remove un-used library

This commit is contained in:
King Kévin 2016-02-18 10:42:11 +01:00
parent 618de224e0
commit 6954ceea8e
10 changed files with 0 additions and 1369 deletions

View File

@ -1,235 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library handles the communication with a HC-05 bluetooth module */
/* peripherals used: USART (check source for details) */
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdio.h> // standard I/O facilities
#include <stdlib.h> // general utilities
#include <string.h> // string utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/usart.h> // universal synchronous asynchronous receiver transmitter library
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include "global.h" // common utilities
#include "bluetooth_hc-05.h" // USART header and definitions
/* which USART to use to talk to the bluetooth module */
#define USART USART2
#define USART_RCC RCC_USART2
#define USART_IRQ NVIC_USART2_IRQ
#define USART_PORT GPIOA
#define USART_PIN_TX GPIO_USART2_TX
#define USART_PIN_RX GPIO_USART3_RX
#define USART_BAUDRATE 9600
/* AT mode pin
* to configure the HC-05 bluetooth module you need to put it in AT mode and use AT commands
* there are several ways to get into AT mode, and there are several AT modes
* - in full AT mode you can send all [defined] AT commands
* - in mini AT mode you can't send some AT commands, such as AT+NAME
* the AT mode is defined by the state of pin 34 of the module (top right)
* - high: full AT mode
* - low: mini AT mode
* this pin is often connect to a switch on the adapter board (connected to VCC)
* to enter AT mode:
* - set pin 34 high when powering up, the LED will blink slowly, the baudrate will be 38400, bluetooth will be off
* - set pin 34 high after powering up, the LED will keep blinking fast, the baudrate is user defined (AT+UART), bluetooth communication will keep working
* setting pin 34 low after setting it high will put it into mini AT mode, except when bluetooth is not connected
* when booting normally (fast blinking LED), the module will not respond to AT commands before setting pin 34 high
* connect pin 34 to a STM32 GPIO to be able to go into AT mode */
#define AT_PORT GPIOB
#define AT_RCC RCC_GPIOB
#define AT_PIN GPIO5
/* input and output ring buffer, indexes, and available memory */
static uint8_t rx_buffer[BT_BUFFER] = {0};
static volatile uint8_t rx_i = 0;
static volatile uint8_t rx_used = 0;
static uint8_t tx_buffer[BT_BUFFER] = {0};
static volatile uint8_t tx_i = 0;
static volatile uint8_t tx_used = 0;
/* show the user how much data received over bluetooth is ready */
volatile uint8_t bt_received = 0; // same as rx_used, but since the user can write this variable we don't rely on it
/* display configuration of bluetooth module */
void bt_info(void)
{
char* at_commands[] = {"AT+VERSION?","AT+ADDR?","AT+ROLE?","AT+UART?","AT+CMODE?","AT+STATE?","AT+NAME?"};
char* ok = "OK\r\n";
gpio_set(AT_PORT, AT_PIN); // enable AT mode
for (uint8_t i=0; i<LENGTH(at_commands); i++) { // go through commands
for (uint8_t j=0; j<strlen(at_commands[i]); j++) { // send command
bt_putchar_nonblocking(at_commands[i][j]); // send character
}
bt_putchar_nonblocking('\r'); // send end of AT command
bt_putchar_nonblocking('\n'); // send end of AT command
uint8_t ok_i = 0; // how much of the ok sequence has been detected
while (ok_i<strlen(ok)) { // print until OK has been received
char c = bt_getchar(); // received character
printf("%c",c); // print received character
if (ok_i<strlen(ok) && c==ok[ok_i]) {
ok_i++;
} else {
ok_i = 0;
}
}
}
gpio_clear(AT_PORT, AT_PIN); // disable AT mode
}
/* setup communication to bluetooth module */
void bt_setup(void)
{
rcc_periph_clock_enable(USART_RCC); // enable USART clock
gpio_set_mode(USART_PORT, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, USART_PIN_TX); // setup GPIO pin USART transmit
gpio_set_mode(USART_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, USART_PIN_RX); // setup GPIO pin USART receive
gpio_set(USART_PORT, USART_PIN_RX); // pull up to avoid noise when not connected
/* setup UART part */
rcc_periph_clock_enable(USART_RCC); // enable clock for USART block
gpio_set_mode(USART_PORT, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, USART_PIN_TX); // setup GPIO pin USART transmit
gpio_set_mode(USART_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, USART_PIN_RX); // setup GPIO pin USART receive
gpio_set(USART_PORT, USART_PIN_RX); // pull up to avoid noise when not connected
usart_set_baudrate(USART, 9600); // set baudrate
usart_set_databits(USART, 8); // set data width (most common: 8 bits)
usart_set_stopbits(USART, USART_STOPBITS_1); // set stop bit (most common: 1 bit)
usart_set_parity(USART, USART_PARITY_NONE); // set parity (most common: none)
usart_set_mode(USART, USART_MODE_TX_RX); // enable USART to receive and transmit
usart_set_flow_control(USART, USART_FLOWCONTROL_NONE); // no hardware flow control
nvic_enable_irq(USART_IRQ); // enable the USART interrupt
usart_enable_rx_interrupt(USART); // enable receive interrupt
usart_enable(USART); // enable USART
/* reset buffer states */
tx_i = 0;
tx_used = 0;
rx_i = 0;
rx_used = 0;
bt_received = 0;
/* configure AT mode pin */
rcc_periph_clock_enable(AT_RCC); // enable clock for GPIO block
gpio_set_mode(AT_PORT, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, AT_PIN); // set pin to control AT mode
/* configure HC-05 bluetooth module */
gpio_set(AT_PORT, AT_PIN); // enable AT mode
bool responded = false; // did the mode respond to AT command
uint32_t baudrates[] = {115200, 38400, 9600, 57600, 19200}; // possible baudrate (order by preference)
uint8_t baudrate_i = 0; // the detected baudrate
for (baudrate_i = 0; baudrate_i<LENGTH(baudrates) && !responded; baudrate_i++) { // find module baudrate
usart_set_baudrate(USART, baudrates[baudrate_i]); // set baudrate to test
usart_send_blocking(USART, 'A'); // send AT command to test if it responded
usart_send_blocking(USART, 'T'); // send AT command to test if it responded
usart_send_blocking(USART, '\r'); // send AT command to test if it responded
usart_send_blocking(USART, '\n'); // send AT command to test if it responded
for (uint32_t i = 0; i<0xc0000; i++) { // wait 30ms for response (empiric value)
__asm__("nop");
}
if ((rx_used==4 && bt_getchar()=='O' && bt_getchar()=='K' && bt_getchar()=='\r' && bt_getchar()=='\n') || (rx_used==11 && bt_getchar()=='E' && bt_getchar()=='R' && bt_getchar()=='R' && bt_getchar()=='O' && bt_getchar()=='R' && bt_getchar()==':' && bt_getchar()=='(' && bt_getchar()=='0' && bt_getchar()==')' && bt_getchar()=='\r' && bt_getchar()=='\n')) {
responded = true; // seems we found the right baudrate since it responded
}
// reset buffer states
rx_i = 0;
rx_used = 0;
}
gpio_clear(AT_PORT, AT_PIN); // disable AT mode
if (responded) {
printf("baudrate: %lubps\n",baudrates[--baudrate_i]);
gpio_clear(AT_PORT, AT_PIN);
} else {
printf("couldn't find baudrate\n");
}
//usart_set_baudrate(USART, USART_BAUDRATE); // set final baudrate
bt_info();
}
/* send character over bluetooth (blocking) */
void bt_putchar_blocking(char c)
{
bt_flush(); // empty buffer first
usart_send_blocking(USART, c); // send character
}
/* ensure all data has been transmitted (blocking) */
void bt_flush(void)
{
while (tx_used) { // idle until buffer is empty
__WFI(); // sleep until interrupt
}
usart_wait_send_ready(USART); // wait until transmit register is empty (transmission might not be complete)
}
/* get character received over bluetooth (blocking) */
char bt_getchar(void)
{
while (!rx_used) { // idle until data is available
__WFI(); // sleep until interrupt;
}
char to_return = rx_buffer[rx_i]; // get the next available character
rx_i = (rx_i+1)%sizeof(rx_buffer); // update used buffer
rx_used--; // update used buffer
bt_received = rx_used; // update available data
return to_return;
}
/* send character over bluetooth (non-blocking until buffer is full) */
void bt_putchar_nonblocking(char c)
{
while (tx_used>=sizeof(tx_buffer)) { // idle until buffer has some space
usart_enable_tx_interrupt(USART); // enable transmit interrupt
__WFI(); // sleep until something happened
}
tx_buffer[(tx_i+tx_used)%sizeof(tx_buffer)] = c; // put character in buffer
tx_used++; // update used buffer
usart_enable_tx_interrupt(USART); // enable transmit interrupt
}
#if (USART==USART1)
void usart1_isr(void)
#elif (USART==USART2)
void usart2_isr(void)
#elif (USART==USART3)
void usart3_isr(void)
#endif
{ // USART interrupt
if (usart_get_interrupt_source(USART, USART_SR_TXE)) { // data has been transmitted
if (!tx_used) { // no data in the buffer to transmit
usart_disable_tx_interrupt(USART); // disable transmit interrupt
} else {
usart_send(USART,tx_buffer[tx_i]); // put data in transmit register
tx_i = (tx_i+1)%sizeof(rx_buffer); // update location on buffer
tx_used--; // update used size
}
}
if (usart_get_interrupt_source(USART, USART_SR_RXNE)) { // data has been received
// only save data if there is space in the buffer
if (rx_used>=sizeof(rx_buffer)) {
usart_recv(USART); // read to clear interrupt
} else {
rx_buffer[(rx_i+rx_used)%sizeof(rx_buffer)] = usart_recv(USART); // put character in buffer
rx_used++; // update used buffer
bt_received = rx_used; // update available data
}
}
}

