espressif_tinyusb/src/portable/sunxi/dcd_sunxi_musb.c

1220 lines
36 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Koji KITAYAMA
* Copyright (c) 2021 Tian Yunhao (t123yh)
* Copyright (c) 2021 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include <stdint.h>
#include "tusb_option.h"
#if CFG_TUD_ENABLED && CFG_TUSB_MCU == OPT_MCU_F1C100S
#include "osal/osal.h"
#include <f1c100s-irq.h>
#include <device/dcd.h>
#include "musb_def.h"
#include "bsp/board.h"
typedef uint32_t u32;
typedef uint16_t u16;
typedef uint8_t u8;
#define REQUEST_TYPE_INVALID (0xFFu)
typedef struct {
uint_fast16_t beg; /* offset of including first element */
uint_fast16_t end; /* offset of excluding the last element */
} free_block_t;
typedef struct TU_ATTR_PACKED
{
void *buf; /* the start address of a transfer data buffer */
uint16_t length; /* the number of bytes in the buffer */
uint16_t remaining; /* the number of bytes remaining in the buffer */
} pipe_state_t;
typedef struct
{
tusb_control_request_t setup_packet;
uint16_t remaining_ctrl; /* The number of bytes remaining in data stage of control transfer. */
int8_t status_out;
pipe_state_t pipe0;
pipe_state_t pipe[2][7]; /* pipe[direction][endpoint number - 1] */
uint16_t pipe_buf_is_fifo[2]; /* Bitmap. Each bit means whether 1:TU_FIFO or 0:POD. */
} dcd_data_t;
/*------------------------------------------------------------------
* SUNXI FUNCTION
*------------------------------------------------------------------*/
static void usb_phy_write(int addr, int data, int len)
{
int j = 0, usbc_bit = 0;
void *dest = (void *)USBC_REG_CSR(USBC0_BASE);
usbc_bit = 1 << (0 * 2);
for (j = 0; j < len; j++)
{
/* set the bit address to be written */
USBC_ClrBit_Mask_l(dest, 0xff << 8);
USBC_SetBit_Mask_l(dest, (addr + j) << 8);
USBC_ClrBit_Mask_l(dest, usbc_bit);
/* set data bit */
if (data & 0x1)
USBC_SetBit_Mask_l(dest, 1 << 7);
else
USBC_ClrBit_Mask_l(dest, 1 << 7);
USBC_SetBit_Mask_l(dest, usbc_bit);
USBC_ClrBit_Mask_l(dest, usbc_bit);
data >>= 1;
}
}
static void delay_ms(uint32_t ms)
{
#if CFG_TUSB_OS == OPT_OS_NONE
int now = board_millis();
while (board_millis() - now <= ms) asm("nop");
#else
osal_task_delay(ms);
#endif
}
static void USBC_HardwareReset(void)
{
// Reset phy and controller
USBC_REG_set_bit_l(USBPHY_CLK_RST_BIT, USBPHY_CLK_REG);
USBC_REG_set_bit_l(BUS_RST_USB_BIT, BUS_CLK_RST_REG);
delay_ms(2);
USBC_REG_set_bit_l(USBPHY_CLK_GAT_BIT, USBPHY_CLK_REG);
USBC_REG_set_bit_l(USBPHY_CLK_RST_BIT, USBPHY_CLK_REG);
USBC_REG_set_bit_l(BUS_CLK_USB_BIT, BUS_CLK_GATE0_REG);
USBC_REG_set_bit_l(BUS_RST_USB_BIT, BUS_CLK_RST_REG);
}
static void USBC_PhyConfig(void)
{
/* Regulation 45 ohms */
usb_phy_write(0x0c, 0x01, 1);
/* adjust PHY's magnitude and rate */
usb_phy_write(0x20, 0x14, 5);
/* threshold adjustment disconnect */
usb_phy_write(0x2a, 3, 2);
return;
}
static void USBC_ConfigFIFO_Base(void)
{
u32 reg_value;
/* config usb fifo, 8kb mode */
reg_value = USBC_Readl(SUNXI_SRAMC_BASE + 0x04);
reg_value &= ~(0x03 << 0);
reg_value |= (1 << 0);
USBC_Writel(reg_value, SUNXI_SRAMC_BASE + 0x04);
}
static unsigned int USBC_WakeUp_ClearChangeDetect(unsigned int reg_val)
{
unsigned int temp = reg_val;
/* vbus, id, dpdm, these bit is set 1 to clear, so we clear these bit when operate other bits */
temp &= ~(1 << USBC_BP_ISCR_VBUS_CHANGE_DETECT);
temp &= ~(1 << USBC_BP_ISCR_ID_CHANGE_DETECT);
temp &= ~(1 << USBC_BP_ISCR_DPDM_CHANGE_DETECT);
return temp;
}
static void USBC_EnableDpDmPullUp(void)
{
