espressif_tinyusb/src/class/hid/hid_device.c

420 lines
13 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (CFG_TUD_ENABLED && CFG_TUD_HID)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "device/usbd.h"
#include "device/usbd_pvt.h"
#include "hid_device.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
uint8_t itf_num;
uint8_t ep_in;
uint8_t ep_out; // optional Out endpoint
uint8_t itf_protocol; // Boot mouse or keyboard
uint8_t protocol_mode; // Boot (0) or Report protocol (1)
uint8_t idle_rate; // up to application to handle idle rate
uint16_t report_desc_len;
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_HID_EP_BUFSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_HID_EP_BUFSIZE];
// TODO save hid descriptor since host can specifically request this after enumeration
// Note: HID descriptor may be not available from application after enumeration
tusb_hid_descriptor_hid_t const * hid_descriptor;
} hidd_interface_t;
CFG_TUSB_MEM_SECTION static hidd_interface_t _hidd_itf[CFG_TUD_HID];
/*------------- Helpers -------------*/
static inline uint8_t get_index_by_itfnum(uint8_t itf_num)
{
for (uint8_t i=0; i < CFG_TUD_HID; i++ )
{
if ( itf_num == _hidd_itf[i].itf_num ) return i;
}
return 0xFF;
}
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
bool tud_hid_n_ready(uint8_t instance)
{
uint8_t const rhport = 0;
uint8_t const ep_in = _hidd_itf[instance].ep_in;
return tud_ready() && (ep_in != 0) && !usbd_edpt_busy(rhport, ep_in);
}
bool tud_hid_n_report(uint8_t instance, uint8_t report_id, void const* report, uint16_t len)
{
uint8_t const rhport = 0;
hidd_interface_t * p_hid = &_hidd_itf[instance];
// claim endpoint
TU_VERIFY( usbd_edpt_claim(rhport, p_hid->ep_in) );
// prepare data
if (report_id)
{
len = tu_min16(len, CFG_TUD_HID_EP_BUFSIZE-1);
p_hid->epin_buf[0] = report_id;
memcpy(p_hid->epin_buf+1, report, len);
len++;
}else
{
// If report id = 0, skip ID field
len = tu_min16(len, CFG_TUD_HID_EP_BUFSIZE);
memcpy(p_hid->epin_buf, report, len);
}
return usbd_edpt_xfer(rhport, p_hid->ep_in, p_hid->epin_buf, len);
}
uint8_t tud_hid_n_interface_protocol(uint8_t instance)
{
return _hidd_itf[instance].itf_protocol;
}
uint8_t tud_hid_n_get_protocol(uint8_t instance)
{
return _hidd_itf[instance].protocol_mode;
}
bool tud_hid_n_keyboard_report(uint8_t instance, uint8_t report_id, uint8_t modifier, uint8_t keycode[6])
{
hid_keyboard_report_t report;
report.modifier = modifier;
report.reserved = 0;
if ( keycode )
{
memcpy(report.keycode, keycode, 6);
}else
{
tu_memclr(report.keycode, 6);
}
return tud_hid_n_report(instance, report_id, &report, sizeof(report));
}
bool tud_hid_n_mouse_report(uint8_t instance, uint8_t report_id,
uint8_t buttons, int8_t x, int8_t y, int8_t vertical, int8_t horizontal)
{
hid_mouse_report_t report =
{
.buttons = buttons,
.x = x,
.y = y,
.wheel = vertical,
.pan = horizontal
};
return tud_hid_n_report(instance, report_id, &report, sizeof(report));
}
bool tud_hid_n_gamepad_report(uint8_t instance, uint8_t report_id,
int8_t x, int8_t y, int8_t z, int8_t rz, int8_t rx, int8_t ry, uint8_t hat, uint32_t buttons)
{
hid_gamepad_report_t report =
{
.x = x,
.y = y,
.z = z,
.rz = rz,
.rx = rx,
.ry = ry,
.hat = hat,
.buttons = buttons,
};
return tud_hid_n_report(instance, report_id, &report, sizeof(report));
}
//--------------------------------------------------------------------+
// USBD-CLASS API
