led_clock-old/main.c

297 lines
10 KiB
C
Raw Normal View History

2016-01-17 14:54:54 +01:00
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdio.h> // standard I/O facilities
#include <stdlib.h> // standard utilities
#include <unistd.h> // standard streams
#include <errno.h> // error number utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/cm3/scb.h> // vector table definition
2016-01-18 16:23:35 +01:00
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
2016-01-29 11:25:30 +01:00
#include <libopencm3/cm3/nvic.h> // interrupt utilities
#include <libopencm3/stm32/exti.h> // external interrupt utilities
2016-01-17 14:54:54 +01:00
/* own libraries */
#include "global.h" // board definitions
2016-01-17 14:54:54 +01:00
#include "usart.h" // USART utilities
2016-01-18 16:23:35 +01:00
#include "usb_cdcacm.h" // USB CDC ACM utilities
2016-02-18 11:02:28 +01:00
#include "led_ws2812b.h" // WS2812b LEDs utilities
2016-01-17 14:54:54 +01:00
2016-02-18 11:34:08 +01:00
/* flag set in interrupts to be processed in main task */
volatile bool button_flag = false; // button has been pressed
2016-02-19 11:31:30 +01:00
// the number of ticks in one second
#define TICKS_PER_SECOND 255
/* I can't do the following in define because how defines are stored would cause an integer overflow in the arithmetics */
const uint32_t ticks_second = TICKS_PER_SECOND; // the number of ticks in one second
const uint32_t ticks_minute = 60*TICKS_PER_SECOND; // the number of ticks in one minute
const uint32_t ticks_hour = 60*60*TICKS_PER_SECOND; // the number of ticks in one hour
const uint32_t ticks_midday = 12*60*60*TICKS_PER_SECOND; // the number of ticks in one midday (12 hours)
2016-02-18 11:34:08 +01:00
uint8_t clock_leds[WS2812B_LEDS*3] = {0}; // RGB values for the WS2812b clock LEDs
2016-01-17 14:54:54 +01:00
/* default output (i.e. for printf) */
int _write(int file, char *ptr, int len)
{
int i;
if (file == STDOUT_FILENO || file == STDERR_FILENO) {
for (i = 0; i < len; i++) {
if (ptr[i] == '\n') { // add carrier return before line feed. this is recommended for most UART terminals
usart_putchar_nonblocking('\r'); // a second line feed doesn't break the display
2016-01-18 16:23:35 +01:00
cdcacm_putchar('\r'); // a second line feed doesn't break the display
2016-01-17 14:54:54 +01:00
}
usart_putchar_nonblocking(ptr[i]); // send byte over USART
2016-01-18 16:23:35 +01:00
cdcacm_putchar(ptr[i]); // send byte over USB
2016-01-17 14:54:54 +01:00
}
return i;
}
errno = EIO;
return -1;
}
2016-01-29 00:24:49 +01:00
/* switch on LED */
void led_on(void)
2016-01-17 14:54:54 +01:00
{
2016-01-29 00:24:49 +01:00
#ifdef SYSTEM_BOARD
gpio_clear(LED_PORT, LED_PIN);
#elif MAPLE_MINI
gpio_set(LED_PORT, LED_PIN);
#endif
}
/* switch off LED */
void led_off(void)
{
#ifdef SYSTEM_BOARD
gpio_set(LED_PORT, LED_PIN);
#elif MAPLE_MINI
gpio_clear(LED_PORT, LED_PIN);
#endif
2016-01-17 14:54:54 +01:00
}
2016-01-29 00:24:49 +01:00
/* toggle LED */
void led_toggle(void)
2016-01-17 14:54:54 +01:00
{
2016-01-29 00:24:49 +01:00
gpio_toggle(LED_PORT, LED_PIN);
2016-01-17 14:54:54 +01:00
}
2016-02-18 11:34:08 +01:00
/* switch off all clock LEDs */
2016-02-19 11:31:30 +01:00
static void clock_clear(void)
2016-02-18 11:34:08 +01:00
{
// set all colors of all LEDs to 0
for (uint16_t i=0; i<LENGTH(clock_leds); i++) {
clock_leds[i] = 0;
}
}
/* set hours mark on clock LEDs */
2016-02-19 11:31:30 +01:00
static void clock_hours(void)
2016-02-18 11:34:08 +01:00
{
for (uint8_t hour=0; hour<12; hour++) {
2016-02-19 11:31:30 +01:00
uint16_t led = WS2812B_LEDS/12*hour;
2016-02-18 11:34:08 +01:00
clock_leds[led*3+0] = 0xff;
clock_leds[led*3+1] = 0xff;
clock_leds[led*3+2] = 0xff;
}
}
2016-02-23 21:52:00 +01:00
/* set hour progress on clock LEDs