View File

@ -1,36 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library handles the communication with a HC-05 bluetooth module */
/* peripherals used: USART (check source for details) */
#pragma once
/* RX and TX buffer sizes */
#define BT_BUFFER 128
/* show the user how much received is available */
extern volatile uint8_t bt_received;
/* display configuration of bluetooth module */
void bt_info(void);
/* setup communication to bluetooth module */
void bt_setup(void);
/* send character over bluetooth (blocking) */
void bt_putchar_blocking(char c);
/* ensure all data has been transmitted (blocking) */
void bt_flush(void);
/* get character received over bluetooth (blocking) */
char bt_getchar(void);
/* send character over bluetooth (non-blocking until buffer is full) */
void bt_putchar_nonblocking(char c);

View File

@ -1,113 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library is used to store (read and write) data in flash */
/* peripherals used: none */
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // general utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/desig.h> // device signature utilities
#include <libopencm3/stm32/flash.h> // flash utilities
#include "flash_storage.h" // flash storage library API
#include "global.h" // global definitions
// the flash page size (medium-density devices have 1KiB page size)
#define PAGE_SIZE 1024
/* read <size> data from address <address> into <buffer>
* returns if read succeeded */
bool storage_read(uint32_t address, uint8_t *buffer, size_t size)
{
// verify it's in the storage area
if (address<STORAGE_START || (address+size)>STORAGE_END) {
return false;
}
if (buffer==NULL || size==0) {
return false;
}
// copy data byte per byte
// a more efficient way would be to copy words, than the remaining bytes
for (size_t i=0; i<size; i++) {
buffer[i] = *((uint8_t*)address+i);
}
return true;
}
/* write <size> data from <buffer> to address <address>
* returns if write succeeded */
bool storage_write(uint32_t address, uint8_t *buffer, size_t size)
{
// verify it's in the storage area
if (address<STORAGE_START || (address+size)>STORAGE_END) {
return false;
}
if (buffer==NULL || size==0) {
return false;
}
uint8_t page[PAGE_SIZE]; // the complete page to write
flash_unlock(); // unlock flash to be able to write it
// go through memory
while (size) {
uint32_t page_pre = address%PAGE_SIZE; // the beginning data size in the page
address -= page_pre; // go to beginning of the page
storage_read(address, &page[0], page_pre); // copy existing data
if (size>=PAGE_SIZE-page_pre) { // no need to read tailing page data
for (uint16_t i=0; i<PAGE_SIZE-page_pre; i++) { // put buffer in page
page[page_pre+i] = buffer[i];
}
buffer += PAGE_SIZE-page_pre; // adjust remaining buffer
size -= PAGE_SIZE-page_pre; // adjust remaining size
} else { // need read tailing page data
for (uint16_t i=0; i<size; i++) { // put buffer in page
page[page_pre+i] = buffer[i];
}
buffer += size; // adjust remaining buffer
storage_read(address+page_pre+size, &page[page_pre+size], PAGE_SIZE-page_pre-size); // read tailing page data
size = 0; // adjust remaining size
}
// write page
flash_erase_page(address); // erase current page
if (flash_get_status_flags()!=FLASH_SR_EOP) { // operation went wrong
flash_lock(); // lock back flash to protect it
return false;
}
for (uint16_t i=0; i<PAGE_SIZE/2; i++) { // write whole page
flash_program_half_word(address+i*2, *((uint16_t*)page+i));
if (flash_get_status_flags()!=FLASH_SR_EOP) { // operation went wrong
flash_lock(); // lock back flash to protect it
return false;
}
if (*((uint16_t*)address+i)!=*((uint16_t*)page+i)) { // verify the programmed data is right
flash_lock(); // lock back flash to protect it
return false;
}
}
address += PAGE_SIZE; // go to next page
}
flash_lock(); // lock back flash to protect it
return true;
}