u32 reg_val = USBC_Readl(USBC_REG_ISCR(USBC0_BASE));
reg_val |= (1 << USBC_BP_ISCR_DPDM_PULLUP_EN);
reg_val |= 3<<USBC_BP_ISCR_VBUS_VALID_SRC;
reg_val = USBC_WakeUp_ClearChangeDetect(reg_val);
USBC_Writel(reg_val, USBC_REG_ISCR(USBC0_BASE));
}
static void USBC_ForceIdToHigh(void)
{
/* first write 00, then write 10 */
u32 reg_val = USBC_Readl(USBC_REG_ISCR(USBC0_BASE));
reg_val |= (0x03 << USBC_BP_ISCR_FORCE_ID);
reg_val = USBC_WakeUp_ClearChangeDetect(reg_val);
USBC_Writel(reg_val, USBC_REG_ISCR(USBC0_BASE));
}
static void USBC_ForceVbusValidToHigh(void)
{
/* first write 00, then write 11 */
u32 reg_val = USBC_Readl(USBC_REG_ISCR(USBC0_BASE));
reg_val |= (0x03 << USBC_BP_ISCR_FORCE_VBUS_VALID);
reg_val = USBC_WakeUp_ClearChangeDetect(reg_val);
USBC_Writel(reg_val, USBC_REG_ISCR(USBC0_BASE));
}
void USBC_SelectBus(u32 io_type, u32 ep_type, u32 ep_index)
{
u32 reg_val = 0;
reg_val = USBC_Readb(USBC_REG_VEND0(USBC0_BASE));
if (io_type == USBC_IO_TYPE_DMA) {
if (ep_type == USBC_EP_TYPE_TX) {
reg_val |= ((ep_index - 0x01) << 1) << USBC_BP_VEND0_DRQ_SEL; //drq_sel
reg_val |= 0x1<<USBC_BP_VEND0_BUS_SEL; //io_dma
} else {
reg_val |= ((ep_index << 1) - 0x01) << USBC_BP_VEND0_DRQ_SEL;
reg_val |= 0x1<<USBC_BP_VEND0_BUS_SEL;
}
} else {
//reg_val &= ~(0x1 << USBC_BP_VEND0_DRQ_SEL); //clear drq_sel, select pio
reg_val &= 0x00; // clear drq_sel, select pio
}
/* in 1667 1673 and later ic, FIFO_BUS_SEL bit(bit24 of reg0x40 for host/device)
* is fixed to 1, the hw guarantee that it's ok for cpu/inner_dma/outer_dma transfer */
// reg_val |= 0x1<<USBC_BP_VEND0_BUS_SEL; //for 1663 set 1: enable dma, set 0: enable fifo
USBC_Writeb(reg_val, USBC_REG_VEND0(USBC0_BASE));
}
static void USBC_SelectActiveEp(u8 ep_index)
{
USBC_Writeb(ep_index, USBC_REG_EPIND(USBC0_BASE));
}
static u8 USBC_GetActiveEp(void)
{
return USBC_Readb(USBC_REG_EPIND(USBC0_BASE));
}
static void __USBC_Dev_ep0_SendStall(void)
{
USBC_REG_set_bit_w(USBC_BP_CSR0_D_SEND_STALL, USBC_REG_CSR0(USBC0_BASE));
}
static void __USBC_Dev_ep0_ClearStall(void)
{
USBC_REG_clear_bit_w(USBC_BP_CSR0_D_SEND_STALL, USBC_REG_CSR0(USBC0_BASE));
USBC_REG_clear_bit_w(USBC_BP_CSR0_D_SENT_STALL, USBC_REG_CSR0(USBC0_BASE));
}
static void USBC_Dev_Ctrl_ClearSetupEnd(void)
{
USBC_REG_set_bit_w(USBC_BP_CSR0_D_SERVICED_SETUP_END, USBC_REG_CSR0(USBC0_BASE));
}
static void USBC_Dev_SetAddress(u8 address)
{
USBC_Writeb(address, USBC_REG_FADDR(USBC0_BASE));
}
static void __USBC_Dev_Tx_SendStall(void)
{
//send stall, and fifo is flushed automatically
USBC_REG_set_bit_w(USBC_BP_TXCSR_D_SEND_STALL, USBC_REG_TXCSR(USBC0_BASE));
}
static u32 __USBC_Dev_Tx_IsEpStall(void)
{
return USBC_REG_test_bit_w(USBC_BP_TXCSR_D_SENT_STALL, USBC_REG_TXCSR(USBC0_BASE));
}
static void __USBC_Dev_Tx_ClearStall(void)
{
u32 reg_val = USBC_Readw(USBC_REG_TXCSR(USBC0_BASE));
reg_val &= ~((1 << USBC_BP_TXCSR_D_SENT_STALL)|(1 << USBC_BP_TXCSR_D_SEND_STALL)|(1<<USBC_BP_TXCSR_D_UNDER_RUN));
reg_val |= (1 << USBC_BP_TXCSR_D_CLEAR_DATA_TOGGLE);
USBC_Writew(reg_val, USBC_REG_TXCSR(USBC0_BASE));
}
static void __USBC_Dev_Rx_SendStall(void)
{
USBC_REG_set_bit_w(USBC_BP_RXCSR_D_SEND_STALL, USBC_REG_RXCSR(USBC0_BASE));
}
static u32 __USBC_Dev_Rx_IsEpStall(void)
{
return USBC_REG_test_bit_w(USBC_BP_RXCSR_D_SENT_STALL, USBC_REG_RXCSR(USBC0_BASE));
}
static void __USBC_Dev_Rx_ClearStall(void)
{
u32 reg_val = USBC_Readw(USBC_REG_RXCSR(USBC0_BASE));
reg_val &= ~((1 << USBC_BP_RXCSR_D_SENT_STALL)|(1 << USBC_BP_RXCSR_D_SEND_STALL)|(1<<USBC_BP_RXCSR_D_OVERRUN));