* the hour/time time indication are full arcs, not only position
* whatever arc is smaller is displayed first
* green is for minutes, blur for hours */
2016-02-19 11:31:30 +01:00
static void clock_hour(uint32_t time)
{
2016-02-23 21:52:00 +01:00
uint32_t led_hour = (WS2812B_LEDS*(255*(uint64_t)(time%ticks_midday)))/ticks_midday; // scale to LED brightnesses for hours
uint32_t led_minute = (WS2812B_LEDS*(255*(uint64_t)(time%ticks_hour)))/ticks_hour; // scale to LED brightnesses for minutes
if (led_hour>=WS2812B_LEDS*255 || led_minute>=WS2812B_LEDS*255) { // a calculation error occurred
2016-02-23 20:28:55 +01:00
return;
2016-02-19 11:31:30 +01:00
}
2016-02-23 23:38:08 +01:00
// show hours and minutes on LEDs
if (led_hour>led_minute) {
// show hours in blue (and clear other LEDs)
for (uint16_t led=0; led<WS2812B_LEDS; led++) {
clock_leds[led*3+0] = 0;
clock_leds[led*3+1] = 0;
if (led_hour>=0xff) { // full hours
clock_leds[led*3+2] = 0xff;
} else { // running hours
clock_leds[led*3+2] = led_hour;
}
led_hour -= clock_leds[led*3+2];
}
// show minutes in green (override hours)
2016-02-23 23:38:08 +01:00
for (uint16_t led=0; led<WS2812B_LEDS && led_minute>0; led++) {
2016-02-23 21:52:00 +01:00
clock_leds[led*3+0] = 0;
if (led_minute>=0xff) { // full minutes
clock_leds[led*3+1] = 0xff;
} else { // running minutes
clock_leds[led*3+1] = led_minute;
}
led_minute -= clock_leds[led*3+1];
clock_leds[led*3+2] = 0;
}
} else {
// show minutes in green (and clear other LEDs)
for (uint16_t led=0; led<WS2812B_LEDS; led++) {
2016-02-23 21:52:00 +01:00
clock_leds[led*3+0] = 0;
if (led_minute>=0xff) { // full minutes
clock_leds[led*3+1] = 0xff;
} else { // running minutes
clock_leds[led*3+1] = led_minute;
2016-02-23 21:52:00 +01:00
}
led_minute -= clock_leds[led*3+1];
clock_leds[led*3+2] = 0;
}
// show hours in blue (override minutes)
2016-02-23 23:38:08 +01:00
for (uint16_t led=0; led<WS2812B_LEDS && led_hour>0; led++) {
clock_leds[led*3+0] = 0;
clock_leds[led*3+1] = 0;
2016-02-23 21:52:00 +01:00
if (led_hour>=0xff) { // full hours
clock_leds[led*3+2] = 0xff;
} else { // running hours
clock_leds[led*3+2] = led_hour;
}
led_hour -= clock_leds[led*3+2];
2016-02-23 20:28:55 +01:00
}
}
2016-02-23 23:56:04 +01:00
uint16_t led_second = (WS2812B_LEDS*(time%ticks_minute))/ticks_minute; // get LED for seconds
uint8_t brightness_second = (255*(time%ticks_second))/ticks_second; // get brightness for seconds
// set second LED
clock_leds[led_second*3+0] = brightness_second;
clock_leds[led_second*3+1] = 0;
clock_leds[led_second*3+2] = 0;
// set previous LED
clock_leds[((led_second-1)%WS2812B_LEDS)*3+0] = 0xff-brightness_second;
clock_leds[((led_second-1)%WS2812B_LEDS)*3+1] = 0;
clock_leds[((led_second-1)%WS2812B_LEDS)*3+2] = 0;
2016-02-19 11:31:30 +01:00
}
2016-02-18 11:34:08 +01:00
/* set the LEDs */
static void leds_set(void)
{
for (uint16_t i=0; i<LENGTH(clock_leds)/3; i++) {
ws2812b_set_rgb(i,clock_leds[i*3+0],clock_leds[i*3+1],clock_leds[i*3+2]);
}
}
2016-01-17 14:54:54 +01:00
int main(void)
{
2016-01-17 14:54:54 +01:00
SCB_VTOR = (uint32_t) 0x08002000; // relocate vector table because of the bootloader
2016-01-29 00:24:49 +01:00
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
2016-01-29 11:25:30 +01:00
usart_setup(); // setup USART (for printing)
cdcacm_setup(); // setup USB CDC ACM (for printing)
setbuf(stdout, NULL); // set standard out buffer to NULL to immediately print
setbuf(stderr, NULL); // set standard error buffer to NULL to immediately print
2016-01-29 00:24:49 +01:00
// setup LED
2016-01-29 11:25:30 +01:00
rcc_periph_clock_enable(LED_RCC); // enable clock for LED
2016-01-29 00:24:49 +01:00
gpio_set_mode(LED_PORT, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, LED_PIN); // set LED pin to 'output push-pull'