View File

@ -1,33 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library is used to store (read and write) data in flash */
/* peripherals used: none */
#include <libopencm3/stm32/desig.h> // device signature utilities
// how much data (in bytes) should we be able to store (be sure it's available and does not overlap the firmware)
#define STORAGE_SIZE 2048
// the end of the flash area where to store data
#define STORAGE_END FLASH_BASE+DESIG_FLASH_SIZE
// the start of the flash area where to store data (be sure it's after the firmware data)
// we will only use the last kilobytes
#define STORAGE_START STORAGE_END-STORAGE_SIZE
/* read <size> data from address <address> into <buffer>
* returns if read succeeded */
bool storage_read(uint32_t address, uint8_t *buffer, size_t size);
/* write <size> data from <buffer> to address <address>
* returns if write succeeded */
bool storage_write(uint32_t address, uint8_t *buffer, size_t size);

View File

@ -1,175 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library handles USART communication over pulse coded InfraRed transmission */
/* peripherals used: USART, timer (check source for details) */
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdio.h> // standard I/O facilities
#include <stdlib.h> // general utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/usart.h> // universal synchronous asynchronous receiver transmitter library
#include <libopencm3/stm32/timer.h> // timer library
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include "usart_ir.h" // USART InfraRed header and definitions
/* which USART to use */
#define USART USART3
#define USART_RCC RCC_USART3
#define USART_IRQ NVIC_USART3_IRQ
#define USART_PORT GPIOB
#define USART_PIN_TX GPIO_USART3_TX
#define USART_PIN_RX GPIO_USART3_RX
/* which timer to use to create PWM for IR modulation */
#define TIMER TIM2
#define TIMER_RCC RCC_TIM2
#define TIMER_OC TIM_OC2
#define TIMER_PORT GPIOA
#define TIMER_PORT_RCC RCC_GPIOA
#define TIMER_PIN GPIO_TIM2_CH2
#define USART_BAUDRATE 2400 // serial baudrate (in bits per second, with 8N1 configuration)
#define USART_BUFFER 128 // RX and TX buffer sizes
#define IR_MODULATION 38000 // infra-red modulation frequency
/* input and output ring buffer, indexes, and available memory */
static uint8_t rx_buffer[USART_BUFFER] = {0};
static volatile uint8_t rx_i = 0;
static volatile uint8_t rx_used = 0;
static uint8_t tx_buffer[USART_BUFFER] = {0};
static volatile uint8_t tx_i = 0;
static volatile uint8_t tx_used = 0;
/* show the user how much data received over USART is ready */
volatile uint8_t usart_ir_received = 0; // same as rx_used, but since the user can write this variable we don't rely on it
/* setup USART/IR peripheral */
void usart_ir_setup(void)
{
/* setup timer to generate infra-red pulse modulation (using PWM) */
rcc_periph_clock_enable(TIMER_PORT_RCC); // enable clock for GPIO peripheral
gpio_set_mode(TIMER_PORT, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, TIMER_PIN); // set pin a output
rcc_periph_clock_enable(RCC_AFIO); // enable clock for alternate function (PWM)
rcc_periph_clock_enable(TIMER_RCC); // enable clock for timer peripheral
timer_reset(TIMER); // reset timer state
timer_set_mode(TIMER, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock, edge alignment (simple count), and count up
timer_set_prescaler(TIMER, 0); // no pre-scaler to keep most precise timer (72MHz/2^16=1099Hz)
timer_set_period(TIMER, rcc_ahb_frequency/IR_MODULATION-1+15); // set the infra-red modulation frequency (plus hand tuning)
timer_set_oc_value(TIMER, TIMER_OC, rcc_ahb_frequency/IR_MODULATION/2-1); // duty cycle to 50%
timer_set_oc_mode(TIMER, TIMER_OC, TIM_OCM_PWM1); // set timer to generate PWM
timer_enable_oc_output(TIMER, TIMER_OC); // enable output to provide the modulation
timer_enable_counter(TIMER); // start timer to generate modulation
/* enable USART I/O peripheral */
rcc_periph_clock_enable(USART_RCC); // enable clock for USART peripheral
gpio_set_mode(USART_PORT, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, USART_PIN_TX); // setup GPIO pin USART transmit
gpio_set_mode(USART_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, USART_PIN_RX); // setup GPIO pin USART receive
gpio_set(USART_PORT, USART_PIN_RX); // pull up to avoid noise when not connected
/* setup UART parameters */
usart_set_baudrate(USART, USART_BAUDRATE);
usart_set_databits(USART, 8);
usart_set_stopbits(USART, USART_STOPBITS_1);
usart_set_mode(USART, USART_MODE_TX_RX);
usart_set_parity(USART, USART_PARITY_NONE);
usart_set_flow_control(USART, USART_FLOWCONTROL_NONE);
nvic_enable_irq(USART_IRQ); // enable the USART interrupt
usart_enable_rx_interrupt(USART); // enable receive interrupt
usart_enable(USART); // enable USART
/* reset buffer states */
tx_i = 0;
tx_used = 0;
rx_i = 0;
rx_used = 0;
usart_ir_received = 0;
}
/* put character on USART/IR (blocking) */
void usart_ir_putchar_blocking(char c)
{
usart_ir_flush(); // empty buffer first
usart_send_blocking(USART, c); // send character
}
/* ensure all data has been transmitted (blocking) */
void usart_ir_flush(void)
{
while (tx_used) { // idle until buffer is empty
__WFI(); // sleep until interrupt
}
usart_wait_send_ready(USART); // wait until transmit register is empty (transmission might not be complete)
}
/* get character from USART/IR (blocking) */
char usart_ir_getchar(void)
{
while (!rx_used) { // idle until data is available
__WFI(); // sleep until interrupt;
}
char to_return = rx_buffer[rx_i]; // get the next available character
rx_i = (rx_i+1)%sizeof(rx_buffer); // update used buffer
rx_used--; // update used buffer
usart_ir_received = rx_used; // update available data
return to_return;
}
/* put character on USART/IR (non-blocking until buffer is full) */
void usart_ir_putchar_nonblocking(char c)
{
while (tx_used>=sizeof(tx_buffer)) { // idle until buffer has some space
usart_enable_tx_interrupt(USART); // enable transmit interrupt
__WFI(); // sleep until something happened
}
tx_buffer[(tx_i+tx_used)%sizeof(tx_buffer)] = c; // put character in buffer
tx_used++; // update used buffer
usart_enable_tx_interrupt(USART); // enable transmit interrupt
}
#if (USART==USART1)
void usart1_isr(void)
#elif (USART==USART2)
void usart2_isr(void)
#elif (USART==USART3)
void usart3_isr(void)
#endif
{ // USART interrupt
if (usart_get_interrupt_source(USART, USART_SR_TXE)) { // data has been transmitted
if (!tx_used) { // no data in the buffer to transmit
usart_disable_tx_interrupt(USART); // disable transmit interrupt
} else {
usart_send(USART,tx_buffer[tx_i]); // put data in transmit register
tx_i = (tx_i+1)%sizeof(rx_buffer); // update location on buffer
tx_used--; // update used size
}
}
if (usart_get_interrupt_source(USART, USART_SR_RXNE)) { // data has been received
// only save data if there is space in the buffer
if (rx_used>=sizeof(rx_buffer)) {
usart_recv(USART); // read to clear interrupt
} else {
rx_buffer[(rx_i+rx_used)%sizeof(rx_buffer)] = usart_recv(USART); // put character in buffer
rx_used++; // update used buffer
usart_ir_received = rx_used; // update available data
}
}
}