reg_val |= (1 << USBC_BP_RXCSR_D_CLEAR_DATA_TOGGLE);
USBC_Writew(reg_val, USBC_REG_RXCSR(USBC0_BASE));
}
static tusb_speed_t USBC_Dev_QueryTransferMode(void)
{
if (USBC_REG_test_bit_b(USBC_BP_POWER_D_HIGH_SPEED_FLAG, USBC_REG_PCTL(USBC0_BASE)))
return TUSB_SPEED_HIGH;
else
return TUSB_SPEED_FULL;
}
static void __USBC_Dev_ep0_ReadDataHalf(void)
{
USBC_Writew(1<<USBC_BP_CSR0_D_SERVICED_RX_PKT_READY, USBC_REG_CSR0(USBC0_BASE));
}
static void __USBC_Dev_ep0_ReadDataComplete(void)
{
USBC_Writew((1<<USBC_BP_CSR0_D_SERVICED_RX_PKT_READY) | (1<<USBC_BP_CSR0_D_DATA_END),
USBC_REG_CSR0(USBC0_BASE));
}
static void __USBC_Dev_ep0_WriteDataHalf(void)
{
USBC_Writew(1<<USBC_BP_CSR0_D_TX_PKT_READY, USBC_REG_CSR0(USBC0_BASE));
}
static void __USBC_Dev_ep0_WriteDataComplete(void)
{
USBC_Writew((1<<USBC_BP_CSR0_D_TX_PKT_READY) | (1<<USBC_BP_CSR0_D_DATA_END),
USBC_REG_CSR0(USBC0_BASE));
}
static void __USBC_Dev_Tx_WriteDataComplete(void)
{
USBC_Writeb((1 << USBC_BP_TXCSR_D_TX_READY), USBC_REG_TXCSR(USBC0_BASE));
}
static void __USBC_Dev_Rx_ReadDataComplete(void)
{
USBC_Writeb(0, USBC_REG_RXCSR(USBC0_BASE));
}
static u32 __USBC_Dev_Rx_IsReadDataReady(void)
{
return USBC_REG_test_bit_w(USBC_BP_RXCSR_D_RX_PKT_READY, USBC_REG_RXCSR(USBC0_BASE));
}
/* open a tx ep's interrupt */
static void USBC_INT_EnableTxEp(u8 ep_index)
{
USBC_REG_set_bit_w(ep_index, USBC_REG_INTTxE(USBC0_BASE));
}
/* open a rx ep's interrupt */
static void USBC_INT_EnableRxEp(u8 ep_index)
{
USBC_REG_set_bit_w(ep_index, USBC_REG_INTRxE(USBC0_BASE));
}
/* close a tx ep's interrupt */
static void USBC_INT_DisableTxEp(u8 ep_index)
{
USBC_REG_clear_bit_w(ep_index, USBC_REG_INTTxE(USBC0_BASE));
}
/* close a rx ep's interrupt */
static void USBC_INT_DisableRxEp(u8 ep_index)
{
USBC_REG_clear_bit_w(ep_index, USBC_REG_INTRxE(USBC0_BASE));
}
/*------------------------------------------------------------------
* INTERNAL FUNCTION DECLARATION
*------------------------------------------------------------------*/
static dcd_data_t _dcd;
static inline free_block_t *find_containing_block(free_block_t *beg, free_block_t *end, uint_fast16_t addr)
{
free_block_t *cur = beg;
for (; cur < end && ((addr < cur->beg) || (cur->end <= addr)); ++cur) ;
return cur;
}
static inline int update_free_block_list(free_block_t *blks, unsigned num, uint_fast16_t addr, uint_fast16_t size)
{
free_block_t *p = find_containing_block(blks, blks + num, addr);
TU_ASSERT(p != blks + num, -2);
if (p->beg == addr) {
/* Shrink block */
p->beg = addr + size;
if (p->beg != p->end) return 0;
/* remove block */
free_block_t *end = blks + num;
while (p + 1 < end) {
*p = *(p + 1);
++p;
}
return -1;
} else {
/* Split into 2 blocks */
free_block_t tmp = {
.beg = addr + size,
.end = p->end
};
p->end = addr;
if (p->beg == p->end) {
if (tmp.beg != tmp.end) {
*p = tmp;
return 0;
}
/* remove block */
free_block_t *end = blks + num;
while (p + 1 < end) {
*p = *(p + 1);
++p;
}
return -1;
}
if (tmp.beg == tmp.end) return 0;
blks[num] = tmp;
return 1;
}
}
static inline unsigned free_block_size(free_block_t const *blk)
{
return blk->end - blk->beg;
}
#if 0
static inline void print_block_list(free_block_t const *blk, unsigned num)
{
TU_LOG1("*************\n");
for (unsigned i = 0; i < num; ++i) {
TU_LOG1(" Blk%u %u %u\n", i, blk->beg, blk->end);
++blk;
}
}
#else
#define print_block_list(a,b)
#endif
#if CFG_TUSB_MCU == OPT_MCU_F1C100S
#define USB_FIFO_SIZE_KB 4
#else
#error "Unsupported MCU"
#endif