led_off(); // switch off LED to indicate setup started
2016-01-29 11:25:30 +01:00
// setup button
#if defined(BUTTON_RCC) && defined(BUTTON_PORT) && defined(BUTTON_PIN) && defined(BUTTON_EXTI) && defined(BUTTON_IRQ)
rcc_periph_clock_enable(BUTTON_RCC); // enable clock for button
gpio_set_mode(BUTTON_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, BUTTON_PIN); // set button pin to input
rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt
exti_select_source(BUTTON_EXTI, BUTTON_PORT); // mask external interrupt of this pin only for this port
exti_set_trigger(BUTTON_EXTI, EXTI_TRIGGER_BOTH); // trigger on both edge
exti_enable_request(BUTTON_EXTI); // enable external interrupt
nvic_enable_irq(BUTTON_IRQ); // enable interrupt
#endif
2016-01-17 14:54:54 +01:00
2016-02-18 11:02:28 +01:00
ws2812b_setup(); // setup WS2812b LEDs
2016-02-23 20:28:55 +01:00
clock_hours(); // show hour markers
leds_set(); // set the colors of all LEDs
ws2812b_transmit(); // transmit set color
2016-02-18 11:02:28 +01:00
printf("welcome to the CuVoodoo LED clock\n"); // print welcome message
2016-01-29 00:24:49 +01:00
led_on(); // switch on LED to indicate setup completed
2016-01-18 16:23:35 +01:00
2016-02-23 20:28:55 +01:00
uint32_t time = 0; // the time to display
bool clear = true; // clear or display time
2016-02-19 11:31:30 +01:00
2016-02-23 23:56:04 +01:00
while (true) {
clock_hour(time); // set an increment time
leds_set(); // set the colors of all LEDs
ws2812b_transmit(); // transmit set color
time += 10;
}
bool action = false; // if an action has been performed don't go to sleep
button_flag = false; // reset button flag
2016-02-18 11:02:28 +01:00
char c; // to store received character
bool char_flag = false; // a new character has been received
2016-01-29 00:24:49 +01:00
/* toggle the LED with every transmitted character */
while (true) { // infinite loop
while (usart_received) { // echo every received character
action = true; // action has been performed
2016-01-29 00:24:49 +01:00
led_toggle(); // toggle LED
2016-02-18 11:02:28 +01:00
c = usart_getchar(); // store receive character
char_flag = true; // notify character has been received
}
2016-01-18 16:23:35 +01:00
while (cdcacm_received) { // echo every received character
action = true; // action has been performed
2016-01-29 00:24:49 +01:00
led_toggle(); // toggle LED
2016-02-18 11:02:28 +01:00
c = usart_getchar(); // store receive character
char_flag = true; // notify character has been received
}
while (char_flag) {
char_flag = false; // reset flag
action = true; // action has been performed
printf("%c",c); // echo receive character
2016-02-23 20:28:55 +01:00
if (clear) {
clock_clear(); // clear clock LEDs
} else {
printf("%02lu:%02lu\n", time/ticks_hour, (time%ticks_hour)/ticks_minute);
clock_hour(time); // set time
2016-02-23 23:56:04 +01:00
time += 1; // increment time
2016-02-18 11:02:28 +01:00
}
2016-02-18 11:34:08 +01:00
leds_set(); // set the colors of all LEDs
2016-02-18 11:02:28 +01:00
ws2812b_transmit(); // transmit set color
2016-02-23 20:28:55 +01:00
clear = false;
2016-01-18 16:23:35 +01:00
}
while (button_flag) {
button_flag = false; // reset flag
action = true; // action has been performed
led_toggle(); // toggle LED
}
// go to sleep if nothing had to be done, else recheck for activity
2016-02-18 11:02:28 +01:00
if (action) {
action = false;
} else {
__WFI(); // go to sleep
}
2016-01-17 14:54:54 +01:00
}
return 0;
}
2016-01-29 11:25:30 +01:00
#if defined(BUTTON_ISR) && defined(BUTTON_EXTI)
void BUTTON_ISR(void)
{
exti_reset_request(BUTTON_EXTI); // reset interrupt
button_flag = true; // perform button action
2016-01-29 11:25:30 +01:00
}
#endif