View File

@ -1,32 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library handles USART communication over pulse coded InfraRed transmission */
/* peripherals used: USART, timer (check source for details) */
#pragma once
/* show the user how much data has been received and is available */
extern volatile uint8_t usart_ir_received;
/* setup USART/IR peripheral */
void usart_ir_setup(void);
/* put character on USART/IR (blocking) */
void usart_ir_putchar_blocking(char c);
/* ensure all data has been transmitted (blocking) */
void usart_ir_flush(void);
/* get character from USART/IR (blocking) */
char usart_ir_getchar(void);
/* put character on USART/IR (non-blocking until buffer is full) */
void usart_ir_putchar_nonblocking(char c);

View File

@ -1,152 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library handles IrDA SIR (USART based) communication */
/* this library handles IrDA communication */
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdio.h> // standard I/O facilities
#include <stdlib.h> // general utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/usart.h> // universal synchronous asynchronous receiver transmitter library
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include "usart_irda.h" // IrDA header and definitions
/* which USART to use for IrDA */
#define IRDA USART3
#define IRDA_RCC RCC_USART3
#define IRDA_IRQ NVIC_USART3_IRQ
#define IRDA_PORT GPIOB
#define IRDA_PIN_TX GPIO_USART3_TX
#define IRDA_PIN_RX GPIO_USART3_RX
/* serial baudrate, in bits per second (with 8N1 8 bits, no parity bit, 1 stop bit settings) */
#define IRDA_BAUDRATE 9600
/* RX and TX buffer sizes */
#define IRDA_BUFFER 128
/* input and output ring buffer, indexes, and available memory */
static uint8_t rx_buffer[IRDA_BUFFER] = {0};
static volatile uint8_t rx_i = 0;
static volatile uint8_t rx_used = 0;
static uint8_t tx_buffer[IRDA_BUFFER] = {0};
static volatile uint8_t tx_i = 0;
static volatile uint8_t tx_used = 0;
/* show the user how much data received over IrDA is ready */
volatile uint8_t irda_received = 0; // same as rx_used, but since the user can write this variable we don't rely on it
/* setup IrDA peripheral */
void irda_setup(void)
{
rcc_periph_clock_enable(IRDA_RCC); // enable clock for USART/IrDA block
gpio_set_mode(IRDA_PORT, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, IRDA_PIN_TX); // setup GPIO pin USART/IrDA transmit
gpio_set_mode(IRDA_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, IRDA_PIN_RX); // setup GPIO pin USART/IrDA receive
gpio_set(IRDA_PORT, IRDA_PIN_RX); // pull up to avoid noise when not connected
/* setup UART/IrDA parameters */
usart_set_baudrate(IRDA, IRDA_BAUDRATE);
usart_set_databits(IRDA, 8);
usart_set_stopbits(IRDA, USART_STOPBITS_1);
usart_set_mode(IRDA, USART_MODE_TX_RX);
usart_set_parity(IRDA, USART_PARITY_NONE);
usart_set_flow_control(IRDA, USART_FLOWCONTROL_NONE);
USART_CR3(IRDA) |= USART_CR3_IREN; // enable IrDA SIR ENDEC block (using IREN)
nvic_enable_irq(IRDA_IRQ); // enable the USART/IrDA interrupt
usart_enable_rx_interrupt(IRDA); // enable receive interrupt
usart_enable(IRDA); // enable USART/IrDA
/* reset buffer states */
tx_i = 0;
tx_used = 0;
rx_i = 0;
rx_used = 0;
irda_received = 0;
}
/* put character on IrDA (blocking) */
void irda_putchar_blocking(char c)
{
irda_flush(); // empty buffer first
usart_send_blocking(IRDA, c); // send character
}
/* ensure all data has been transmitted (blocking) */
void irda_flush(void)
{
while (tx_used) { // idle until buffer is empty
__WFI(); // sleep until interrupt
}
usart_wait_send_ready(IRDA); // wait until transmit register is empty (transmission might not be complete)
}
/* get character from IrDA (blocking) */
char irda_getchar(void)
{
while (!rx_used) { // idle until data is available
__WFI(); // sleep until interrupt;
}
char to_return = rx_buffer[rx_i]; // get the next available character
rx_i = (rx_i+1)%sizeof(rx_buffer); // update used buffer
rx_used--; // update used buffer
irda_received = rx_used; // update available data
return to_return;
}
/* put character on IrDA (non-blocking until buffer is full) */
void irda_putchar_nonblocking(char c)
{
while (tx_used>=sizeof(tx_buffer)) { // idle until buffer has some space
usart_enable_tx_interrupt(IRDA); // enable transmit interrupt
__WFI(); // sleep until something happened
}
tx_buffer[(tx_i+tx_used)%sizeof(tx_buffer)] = c; // put character in buffer
tx_used++; // update used buffer
usart_enable_tx_interrupt(IRDA); // enable transmit interrupt
}
#if (IRDA==USART1)
void usart1_isr(void)
#elif (IRDA==USART2)
void usart2_isr(void)
#elif (IRDA==USART3)
void usart3_isr(void)
#endif
{ // USART interrupt
if (usart_get_interrupt_source(IRDA, USART_SR_TXE)) { // data has been transmitted
if (!tx_used) { // no data in the buffer to transmit
usart_disable_tx_interrupt(IRDA); // disable transmit interrupt
} else {
usart_send(IRDA,tx_buffer[tx_i]); // put data in transmit register
tx_i = (tx_i+1)%sizeof(rx_buffer); // update location on buffer
tx_used--; // update used size
}
}
if (usart_get_interrupt_source(IRDA, USART_SR_RXNE)) { // data has been received
// only save data if there is space in the buffer
if (rx_used>=sizeof(rx_buffer)) {
usart_recv(IRDA); // read to clear interrupt
} else {
rx_buffer[(rx_i+rx_used)%sizeof(rx_buffer)] = usart_recv(IRDA); // put character in buffer
rx_used++; // update used buffer
irda_received = rx_used; // update available data
}
}
}