static unsigned find_free_memory(uint_fast16_t size_in_log2_minus3)
{
free_block_t free_blocks[2 * (TUP_DCD_ENDPOINT_MAX - 1)];
unsigned num_blocks = 1;
/* Backup current EP to restore later */
u8 backup_ep = USBC_GetActiveEp();
/* Initialize free memory block list */
free_blocks[0].beg = 64 / 8;
free_blocks[0].end = (USB_FIFO_SIZE_KB << 10) / 8; /* 2KiB / 8 bytes */
for (int i = 1; i < TUP_DCD_ENDPOINT_MAX; ++i) {
uint_fast16_t addr;
int num;
USBC_SelectActiveEp(i);
addr = USBC_Readw(USBC_REG_TXFIFOAD(USBC0_BASE));
if (addr) {
unsigned sz = USBC_Readb(USBC_REG_TXFIFOSZ(USBC0_BASE));
unsigned sft = (sz & USB_TXFIFOSZ_SIZE_M) + ((sz & USB_TXFIFOSZ_DPB) ? 1: 0);
num = update_free_block_list(free_blocks, num_blocks, addr, 1 << sft);
TU_ASSERT(-2 < num, 0);
num_blocks += num;
print_block_list(free_blocks, num_blocks);
}
addr = USBC_Readw(USBC_REG_RXFIFOAD(USBC0_BASE));
if (addr) {
unsigned sz = USBC_Readb(USBC_REG_RXFIFOSZ(USBC0_BASE));
unsigned sft = (sz & USB_RXFIFOSZ_SIZE_M) + ((sz & USB_RXFIFOSZ_DPB) ? 1: 0);
num = update_free_block_list(free_blocks, num_blocks, addr, 1 << sft);
TU_ASSERT(-2 < num, 0);
num_blocks += num;
print_block_list(free_blocks, num_blocks);
}
}
print_block_list(free_blocks, num_blocks);
USBC_SelectActiveEp(backup_ep);
/* Find the best fit memory block */
uint_fast16_t size_in_8byte_unit = 1 << size_in_log2_minus3;
free_block_t const *min = NULL;
uint_fast16_t min_sz = 0xFFFFu;
free_block_t const *end = &free_blocks[num_blocks];
for (free_block_t const *cur = &free_blocks[0]; cur < end; ++cur) {
uint_fast16_t sz = free_block_size(cur);
if (sz < size_in_8byte_unit) continue;
if (size_in_8byte_unit == sz) return cur->beg;
if (sz < min_sz) min = cur;
}
TU_ASSERT(min, 0);
return min->beg;
}
static void pipe_write_packet(void *buff, volatile void *fifo, unsigned cnt)
{
u32 len = 0;
u32 i32 = 0;
u32 i8 = 0;
u8 *buf8 = 0;
u32 *buf32 = 0;
//--<1>-- adjust data
buf32 = buff;
len = cnt;
i32 = len >> 2;
i8 = len & 0x03;
//--<2>-- deal with 4byte part
while (i32--) {
USBC_Writel(*buf32++, fifo);
}
//--<3>-- deal with no 4byte part
buf8 = (u8 *)buf32;
while (i8--) {
USBC_Writeb(*buf8++, fifo);
}
}
static void pipe_read_packet(void *buff, volatile void *fifo, unsigned cnt)
{
u32 len = 0;
u32 i32 = 0;
u32 i8 = 0;
u8 *buf8 = 0;
u32 *buf32 = 0;
//--<1>-- adjust data
buf32 = buff;
len = cnt;
i32 = len >> 2;
i8 = len & 0x03;
//--<2>-- deal with 4byte part
while (i32--) {
*buf32++ = USBC_Readl(fifo);
}
//--<3>-- deal with no 4byte part
buf8 = (u8 *)buf32;
while (i8--) {
*buf8++ = USBC_Readb(fifo);
}
}
static void pipe_read_write_packet_ff(tu_fifo_t *f, volatile void *fifo, unsigned len, unsigned dir)
{
static const struct {
void (*tu_fifo_get_info)(tu_fifo_t *f, tu_fifo_buffer_info_t *info);
void (*tu_fifo_advance)(tu_fifo_t *f, uint16_t n);
void (*pipe_read_write)(void *buf, volatile void *fifo, unsigned len);
} ops[] = {
/* OUT */ {tu_fifo_get_write_info,tu_fifo_advance_write_pointer,pipe_read_packet},
/* IN */ {tu_fifo_get_read_info, tu_fifo_advance_read_pointer, pipe_write_packet},
};
tu_fifo_buffer_info_t info;
ops[dir].tu_fifo_get_info(f, &info);
unsigned total_len = len;
len = TU_MIN(total_len, info.len_lin);
ops[dir].pipe_read_write(info.ptr_lin, fifo, len);
unsigned rem = total_len - len;
if (rem) {
len = TU_MIN(rem, info.len_wrap);
ops[dir].pipe_read_write(info.ptr_wrap, fifo, len);
rem -= len;
}
ops[dir].tu_fifo_advance(f, total_len - rem);
}
/*------------------------------------------------------------------
