espressif_tinyusb/hw/bsp/ek-tm4c123gxl/tm4c123gxl.c

168 lines
4.5 KiB
C

#include <TM4C123.h>
#include <board.h>
#define BOARD_UART UART0
#define BOARD_UART_PORT GPIOA
#define BOARD_BTN_PORT GPIOF
#define BOARD_BTN 4
#define BOARD_BTN_Msk (1u<<4)
#define BUTTON_STATE_ACTIVE 0
#define LED_PORT GPIOF
#define LED_PIN_RED 1
#define LED_PIN_BLUE 2
#define LED_PIN_GREEN 3
#define LED_STATE_ON 1
static void board_uart_init(void)
{
SYSCTL->RCGCUART |= (1<<0); // Enable the clock to UART0
SYSCTL->RCGCGPIO |= (1<<0); // Enable the clock to GPIOA
GPIOA->AFSEL |= (1<<1)|(1<<0); // Enable the alternate function on pin PA0 & PA1
GPIOA->PCTL |= (1<<0)|(1<<4); // Configure the GPIOPCTL register to select UART0 in PA0 and PA1
GPIOA->DEN |= (1<<0)|(1<<1); // Enable the digital functionality in PA0 and PA1
/** BAUDRATE = 9600 bits per second, refer manual for calculation **/
UART0->CTL &= ~(1<<0); // Disable UART0 by clearing UARTEN bit in the UARTCTL register
UART0->IBRD = 325; // Write the integer portion of the BRD to the UARTIRD register
UART0->FBRD = 33; // Write the fractional portion of the BRD to the UARTFBRD registerer
UART0->LCRH = (0x3<<5); // 8-bit, no parity, 1 stop bit
UART0->CC = 0x0; // Configure the UART clock source as system clock
UART0->CTL = (1<<0)|(1<<8)|(1<<9); // UART0 Enable, Transmit Enable, Recieve Enable
}
static void initialize_board_led(GPIOA_Type* port, uint8_t PinMsk, uint8_t dirmsk)
{
/* Enable PortF Clock */
SYSCTL -> RCGCGPIO |= (1<<5) ;
/* Let the clock stabilize */
while(! ((SYSCTL->PRGPIO) & (1<<5)) ) ;
/* Port Digital Enable */
port->DEN |= PinMsk;
/* Set direction */
port->DIR = dirmsk ;
}
static void board_switch_init(void)
{
GPIOF->DIR &= ~(1<<BOARD_BTN);
GPIOF->PUR |= (1<<BOARD_BTN);
GPIOF->DEN |= (1<<BOARD_BTN);
}
static void WriteGPIOPin(GPIOA_Type* port, uint8_t PinMsk, bool state)
{
if(state)
port->DATA |= PinMsk;
else
port->DATA &= ~(PinMsk);
}
static uint32_t ReadGPIOPin(GPIOA_Type *port, uint8_t pinMsk)
{
return (port -> DATA & pinMsk) ;
}
void board_init(void)
{
SystemCoreClockUpdate();
#if CFG_TUSB_OS == OPT_OS_NONE
// 1ms tick timer
SysTick_Config(SystemCoreClock / 1000);
#elif CFG_TUSB_OS == OPT_OS_FREERTOS
// If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher )
NVIC_SetPriority(USB0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY );
#endif
/* Reset USB */
SYSCTL->SRCR2 |= (1u<<16);
for (volatile uint8_t i=0; i<20; i++);
SYSCTL->SRCR2 &= ~(1u<<16);
/* Open the USB clock gate */
SYSCTL->RCGCUSB |= (1<<0);
/* Power-up USB PLL */
SYSCTL->RCC2 &= ~(1u<<14);
/* USB IO Initialization */
SYSCTL->RCGCGPIO |= (1u<<3);
/* Let the clock stabilize */
while(!(SYSCTL->PRGPIO & (1u<<3)));
/* USB IOs to Analog Mode */
GPIOD->AFSEL &= ~ ( (1u<<4) | (1u<<5) );
GPIOD->DEN &= ~ ( (1u<<4) | (1u<<5) );
GPIOD->AMSEL |= ( (1u<<4) | (1u<<5) );
uint8_t leds = (1<<LED_PIN_RED) | (1<<LED_PIN_BLUE) | (1<<LED_PIN_GREEN) ;
uint8_t dirmsk = (1<<LED_PIN_RED) | (1<<LED_PIN_BLUE) | (1<<LED_PIN_GREEN) ;
/* Configure GPIO for board LED */
initialize_board_led(LED_PORT,leds, dirmsk);
/* Configure GPIO for board switch */
board_switch_init();
/* Initialize board UART */
board_uart_init();
}
void board_led_write(bool state)
{
WriteGPIOPin(LED_PORT, (1<<LED_PIN_BLUE), state);
}
uint32_t board_button_read(void)
{
uint32_t gpio_value = ReadGPIOPin(BOARD_BTN_PORT, BOARD_BTN_Msk);
return BUTTON_STATE_ACTIVE ? gpio_value : !gpio_value;
}
int board_uart_write(void const* buf, int len)
{
uint8_t const* data = buf;
for(int i=0; i<len; i++)
{
while((UART0->FR &(1<<5)) != 0); // Poll until previous data was shofted out
UART0->DR= data[i]; // Write UART0 DATA REGISTER
}
return len;
}
int board_uart_read(uint8_t* buf, int len)
{
(void) buf; (void) len;
return 0;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void SysTick_Handler (void)
{
system_ticks++;
}
uint32_t board_millis(void)
{
return system_ticks;
}
#endif