buf, ep->hw_data_buf + buf_id * 64, xferred_bytes); + ep->xferred_len = (uint16_t) (ep->xferred_len + xferred_bytes); ep->user_buf += xferred_bytes; } // Short packet - if (xferred_bytes < ep->wMaxPacketSize) - { + if (xferred_bytes < ep->wMaxPacketSize) { pico_trace(" Short packet on buffer %d with %u bytes\r\n", buf_id, xferred_bytes); // Reduce total length as this is last packet ep->remaining_len = 0; @@ -284,8 +262,7 @@ static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint *ep, uin return xferred_bytes; } -static void __tusb_irq_path_func(_hw_endpoint_xfer_sync) (struct hw_endpoint *ep) -{ +static void __tusb_irq_path_func(_hw_endpoint_xfer_sync)(struct hw_endpoint* ep) { // Update hw endpoint struct with info from hardware // after a buff status interrupt @@ -296,14 +273,11 @@ static void __tusb_irq_path_func(_hw_endpoint_xfer_sync) (struct hw_endpoint *ep uint16_t buf0_bytes = sync_ep_buffer(ep, 0); // sync buffer 1 if double buffered - if ( (*ep->endpoint_control) & EP_CTRL_DOUBLE_BUFFERED_BITS ) - { - if (buf0_bytes == ep->wMaxPacketSize) - { + if ((*ep->endpoint_control) & EP_CTRL_DOUBLE_BUFFERED_BITS) { + if (buf0_bytes == ep->wMaxPacketSize) { // sync buffer 1 if not short packet sync_ep_buffer(ep, 1); - }else - { + } else { // short packet on buffer 0 // TODO couldn't figure out how to handle this case which happen with net_lwip_webserver example // At this time (currently trigger per 2 buffer), the buffer1 is probably filled with data from @@ -335,14 +309,13 @@ static void __tusb_irq_path_func(_hw_endpoint_xfer_sync) (struct hw_endpoint *ep } // Returns true if transfer is complete -bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint *ep) -{ +bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint* ep) { hw_endpoint_lock_update(ep, 1); // Part way through a transfer - if (!ep->active) - { - panic("Can't continue xfer on inactive ep %d %s", tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]); + if (!ep->active) { + panic("Can't continue xfer on inactive ep %d %s", tu_edpt_number(ep->ep_addr), + ep_dir_string[tu_edpt_dir(ep->ep_addr)]); } // Update EP struct from hardware state @@ -350,21 +323,16 @@ bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint *ep) // Now we have synced our state with the hardware. Is there more data to transfer? // If we are done then notify tinyusb - if (ep->remaining_len == 0) - { + if (ep->remaining_len == 0) { pico_trace("Completed transfer of %d bytes on ep %d %s\r\n", ep->xferred_len, tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]); // Notify caller we are done so it can notify the tinyusb stack hw_endpoint_lock_update(ep, -1); return true; - } - else - { - if ( e15_is_critical_frame_period(ep) ) - { + } else { + if (e15_is_critical_frame_period(ep)) { ep->pending = 1; - } else - { + } else { hw_endpoint_start_next_buffer(ep); } } @@ -399,16 +367,14 @@ bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint *ep) volatile uint32_t e15_last_sof = 0; // check if Errata 15 is needed for this endpoint i.e device bulk-in -static bool __tusb_irq_path_func(e15_is_bulkin_ep) (struct hw_endpoint *ep) -{ +static bool __tusb_irq_path_func(e15_is_bulkin_ep)(struct hw_endpoint* ep) { return (!is_host_mode() && tu_edpt_dir(ep->ep_addr) == TUSB_DIR_IN && ep->transfer_type == TUSB_XFER_BULK); } // check if we need to apply Errata 15 workaround : i.e // Endpoint is BULK IN and is currently in critical frame period i.e 20% of last usb frame -static bool __tusb_irq_path_func(e15_is_critical_frame_period) (struct hw_endpoint *ep) -{ +static bool __tusb_irq_path_func(e15_is_critical_frame_period)(struct hw_endpoint* ep) { TU_VERIFY(e15_is_bulkin_ep(ep)); /* Avoid the last 200us (uframe 6.5-7) of a frame, up to the EOF2 point. @@ -419,11 +385,10 @@ static bool __tusb_irq_path_func(e15_is_critical_frame_period) (struct hw_endpoi if (delta < 800 || delta > 998) { return false; } - TU_LOG(3, "Avoiding sof %lu now %lu last %lu\r\n", (usb_hw->sof_rd + 1) & USB_SOF_RD_BITS, time_us_32(), e15_last_sof); + TU_LOG(3, "Avoiding sof %lu now %lu last %lu\r\n", (usb_hw->sof_rd + 1) & USB_SOF_RD_BITS, time_us_32(), + e15_last_sof); return true; } -#endif - - +#endif // TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX #endif