* TRANSFER FUNCTION DECLARATION
*------------------------------------------------------------------*/
static void process_setup_packet(uint8_t rhport)
{
uint32_t *p = (uint32_t*)&_dcd.setup_packet;
p[0] = USBC_Readl(USBC_REG_EPFIFO0(USBC0_BASE));
p[1] = USBC_Readl(USBC_REG_EPFIFO0(USBC0_BASE));
_dcd.pipe0.buf = NULL;
_dcd.pipe0.length = 0;
_dcd.pipe0.remaining = 0;
dcd_event_setup_received(rhport, (const uint8_t*)(uintptr_t)&_dcd.setup_packet, true);
const unsigned len = _dcd.setup_packet.wLength;
_dcd.remaining_ctrl = len;
const unsigned dir_in = tu_edpt_dir(_dcd.setup_packet.bmRequestType);
/* Clear RX FIFO and reverse the transaction direction */
if (len && dir_in) __USBC_Dev_ep0_ReadDataHalf();
}
static bool handle_xfer_in(uint_fast8_t ep_addr)
{
unsigned epnum_minus1 = tu_edpt_number(ep_addr) - 1;
pipe_state_t *pipe = &_dcd.pipe[tu_edpt_dir(ep_addr)][epnum_minus1];
const unsigned rem = pipe->remaining;
if (!rem) {
pipe->buf = NULL;
return true;
}
const unsigned mps = USBC_Readw(USBC_REG_TXMAXP(USBC0_BASE));
const unsigned len = TU_MIN(mps, rem);
uint8_t *buf = pipe->buf;
// TU_LOG1(" %p mps %d len %d rem %d\n", buf, mps, len, rem);
if (len) {
volatile void* addr = (volatile void*)(USBC_REG_EPFIFO1(USBC0_BASE) + (epnum_minus1 << 2));
if (_dcd.pipe_buf_is_fifo[TUSB_DIR_IN] & TU_BIT(epnum_minus1)) {
pipe_read_write_packet_ff((tu_fifo_t *)buf, addr, len, TUSB_DIR_IN);
} else {
pipe_write_packet(buf, addr, len);
pipe->buf = buf + len;
}
pipe->remaining = rem - len;
}
__USBC_Dev_Tx_WriteDataComplete();
// TU_LOG1(" TXCSRL%d = %x %d\n", epnum_minus1 + 1, regs->TXCSRL, rem - len);
return false;
}
static bool handle_xfer_out(uint_fast8_t ep_addr)
{
unsigned epnum_minus1 = tu_edpt_number(ep_addr) - 1;
pipe_state_t *pipe = &_dcd.pipe[tu_edpt_dir(ep_addr)][epnum_minus1];
// TU_LOG1(" RXCSRL%d = %x\n", epnum_minus1 + 1, regs->RXCSRL);
TU_ASSERT(__USBC_Dev_Rx_IsReadDataReady());
const unsigned mps = USBC_Readw(USBC_REG_RXMAXP(USBC0_BASE));
const unsigned rem = pipe->remaining;
const unsigned vld = USBC_Readw(USBC_REG_RXCOUNT(USBC0_BASE));
const unsigned len = TU_MIN(TU_MIN(rem, mps), vld);
uint8_t *buf = pipe->buf;
if (len) {
volatile void* addr = (volatile void*)(USBC_REG_EPFIFO1(USBC0_BASE) + (epnum_minus1 << 2));
if (_dcd.pipe_buf_is_fifo[TUSB_DIR_OUT] & TU_BIT(epnum_minus1)) {
pipe_read_write_packet_ff((tu_fifo_t *)buf, addr, len, TUSB_DIR_OUT);
} else {
pipe_read_packet(buf, addr, len);
pipe->buf = buf + len;
}
pipe->remaining = rem - len;
}
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return NULL != buf;
}
__USBC_Dev_Rx_ReadDataComplete();
return false;
}
static bool edpt_n_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void)rhport;
unsigned epnum_minus1 = tu_edpt_number(ep_addr) - 1;
unsigned dir_in = tu_edpt_dir(ep_addr);
pipe_state_t *pipe = &_dcd.pipe[dir_in][epnum_minus1];
pipe->buf = buffer;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
USBC_SelectActiveEp(tu_edpt_number(ep_addr));
if (dir_in) {
handle_xfer_in(ep_addr);
} else {
if (__USBC_Dev_Rx_IsReadDataReady())
__USBC_Dev_Rx_ReadDataComplete();
}
return true;
}
static bool edpt0_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void)rhport;
TU_ASSERT(total_bytes <= 64); /* Current implementation supports for only up to 64 bytes. */
const unsigned req = _dcd.setup_packet.bmRequestType;
TU_ASSERT(req != REQUEST_TYPE_INVALID || total_bytes == 0);
USBC_SelectActiveEp(0);
if (req == REQUEST_TYPE_INVALID || _dcd.status_out) {
/* STATUS OUT stage.