//--------------------------------------------------------------------+
void hidd_init(void)
{
hidd_reset(0);
}
void hidd_reset(uint8_t rhport)
{
(void) rhport;
tu_memclr(_hidd_itf, sizeof(_hidd_itf));
}
uint16_t hidd_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
TU_VERIFY(TUSB_CLASS_HID == desc_itf->bInterfaceClass, 0);
// len = interface + hid + n*endpoints
uint16_t const drv_len = (uint16_t) (sizeof(tusb_desc_interface_t) + sizeof(tusb_hid_descriptor_hid_t) +
desc_itf->bNumEndpoints * sizeof(tusb_desc_endpoint_t));
TU_ASSERT(max_len >= drv_len, 0);
// Find available interface
hidd_interface_t * p_hid = NULL;
uint8_t hid_id;
for(hid_id=0; hid_id<CFG_TUD_HID; hid_id++)
{
if ( _hidd_itf[hid_id].ep_in == 0 )
{
p_hid = &_hidd_itf[hid_id];
break;
}
}
TU_ASSERT(p_hid, 0);
uint8_t const *p_desc = (uint8_t const *) desc_itf;
//------------- HID descriptor -------------//
p_desc = tu_desc_next(p_desc);
TU_ASSERT(HID_DESC_TYPE_HID == tu_desc_type(p_desc), 0);
p_hid->hid_descriptor = (tusb_hid_descriptor_hid_t const *) p_desc;
//------------- Endpoint Descriptor -------------//
p_desc = tu_desc_next(p_desc);
TU_ASSERT(usbd_open_edpt_pair(rhport, p_desc, desc_itf->bNumEndpoints, TUSB_XFER_INTERRUPT, &p_hid->ep_out, &p_hid->ep_in), 0);
if ( desc_itf->bInterfaceSubClass == HID_SUBCLASS_BOOT ) p_hid->itf_protocol = desc_itf->bInterfaceProtocol;
p_hid->protocol_mode = HID_PROTOCOL_REPORT; // Per Specs: default is report mode
p_hid->itf_num = desc_itf->bInterfaceNumber;
// Use offsetof to avoid pointer to the odd/misaligned address
p_hid->report_desc_len = tu_unaligned_read16((uint8_t const*) p_hid->hid_descriptor + offsetof(tusb_hid_descriptor_hid_t, wReportLength));
// Prepare for output endpoint
if (p_hid->ep_out)
{
if ( !usbd_edpt_xfer(rhport, p_hid->ep_out, p_hid->epout_buf, sizeof(p_hid->epout_buf)) )
{
TU_LOG_FAILED();
TU_BREAKPOINT();
}
}
return drv_len;
}
// Invoked when a control transfer occurred on an interface of this class
// Driver response accordingly to the request and the transfer stage (setup/data/ack)
// return false to stall control endpoint (e.g unsupported request)
bool hidd_control_xfer_cb (uint8_t rhport, uint8_t stage, tusb_control_request_t const * request)
{
TU_VERIFY(request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_INTERFACE);
uint8_t const hid_itf = get_index_by_itfnum((uint8_t) request->wIndex);
TU_VERIFY(hid_itf < CFG_TUD_HID);
hidd_interface_t* p_hid = &_hidd_itf[hid_itf];
if (request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD)
{
//------------- STD Request -------------//
if ( stage == CONTROL_STAGE_SETUP )
{
uint8_t const desc_type = tu_u16_high(request->wValue);
//uint8_t const desc_index = tu_u16_low (request->wValue);
if (request->bRequest == TUSB_REQ_GET_DESCRIPTOR && desc_type == HID_DESC_TYPE_HID)
{
TU_VERIFY(p_hid->hid_descriptor);
TU_VERIFY(tud_control_xfer(rhport, request, (void*)(uintptr_t) p_hid->hid_descriptor, p_hid->hid_descriptor->bLength));
}
else if (request->bRequest == TUSB_REQ_GET_DESCRIPTOR && desc_type == HID_DESC_TYPE_REPORT)
{
uint8_t const * desc_report = tud_hid_descriptor_report_cb(hid_itf);
tud_control_xfer(rhport, request, (void*)(uintptr_t) desc_report, p_hid->report_desc_len);
}
else
{
return false; // stall unsupported request
}
}
}
else if (request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS)
{
//------------- Class Specific Request -------------//