View File

@ -1,31 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library handles IrDA SIR (USART based) communication */
/* peripherals used: USART (check source for details) */
/* show the user how much received is available */
extern volatile uint8_t irda_received;
/* setup IrDA peripheral */
void irda_setup(void);
/* put character on IrDA (blocking) */
void irda_putchar_blocking(char c);
/* ensure all data has been transmitted (blocking) */
void irda_flush(void);
/* get character from IrDA (blocking) */
char irda_getchar(void);
/* put character on IrDA (non-blocking until buffer is full) */
void irda_putchar_nonblocking(char c);

View File

@ -1,523 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library is used to drive the vacuum fluorescent display extracted from a Samsung SER-6500 cash register
* it uses three chained supertex HV518 shift register VFD drivers */
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // general utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/spi.h> // SPI library
#include <libopencm3/stm32/timer.h> // timer library
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include "global.h" // global definitions
#include "vfd_hv518.h" // VFD library API
/* supertex HV518 VFD driver pins */
/* port on which the pins to control the supertex HV518 VFD driver are
* we use port A because of the SPI interface */
#define VFD_PORT GPIOA
#define VFD_PORT_RCC RCC_GPIOA
/* SPI port to use */
#define VFD_SPI SPI1
#if (VFD_SPI==SPI1)
#define VFD_SPI_RCC RCC_SPI1
#define VFD_SPI_IRQ NVIC_SPI1_IRQ
#elif (VFD_SPI==SPI2)
#define VFD_SPI_RCC RCC_SPI2
#define VFD_SPI_IRQ NVIC_SPI2_IRQ
#endif
/* strobe pin to enable high voltage output
* high voltage is output on low
* drive using a GPIO PA6 (normally MISO) */
#define VFD_STR GPIO6
/* latch enable pin
* store the shifted data on low
* output the parallel data on high
* use GPIO (PA4) (NSS does not work as SS) */
#define VFD_NLE GPIO4
/* clock signal
* drive using SPI SCK (PA5) */
#define VFD_CLK GPIO_SPI1_SCK
/* data input, where the data is shifted to
* drive using SPI MOSI (PA7) */
#define VFD_DIN GPIO_SPI1_MOSI
/* timer for automatic refresh */
#define VFD_TIMER TIM2
#if (VFD_TIMER==TIM2)
#define VFD_TIMER_RCC RCC_TIM2
#define VFD_TIMER_IRQ NVIC_TIM2_IRQ
#elif (VFD_TIMER==TIM3)
#define VFD_TIMER_RCC RCC_TIM3
#define VFD_TIMER_IRQ NVIC_TIM3_IRQ
#elif (VFD_TIMER==TIM4)
#define VFD_TIMER_RCC RCC_TIM4
#define VFD_TIMER_IRQ NVIC_TIM4_IRQ
#elif (VFD_TIMER==TIM5)
#define VFD_TIMER_RCC RCC_TIM5
#define VFD_TIMER_IRQ NVIC_TIM5_IRQ
#endif
/* ASCII characters encoded for 7 segments display
* starts with space
*/
static const uint8_t ascii_7segments[] = {
0b00000000, // space
0b00110000, // ! (I)
0b00100010, // "
0b01011100, // # (o)
0b01101101, // $ (s)
0b01010010, // % (/)
0b01111101, // & (6)
0b00100000, // '
0b00111001, // ( ([)
0b00001111, // )
0b01110000, // *
0b01000110, // +
0b00010000, // ,
0b01000000, // -
0b00010000, // . (,)
0b01010010, // /
0b00111111, // 0
0b00000110, // 1
0b01011011, // 2
0b01001111, // 3
0b01100110, // 4
0b01101101, // 5
0b01111101, // 6
0b00000111, // 7
0b01111111, // 8
0b01101111, // 9
0b01001000, // : (=)
0b01001000, // ; (=)
0b01011000, // <
0b01001000, // =
0b01001100, // >
0b01010011, // ?
0b01111011, // @
0b01110111, // A
0b01111111, // B
0b00111001, // C
0b01011110, // D
0b01111001, // E
0b01110001, // F
0b00111101, // G
0b01110110, // H
0b00110000, // I
0b00011110, // J
0b01110110, // K
0b00111000, // L
0b00110111, // M
0b00110111, // N
0b00111111, // O
0b01110011, // P
0b01101011, // Q
0b00110011, // R
0b01101101, // S
0b01111000, // T
0b00111110, // U
0b00111110, // V (U)
0b00111110, // W (U)
0b01110110, // X (H)
0b01101110, // Y
0b01011011, // Z
0b00111001, // [
0b01100100, // '\'
0b00001111, // /
0b00100011, // ^
0b00001000, // _
0b00000010, // `
0b01011111, // a
0b01111100, // b
0b01011000, // c
0b01011110, // d
0b01111011, // e
0b01110001, // f
0b01101111, // g
0b01110100, // h
0b00010000, // i
0b00001100, // j
0b01110110, // k
0b00110000, // l
0b01010100, // m
0b01010100, // n
0b01011100, // o
0b01110011, // p
0b01100111, // q
0b01010000, // r
0b01101101, // s
0b01111000, // t
0b00011100, // u
0b00011100, // v (u)
0b00011100, // w (u)
0b01110110, // x
0b01101110, // y
0b01011011, // z
0b00111001, // { ([)
0b00110000, // |
0b00001111, // } ([)
0b01000000, // ~
};
/* font for the 5x7 dot matrix display
* from http://sunge.awardspace.com/glcd-sd/node4.html
* first value is left-most line
* LSB is top dot, MSB is not used
*/