* MUSB controller automatically handles STATUS OUT packets without
* software helps. We do not have to do anything. And STATUS stage
* may have already finished and received the next setup packet
* without calling this function, so we have no choice but to
* invoke the callback function of status packet here. */
// TU_LOG1(" STATUS OUT CSRL0 = %x\n", CSRL0);
_dcd.status_out = 0;
if (req == REQUEST_TYPE_INVALID) {
dcd_event_xfer_complete(rhport, ep_addr, total_bytes, XFER_RESULT_SUCCESS, false);
} else {
/* The next setup packet has already been received, it aborts
* invoking callback function to avoid confusing TUSB stack. */
TU_LOG1("Drop CONTROL_STAGE_ACK\n");
}
return true;
}
const unsigned dir_in = tu_edpt_dir(ep_addr);
if (tu_edpt_dir(req) == dir_in) { /* DATA stage */
TU_ASSERT(total_bytes <= _dcd.remaining_ctrl);
const unsigned rem = _dcd.remaining_ctrl;
const unsigned len = TU_MIN(TU_MIN(rem, 64), total_bytes);
if (dir_in) {
pipe_write_packet(buffer, (volatile void*) USBC_REG_EPFIFO0(USBC0_BASE), len);
_dcd.pipe0.buf = buffer + len;
_dcd.pipe0.length = len;
_dcd.pipe0.remaining = 0;
_dcd.remaining_ctrl = rem - len;
if ((len < 64) || (rem == len)) {
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID; /* Change to STATUS/SETUP stage */
_dcd.status_out = 1;
/* Flush TX FIFO and reverse the transaction direction. */
__USBC_Dev_ep0_WriteDataComplete();
} else {
__USBC_Dev_ep0_WriteDataHalf();
}
// TU_LOG1(" IN CSRL0 = %x\n", CSRL0);
} else {
// TU_LOG1(" OUT CSRL0 = %x\n", CSRL0);
_dcd.pipe0.buf = buffer;
_dcd.pipe0.length = len;
_dcd.pipe0.remaining = len;
__USBC_Dev_ep0_ReadDataHalf();
}
} else if (dir_in) {
// TU_LOG1(" STATUS IN CSRL0 = %x\n", CSRL0);
_dcd.pipe0.buf = NULL;
_dcd.pipe0.length = 0;
_dcd.pipe0.remaining = 0;
/* Clear RX FIFO and reverse the transaction direction */
__USBC_Dev_ep0_ReadDataComplete();
}
return true;
}
static void process_ep0(uint8_t rhport)
{
USBC_SelectActiveEp(0);
uint_fast8_t csrl = USBC_Readw(USBC_REG_CSR0(USBC0_BASE));
// TU_LOG1(" EP0 CSRL0 = %x\n", csrl);
if (csrl & USB_CSRL0_STALLED) {
/* Returned STALL packet to HOST. */
__USBC_Dev_ep0_ClearStall();
return;
}
unsigned req = _dcd.setup_packet.bmRequestType;
if (csrl & USB_CSRL0_SETEND) {
// TU_LOG1(" ABORT by the next packets\n");
USBC_Dev_Ctrl_ClearSetupEnd();
if (req != REQUEST_TYPE_INVALID && _dcd.pipe0.buf) {
/* DATA stage was aborted by receiving STATUS or SETUP packet. */
_dcd.pipe0.buf = NULL;
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
dcd_event_xfer_complete(rhport,
req & TUSB_DIR_IN_MASK,
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
}
req = REQUEST_TYPE_INVALID;
if (!(csrl & USB_CSRL0_RXRDY)) return; /* Received SETUP packet */
}
if (csrl & USB_CSRL0_RXRDY) {
/* Received SETUP or DATA OUT packet */
if (req == REQUEST_TYPE_INVALID) {
/* SETUP */
TU_ASSERT(sizeof(tusb_control_request_t) == USBC_Readw(USBC_REG_COUNT0(USBC0_BASE)),);
process_setup_packet(rhport);
return;
}
if (_dcd.pipe0.buf) {
/* DATA OUT */
const unsigned vld = USBC_Readw(USBC_REG_COUNT0(USBC0_BASE));
const unsigned rem = _dcd.pipe0.remaining;
const unsigned len = TU_MIN(TU_MIN(rem, 64), vld);
pipe_read_packet(_dcd.pipe0.buf, (volatile void*)USBC_REG_EPFIFO0(USBC0_BASE), len);
_dcd.pipe0.remaining = rem - len;
_dcd.remaining_ctrl -= len;
_dcd.pipe0.buf = NULL;
dcd_event_xfer_complete(rhport,
tu_edpt_addr(0, TUSB_DIR_OUT),
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
}
return;
}
/* When CSRL0 is zero, it means that completion of sending a any length packet
* or receiving a zero length packet. */