switch( request->bRequest )
{
case HID_REQ_CONTROL_GET_REPORT:
if ( stage == CONTROL_STAGE_SETUP )
{
uint8_t const report_type = tu_u16_high(request->wValue);
uint8_t const report_id = tu_u16_low(request->wValue);
uint8_t* report_buf = p_hid->epin_buf;
uint16_t req_len = tu_min16(request->wLength, CFG_TUD_HID_EP_BUFSIZE);
uint16_t xferlen = 0;
// If host request a specific Report ID, add ID to as 1 byte of response
if ( (report_id != HID_REPORT_TYPE_INVALID) && (req_len > 1) )
{
*report_buf++ = report_id;
req_len--;
xferlen++;
}
xferlen += tud_hid_get_report_cb(hid_itf, report_id, (hid_report_type_t) report_type, report_buf, req_len);
TU_ASSERT( xferlen > 0 );
tud_control_xfer(rhport, request, p_hid->epin_buf, xferlen);
}
break;
case HID_REQ_CONTROL_SET_REPORT:
if ( stage == CONTROL_STAGE_SETUP )
{
TU_VERIFY(request->wLength <= sizeof(p_hid->epout_buf));
tud_control_xfer(rhport, request, p_hid->epout_buf, request->wLength);
}
else if ( stage == CONTROL_STAGE_ACK )
{
uint8_t const report_type = tu_u16_high(request->wValue);
uint8_t const report_id = tu_u16_low(request->wValue);
uint8_t const* report_buf = p_hid->epout_buf;
uint16_t report_len = tu_min16(request->wLength, CFG_TUD_HID_EP_BUFSIZE);
// If host request a specific Report ID, extract report ID in buffer before invoking callback
if ( (report_id != HID_REPORT_TYPE_INVALID) && (report_len > 1) && (report_id == report_buf[0]) )
{
report_buf++;
report_len--;
}
tud_hid_set_report_cb(hid_itf, report_id, (hid_report_type_t) report_type, report_buf, report_len);
}
break;
case HID_REQ_CONTROL_SET_IDLE:
if ( stage == CONTROL_STAGE_SETUP )
{
p_hid->idle_rate = tu_u16_high(request->wValue);
if ( tud_hid_set_idle_cb )
{
// stall request if callback return false
TU_VERIFY( tud_hid_set_idle_cb( hid_itf, p_hid->idle_rate) );
}
tud_control_status(rhport, request);
}
break;
case HID_REQ_CONTROL_GET_IDLE:
if ( stage == CONTROL_STAGE_SETUP )
{
// TODO idle rate of report
tud_control_xfer(rhport, request, &p_hid->idle_rate, 1);
}
break;
case HID_REQ_CONTROL_GET_PROTOCOL:
if ( stage == CONTROL_STAGE_SETUP )
{
tud_control_xfer(rhport, request, &p_hid->protocol_mode, 1);
}
break;
case HID_REQ_CONTROL_SET_PROTOCOL:
if ( stage == CONTROL_STAGE_SETUP )
{
tud_control_status(rhport, request);
}
else if ( stage == CONTROL_STAGE_ACK )
{
p_hid->protocol_mode = (uint8_t) request->wValue;
if (tud_hid_set_protocol_cb)
{
tud_hid_set_protocol_cb(hid_itf, p_hid->protocol_mode);
}
}
break;
default: return false; // stall unsupported request
}
}else
{
return false; // stall unsupported request
}
return true;
}
bool hidd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void) result;
uint8_t instance = 0;
hidd_interface_t * p_hid = _hidd_itf;
// Identify which interface to use
for (instance = 0; instance < CFG_TUD_HID; instance++)
{
p_hid = &_hidd_itf[instance];
if ( (ep_addr == p_hid->ep_out) || (ep_addr == p_hid->ep_in) ) break;
}
TU_ASSERT(instance < CFG_TUD_HID);
// Sent report successfully
if (ep_addr == p_hid->ep_in)
{
if (tud_hid_report_complete_cb)
{
tud_hid_report_complete_cb(instance, p_hid->epin_buf, (/*uint16_t*/ uint8_t) xferred_bytes);
}
}
// Received report
else if (ep_addr == p_hid->ep_out)
{
tud_hid_set_report_cb(instance, 0, HID_REPORT_TYPE_INVALID, p_hid->epout_buf, (uint16_t) xferred_bytes);
TU_ASSERT(usbd_edpt_xfer(rhport, p_hid->ep_out, p_hid->epout_buf, sizeof(p_hid->epout_buf)));
}
return true;
}
#endif