static const uint8_t font5x7[][5] = {
{0x00, 0x00, 0x00, 0x00, 0x00}, // (space)
{0x00, 0x00, 0x5F, 0x00, 0x00}, // !
{0x00, 0x07, 0x00, 0x07, 0x00}, // "
{0x14, 0x7F, 0x14, 0x7F, 0x14}, // #
{0x24, 0x2A, 0x7F, 0x2A, 0x12}, // $
{0x23, 0x13, 0x08, 0x64, 0x62}, // %
{0x36, 0x49, 0x55, 0x22, 0x50}, // &
{0x00, 0x05, 0x03, 0x00, 0x00}, // '
{0x00, 0x1C, 0x22, 0x41, 0x00}, // (
{0x00, 0x41, 0x22, 0x1C, 0x00}, // )
{0x08, 0x2A, 0x1C, 0x2A, 0x08}, // *
{0x08, 0x08, 0x3E, 0x08, 0x08}, // +
{0x00, 0x50, 0x30, 0x00, 0x00}, // ,
{0x08, 0x08, 0x08, 0x08, 0x08}, // -
{0x00, 0x60, 0x60, 0x00, 0x00}, // .
{0x20, 0x10, 0x08, 0x04, 0x02}, // /
{0x3E, 0x51, 0x49, 0x45, 0x3E}, // 0
{0x00, 0x42, 0x7F, 0x40, 0x00}, // 1
{0x42, 0x61, 0x51, 0x49, 0x46}, // 2
{0x21, 0x41, 0x45, 0x4B, 0x31}, // 3
{0x18, 0x14, 0x12, 0x7F, 0x10}, // 4
{0x27, 0x45, 0x45, 0x45, 0x39}, // 5
{0x3C, 0x4A, 0x49, 0x49, 0x30}, // 6
{0x01, 0x71, 0x09, 0x05, 0x03}, // 7
{0x36, 0x49, 0x49, 0x49, 0x36}, // 8
{0x06, 0x49, 0x49, 0x29, 0x1E}, // 9
{0x00, 0x36, 0x36, 0x00, 0x00}, // :
{0x00, 0x56, 0x36, 0x00, 0x00}, // ;
{0x00, 0x08, 0x14, 0x22, 0x41}, // <
{0x14, 0x14, 0x14, 0x14, 0x14}, // =
{0x41, 0x22, 0x14, 0x08, 0x00}, // >
{0x02, 0x01, 0x51, 0x09, 0x06}, // ?
{0x32, 0x49, 0x79, 0x41, 0x3E}, // @
{0x7E, 0x11, 0x11, 0x11, 0x7E}, // A
{0x7F, 0x49, 0x49, 0x49, 0x36}, // B
{0x3E, 0x41, 0x41, 0x41, 0x22}, // C
{0x7F, 0x41, 0x41, 0x22, 0x1C}, // D
{0x7F, 0x49, 0x49, 0x49, 0x41}, // E
{0x7F, 0x09, 0x09, 0x01, 0x01}, // F
{0x3E, 0x41, 0x41, 0x51, 0x32}, // G
{0x7F, 0x08, 0x08, 0x08, 0x7F}, // H
{0x00, 0x41, 0x7F, 0x41, 0x00}, // I
{0x20, 0x40, 0x41, 0x3F, 0x01}, // J
{0x7F, 0x08, 0x14, 0x22, 0x41}, // K
{0x7F, 0x40, 0x40, 0x40, 0x40}, // L
{0x7F, 0x02, 0x04, 0x02, 0x7F}, // M
{0x7F, 0x04, 0x08, 0x10, 0x7F}, // N
{0x3E, 0x41, 0x41, 0x41, 0x3E}, // O
{0x7F, 0x09, 0x09, 0x09, 0x06}, // P
{0x3E, 0x41, 0x51, 0x21, 0x5E}, // Q
{0x7F, 0x09, 0x19, 0x29, 0x46}, // R
{0x46, 0x49, 0x49, 0x49, 0x31}, // S
{0x01, 0x01, 0x7F, 0x01, 0x01}, // T
{0x3F, 0x40, 0x40, 0x40, 0x3F}, // U
{0x1F, 0x20, 0x40, 0x20, 0x1F}, // V
{0x7F, 0x20, 0x18, 0x20, 0x7F}, // W
{0x63, 0x14, 0x08, 0x14, 0x63}, // X
{0x03, 0x04, 0x78, 0x04, 0x03}, // Y
{0x61, 0x51, 0x49, 0x45, 0x43}, // Z
{0x00, 0x00, 0x7F, 0x41, 0x41}, // [
{0x02, 0x04, 0x08, 0x10, 0x20}, // '\'
{0x41, 0x41, 0x7F, 0x00, 0x00}, // ]
{0x04, 0x02, 0x01, 0x02, 0x04}, // ^
{0x40, 0x40, 0x40, 0x40, 0x40}, // _
{0x00, 0x01, 0x02, 0x04, 0x00}, // `
{0x20, 0x54, 0x54, 0x54, 0x78}, // a
{0x7F, 0x48, 0x44, 0x44, 0x38}, // b
{0x38, 0x44, 0x44, 0x44, 0x20}, // c
{0x38, 0x44, 0x44, 0x48, 0x7F}, // d
{0x38, 0x54, 0x54, 0x54, 0x18}, // e
{0x08, 0x7E, 0x09, 0x01, 0x02}, // f
{0x08, 0x14, 0x54, 0x54, 0x3C}, // g
{0x7F, 0x08, 0x04, 0x04, 0x78}, // h
{0x00, 0x44, 0x7D, 0x40, 0x00}, // i
{0x20, 0x40, 0x44, 0x3D, 0x00}, // j
{0x00, 0x7F, 0x10, 0x28, 0x44}, // k
{0x00, 0x41, 0x7F, 0x40, 0x00}, // l
{0x7C, 0x04, 0x18, 0x04, 0x78}, // m
{0x7C, 0x08, 0x04, 0x04, 0x78}, // n
{0x38, 0x44, 0x44, 0x44, 0x38}, // o
{0x7C, 0x14, 0x14, 0x14, 0x08}, // p
{0x08, 0x14, 0x14, 0x18, 0x7C}, // q
{0x7C, 0x08, 0x04, 0x04, 0x08}, // r
{0x48, 0x54, 0x54, 0x54, 0x20}, // s
{0x04, 0x3F, 0x44, 0x40, 0x20}, // t
{0x3C, 0x40, 0x40, 0x20, 0x7C}, // u
{0x1C, 0x20, 0x40, 0x20, 0x1C}, // v
{0x3C, 0x40, 0x30, 0x40, 0x3C}, // w
{0x44, 0x28, 0x10, 0x28, 0x44}, // x
{0x0C, 0x50, 0x50, 0x50, 0x3C}, // y
{0x44, 0x64, 0x54, 0x4C, 0x44}, // z
{0x00, 0x08, 0x36, 0x41, 0x00}, // {
{0x00, 0x00, 0x7F, 0x00, 0x00}, // |
{0x00, 0x41, 0x36, 0x08, 0x00}, // }
{0b00001000, 0b00000100, 0b00001100, 0b00001000, 0b00000100} // ~
};
/* pictures for the 5x7 dot matrix display
* first value is left-most line
* LSB is top dot, MSB is not used
*/
static const uint8_t pict5x7[][5] = {
{0x08, 0x08, 0x2A, 0x1C, 0x08}, // ->
{0x08, 0x1C, 0x2A, 0x08, 0x08}, // <-
{0b01110000, 0b01110000, 0b01111010, 0b01111100, 0b01011000}, // bunny side 1
{0b00100000, 0b01110000, 0b01110010, 0b01111100, 0b01011000}, // bunny side 2
{0b00111110, 0b01001001, 0b01010110, 0b01001001, 0b00111110}, // bunny face 1
{0b00111110, 0b01010001, 0b01100110, 0b01010001, 0b00111110}, // bunny face 2
{0b00111000, 0b01010111, 0b01100100, 0b01010111, 0b00111000}, // bunny face 3
{0b00111000, 0b01001111, 0b01010100, 0b01001111, 0b00111000}, // bunny face 4
{0b00111000, 0b01011110, 0b01101000, 0b01011110, 0b00111000}, // bunny face 5
{0b01000001, 0b00110110, 0b00001000, 0b00110110, 0b01000001}, // cross 1
{~0b01000001, ~0b00110110, ~0b00001000, ~0b00110110, ~0b01000001}, // cross 1 negated