if (req != REQUEST_TYPE_INVALID && !tu_edpt_dir(req)) {
/* STATUS IN */
if (*(const uint16_t*)(uintptr_t)&_dcd.setup_packet == 0x0500) {
/* The address must be changed on completion of the control transfer. */
USBC_Dev_SetAddress((uint8_t)_dcd.setup_packet.wValue);
}
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
dcd_event_xfer_complete(rhport,
tu_edpt_addr(0, TUSB_DIR_IN),
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
return;
}
if (_dcd.pipe0.buf) {
/* DATA IN */
_dcd.pipe0.buf = NULL;
dcd_event_xfer_complete(rhport,
tu_edpt_addr(0, TUSB_DIR_IN),
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
}
}
static void process_edpt_n(uint8_t rhport, uint_fast8_t ep_addr)
{
bool completed;
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned epn = tu_edpt_number(ep_addr);
USBC_SelectActiveEp(epn);
if (dir_in) {
// TU_LOG1(" TXCSRL%d = %x\n", epn_minus1 + 1, regs->TXCSRL);
if (__USBC_Dev_Tx_IsEpStall()) {
__USBC_Dev_Tx_ClearStall();
return;
}
completed = handle_xfer_in(ep_addr);
} else {
// TU_LOG1(" RXCSRL%d = %x\n", epn_minus1 + 1, regs->RXCSRL);
if (__USBC_Dev_Rx_IsEpStall()) {
__USBC_Dev_Rx_ClearStall();
return;
}
completed = handle_xfer_out(ep_addr);
}
if (completed) {
pipe_state_t *pipe = &_dcd.pipe[dir_in][tu_edpt_number(ep_addr) - 1];
dcd_event_xfer_complete(rhport, ep_addr,
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
}
}
static void process_bus_reset(uint8_t rhport)
{
/* When bmRequestType is REQUEST_TYPE_INVALID(0xFF),
* a control transfer state is SETUP or STATUS stage. */
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
_dcd.status_out = 0;
/* When pipe0.buf has not NULL, DATA stage works in progress. */
_dcd.pipe0.buf = NULL;
USBC_Writew(1, USBC_REG_INTTxE(USBC0_BASE)); /* Enable only EP0 */
USBC_Writew(0, USBC_REG_INTRxE(USBC0_BASE));
dcd_event_bus_reset(rhport, USBC_Dev_QueryTransferMode(), true);
}
/*------------------------------------------------------------------
* Device API
*------------------------------------------------------------------*/
static void usb_isr_handler(void) {
dcd_int_handler(0);
}
void dcd_init(uint8_t rhport)
{
dcd_disconnect(rhport);
USBC_HardwareReset();
USBC_PhyConfig();
USBC_ConfigFIFO_Base();
USBC_EnableDpDmPullUp();
USBC_ForceIdToHigh(); // Force device mode
USBC_ForceVbusValidToHigh();
USBC_SelectBus(USBC_IO_TYPE_PIO, 0, 0);
dcd_edpt_close_all(rhport);
#if TUD_OPT_HIGH_SPEED
USBC_REG_set_bit_b(USBC_BP_POWER_D_HIGH_SPEED_EN, USBC_REG_PCTL(USBC0_BASE));
#else
USBC_REG_clear_bit_b(USBC_BP_POWER_D_HIGH_SPEED_EN, USBC_REG_PCTL(USBC0_BASE));
#endif
USBC_Writeb((1 << USBC_BP_INTUSBE_EN_SUSPEND)
| (1 << USBC_BP_INTUSBE_EN_RESUME)
| (1 << USBC_BP_INTUSBE_EN_RESET)
| (1 << USBC_BP_INTUSBE_EN_SOF)
| (1 << USBC_BP_INTUSBE_EN_DISCONNECT)
, USBC_REG_INTUSBE(USBC0_BASE));
f1c100s_intc_clear_pend(F1C100S_IRQ_USBOTG);
f1c100s_intc_set_isr(F1C100S_IRQ_USBOTG, usb_isr_handler);
dcd_connect(rhport);
}
// Connect by enabling internal pull-up resistor on D+/D-
void dcd_connect(uint8_t rhport)
{
(void)rhport;
USBC_REG_set_bit_b(USBC_BP_POWER_D_SOFT_CONNECT, USBC_REG_PCTL(USBC0_BASE));
}
// Disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(uint8_t rhport)
{
(void)rhport;
USBC_REG_clear_bit_b(USBC_BP_POWER_D_SOFT_CONNECT, USBC_REG_PCTL(USBC0_BASE));
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
(void) rhport;
(void) en;
// TODO implement later
}
void dcd_int_enable(uint8_t rhport)
{
(void)rhport;
f1c100s_intc_enable_irq(F1C100S_IRQ_USBOTG);
}
static void musb_int_mask(void)
{
f1c100s_intc_mask_irq(F1C100S_IRQ_USBOTG);