{0b00100010, 0b00010100, 0b00001000, 0b00010100, 0b00100010}, // cross 2
{~0b00100010, ~0b00010100, ~0b00001000, ~0b00010100, ~0b00100010}, // cross 2 negated
{0x00, 0x00, 0x00, 0x00, 0x00} // nothing
};
/* the 32 bits values to be shifted out to the VFD driver
* split into 16 bit for SPI transfer
* since the bits for digits and matrix are independent, they can be combined
* we have more matrix (12) than digits (10)
*/
static uint16_t driver_data[VFD_MATRIX][VFD_DRIVERS*2] = {0};
static volatile uint8_t spi_i = 0; // which driver data is being transmitted
static volatile uint8_t vfd_grid = 0; // which grid/part to activate (single digits and matrix can be combined)
static const uint32_t digit_mask = 0x00fffff0; // the bits used for selecting then digit and 7 segment anodes (for the second driver)
/* set digit <nb> to ASCII character <c>
* use the MSB of <c> to enable the dot */
void vfd_digit(uint8_t nb, char c)
{
if (!(nb<VFD_DIGITS)) { // check the digit exists
return;
}
uint32_t digit_data = 0; // the data to be shifted out for the driver (for the second driver)
digit_data = 1<<(4+(9-nb)); // select digit
/* encode segment
* here the bit order (classic 7 segment + underline and dot)
* 3_
* 8|9_|4
* 7|6_|5.1
* 0_2,
* */
if (false) { // add the underline (not encoded)
digit_data |= (1<<(14));
}
if (c&0x80) { // add the dot (encoded in the 8th bit)
digit_data |= (1<<(15));
}
if (false) { // add the comma (not encoded)
digit_data |= (1<<(16));
}
c &= 0x7f; // only take the ASCII part
if (c>=' ') { // only take printable characters
uint8_t i = c-' '; // get index for character
if (i<LENGTH(ascii_7segments)) {
digit_data |= (ascii_7segments[i]<<(17)); // add encoded segments to memory
}
}
digit_data &= digit_mask; // be sure only the bits for the digit are used
digit_data |= (driver_data[nb][2]+(driver_data[nb][3]<<16))&~digit_mask; // get the existing data and add the bits for the digit
driver_data[nb][2] = digit_data; // write back data (least significant half)
driver_data[nb][3] = (digit_data>>16); // write back data (most significant half)
}
/* set dot matrix <nb> to ASCII character <c>
* non ASCII characters are used for pictures */
void vfd_matrix(uint8_t nb, char c)
{
// check the matrix exists
if (!(nb<VFD_MATRIX)) {
return;
}
uint32_t matrix_data[VFD_DRIVERS] = {0}; // the data to be shifted out for the driver
// select matrix
if (nb<4) {
matrix_data[1] = 1<<(3-nb);
} else {
matrix_data[0] = 1<<(35-nb);
}
if ((c<0x80) && (c>=' ')) { // only take printable characters
uint8_t i = c-' '; // get index for character
if (i<LENGTH(font5x7)) {
matrix_data[1] |= font5x7[i][0]<<24;
matrix_data[2] |= font5x7[i][1]<<0;
matrix_data[2] |= font5x7[i][2]<<8;
matrix_data[2] |= font5x7[i][3]<<16;
matrix_data[2] |= font5x7[i][4]<<24;
}
} else if (c>0x7f) { // the non ASCII character are used for pictures
uint8_t i = c-0x80; // get index for character
if (i<LENGTH(pict5x7)) {
matrix_data[1] |= pict5x7[i][0]<<24;
matrix_data[2] |= pict5x7[i][1]<<0;
matrix_data[2] |= pict5x7[i][2]<<8;
matrix_data[2] |= pict5x7[i][3]<<16;
matrix_data[2] |= pict5x7[i][4]<<24;
}
}
matrix_data[1] &= ~digit_mask; // be sure only the bits for the matrix are used
matrix_data[1] |= (driver_data[nb][2]+(driver_data[nb][3]<<16))&digit_mask; // get the existing data for the digit
// prepare the data for SPI to shift it out
for (uint8_t i=0; i<LENGTH(matrix_data); i++) {
driver_data[nb][i*2] = matrix_data[i];
driver_data[nb][i*2+1] = matrix_data[i]>>16;
}
}
/* clear VFD display */
void vfd_clear(void)
{
for (uint8_t i=0; i<LENGTH(driver_data); i++) {
for (uint8_t j=0; j<LENGTH(driver_data[0]); j++) {
driver_data[i][j] = 0;
}
}
}
/* test VFD display (light up all anodes) */
void vfd_test(void)
{
for (uint8_t i=0; i<LENGTH(driver_data); i++) {
for (uint8_t j=0; j<LENGTH(driver_data[0]); j++) {
driver_data[i][j] = ~0;
}
}
}
/* switch VFD display on */
void vfd_on(void)
{
gpio_clear(VFD_PORT, VFD_STR); // enable HV output
timer_enable_counter(VFD_TIMER); // start timer to periodically output that to the parts
}
/* switch VFD display off */
void vfd_off(void)
{
gpio_set(VFD_PORT, VFD_STR); // disable HV output
timer_disable_counter(VFD_TIMER); // stop timer to periodically output that to the parts
}
/* setup VFD */
void vfd_setup(void)
{
/* setup GPIO to control the VFD */
rcc_periph_clock_enable(VFD_PORT_RCC); // enable clock for VFD GPIO
gpio_set_mode(VFD_PORT, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, VFD_STR); // set VFD pin to output push-pull
gpio_set_mode(VFD_PORT, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, VFD_NLE); // set VFD pin to output push-pull
gpio_set(VFD_PORT, VFD_STR); // disable HV output
gpio_clear(VFD_PORT, VFD_NLE); // do not output latched data
/* setup SPI to transmit data */
rcc_periph_clock_enable(VFD_SPI_RCC); // enable SPI clock
gpio_set_mode(VFD_PORT, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, VFD_CLK); // set VFD pin to alternative function push-pull
gpio_set_mode(VFD_PORT, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, VFD_DIN); // set VFD pin to alternative function push-pull
spi_reset(VFD_SPI); // clear SPI values
/* set SPI:
* - use VFD_SPI port
* - divide clock by 8 for generating the baudrate (F_PCLK1 is 36MHz, max HV518 is 6MHz)
* - clock idle high polarity
* - data is valid on rising edge (second clock phase)
* - send 16 bits at a time
* - send least significant bit first (that's how I coded the data)
*/
spi_init_master(VFD_SPI, SPI_CR1_BAUDRATE_FPCLK_DIV_8, SPI_CR1_CPOL_CLK_TO_1_WHEN_IDLE, SPI_CR1_CPHA_CLK_TRANSITION_2, SPI_CR1_DFF_16BIT, SPI_CR1_LSBFIRST);
//spi_set_bidirectional_transmit_only_mode(VFD_SPI); // only use MOSI to transmit
spi_set_unidirectional_mode(VFD_SPI); // MISO is unused
/* set NSS high to enable transmission
* the NSS in STM32 can not be used as hardware slave select
* RM0008 reference manual 25.3.1 is misleading
* when hardware NSS is used and output is enabled NSS never goes up after transmission, even if SPI is disabled
* when software NSS is used, NSS can not be set high again, even when writing to the register
* the slave select must be done manually using GPIO */
spi_enable_software_slave_management(VFD_SPI);
spi_set_nss_high(VFD_SPI); // set NSS high
nvic_enable_irq(VFD_SPI_IRQ); // enable SPI interrupt
spi_enable(VFD_SPI); // enable SPI (the tx empty interrupt will trigger)
/* setup timer to refresh display */
rcc_periph_clock_enable(VFD_TIMER_RCC); // enable clock for timer block
timer_reset(VFD_TIMER); // reset timer state
timer_set_mode(VFD_TIMER, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock,edge alignment (simple count), and count up
timer_set_prescaler(VFD_TIMER, (SYSTEM_CLOCK_FREQ/(1<<16))-1); // set the prescaler so this 16 bits timer overflows at 1Hz
timer_set_period(VFD_TIMER, 0xffff/LENGTH(driver_data)/100); // set the refresh frequency
timer_enable_irq(VFD_TIMER, TIM_DIER_UIE); // enable interrupt for timer
nvic_enable_irq(VFD_TIMER_IRQ); // allow interrupt for timer
vfd_clear(); // initialize values
}
#if (VFD_SPI==SPI1)
void spi1_isr(void)
#elif (VFD_SPI==SPI2)
void spi2_isr(void)
#endif
{
if (SPI_SR(VFD_SPI) & SPI_SR_TXE) { // transmission buffer empty
if (spi_i<LENGTH(driver_data[0])) { // check if data is available
gpio_clear(VFD_PORT, VFD_NLE); // slave select to latch data
spi_send(VFD_SPI, driver_data[vfd_grid][spi_i++]); // send next data
} else { // all data transmitted
spi_disable_tx_buffer_empty_interrupt(VFD_SPI); // no need to wait for new data
while (SPI_SR(VFD_SPI) & SPI_SR_BSY); // wait for data to be shifted out
spi_disable_tx_buffer_empty_interrupt(VFD_SPI); // no need to wait for new data
gpio_set(VFD_PORT, VFD_NLE); // output latched data
}
}
}
#if (VFD_TIMER==TIM2)
void tim2_isr(void)
#elif (VFD_TIMER==TIM3)
void tim3_isr(void)
#elif (VFD_TIMER==TIM4)
void tim4_isr(void)
#elif (VFD_TIMER==TIM5)
void tim5_isr(void)
#endif
{
if (timer_get_flag(VFD_TIMER, TIM_SR_UIF)) { // overflow even happened
timer_clear_flag(VFD_TIMER, TIM_SR_UIF); // clear flag
spi_i = 0; // set the register to shift out
spi_enable_tx_buffer_empty_interrupt(VFD_SPI); // enable TX empty interrupt
vfd_grid = (vfd_grid+1)%LENGTH(driver_data); // got to next segment
}
}

View File

@ -1,39 +0,0 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library is used to drive the vacuum fluorescent display extracted from a Samsung SER-6500 cash register
* it uses three chained supertex HV518 shift register VFD drivers */
/* the number of blocks available on the VFD */
#define VFD_DRIVERS 3
#define VFD_DIGITS 10
#define VFD_MATRIX 12
/* set digit <nb> to ASCII character <c>
* use the MSB of <c> to enable the dot */
void vfd_digit(uint8_t nb, char c);
/* set dot matrix <nb> to ASCII character <c>
* non ASCII characters are used for pictures */
void vfd_matrix(uint8_t nb, char c);
/* clear VFD display */
void vfd_clear(void);
/* test VFD display (light up all anodes) */
void vfd_test(void);
/* transmit every digit and matrix */
void vfd_on(void);
/* switch VFD display off */
void vfd_off(void);
/* setup VFD */
void vfd_setup(void);