}
void dcd_int_disable(uint8_t rhport)
{
(void)rhport;
f1c100s_intc_disable_irq(F1C100S_IRQ_USBOTG);
}
static void musb_int_unmask(void)
{
f1c100s_intc_unmask_irq(F1C100S_IRQ_USBOTG);
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
(void)dev_addr;
_dcd.pipe0.buf = NULL;
_dcd.pipe0.length = 0;
_dcd.pipe0.remaining = 0;
/* Clear RX FIFO to return ACK. */
USBC_SelectActiveEp(0);
__USBC_Dev_ep0_ReadDataComplete();
}
// Wake up host
void dcd_remote_wakeup(uint8_t rhport)
{
(void)rhport;
USBC_REG_set_bit_b(USBC_BP_POWER_D_RESUME, USBC_REG_PCTL(USBC0_BASE));
delay_ms(10);
USBC_REG_clear_bit_b(USBC_BP_POWER_D_RESUME, USBC_REG_PCTL(USBC0_BASE));
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
#ifndef __ARMCC_VERSION
#define __clz __builtin_clz
#endif
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
uint16_t reg_val;
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned xfer = ep_desc->bmAttributes.xfer;
const unsigned mps = tu_edpt_packet_size(ep_desc);
TU_ASSERT(epn < TUP_DCD_ENDPOINT_MAX);
pipe_state_t *pipe = &_dcd.pipe[dir_in][epn - 1];
pipe->buf = NULL;
pipe->length = 0;
pipe->remaining = 0;
musb_int_mask();
// volatile hw_endpoint_t *regs = edpt_regs(epn - 1);
USBC_SelectActiveEp(epn);
if (dir_in) {
USBC_Writew(mps, USBC_REG_TXMAXP(USBC0_BASE));
reg_val = (1 << USBC_BP_TXCSR_D_MODE)
| (1 << USBC_BP_TXCSR_D_FLUSH_FIFO)
| (1 << USBC_BP_TXCSR_D_CLEAR_DATA_TOGGLE);
if (xfer == TUSB_XFER_ISOCHRONOUS)
reg_val |= (1 << USBC_BP_TXCSR_D_ISO);
USBC_Writew(reg_val, USBC_REG_TXCSR(USBC0_BASE));
USBC_INT_EnableTxEp(epn);
} else {
USBC_Writew(mps, USBC_REG_RXMAXP(USBC0_BASE));
reg_val = (1 << USBC_BP_RXCSR_D_FLUSH_FIFO)
| (1 << USBC_BP_RXCSR_D_CLEAR_DATA_TOGGLE);
if (xfer == TUSB_XFER_ISOCHRONOUS)
reg_val |= (1 << USBC_BP_RXCSR_D_ISO);
USBC_Writew(reg_val, USBC_REG_RXCSR(USBC0_BASE));
USBC_INT_EnableRxEp(epn);
}
/* Setup FIFO */
int size_in_log2_minus3 = 28 - TU_MIN(28, __clz((uint32_t)mps));
if ((8u << size_in_log2_minus3) < mps) ++size_in_log2_minus3;
unsigned addr = find_free_memory(size_in_log2_minus3);
TU_ASSERT(addr);
if (dir_in) {
USBC_Writew(addr, USBC_REG_TXFIFOAD(USBC0_BASE));
USBC_Writeb(size_in_log2_minus3, USBC_REG_TXFIFOSZ(USBC0_BASE));
} else {
USBC_Writew(addr, USBC_REG_RXFIFOAD(USBC0_BASE));
USBC_Writeb(size_in_log2_minus3, USBC_REG_RXFIFOSZ(USBC0_BASE));
}
musb_int_unmask();
return true;
}
void dcd_edpt_close_all(uint8_t rhport)
{
(void) rhport;
musb_int_mask();
USBC_Writew(1, USBC_REG_INTTxE(USBC0_BASE)); /* Enable only EP0 */
USBC_Writew(0, USBC_REG_INTRxE(USBC0_BASE));
for (unsigned i = 1; i < TUP_DCD_ENDPOINT_MAX; ++i) {
USBC_SelectActiveEp(i);
USBC_Writew(0, USBC_REG_TXMAXP(USBC0_BASE));
USBC_Writew((1 << USBC_BP_TXCSR_D_MODE) | (1 << USBC_BP_TXCSR_D_CLEAR_DATA_TOGGLE) | (1 << USBC_BP_TXCSR_D_FLUSH_FIFO),
USBC_REG_TXCSR(USBC0_BASE));
USBC_Writew(0, USBC_REG_RXMAXP(USBC0_BASE));
USBC_Writew((1 << USBC_BP_RXCSR_D_CLEAR_DATA_TOGGLE) | (1 << USBC_BP_RXCSR_D_FLUSH_FIFO),
USBC_REG_RXCSR(USBC0_BASE));
USBC_Writew(0, USBC_REG_TXFIFOAD(USBC0_BASE));
USBC_Writeb(0, USBC_REG_TXFIFOSZ(USBC0_BASE));
USBC_Writew(0, USBC_REG_RXFIFOAD(USBC0_BASE));
USBC_Writeb(0, USBC_REG_RXFIFOSZ(USBC0_BASE));
}
musb_int_unmask();
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
unsigned const epn = tu_edpt_number(ep_addr);
unsigned const dir_in = tu_edpt_dir(ep_addr);
musb_int_mask();
USBC_SelectActiveEp(epn);
if (dir_in) {
USBC_INT_DisableTxEp(epn);
USBC_Writew(0, USBC_REG_TXMAXP(USBC0_BASE));
USBC_Writew((1 << USBC_BP_TXCSR_D_MODE) | (1 << USBC_BP_TXCSR_D_CLEAR_DATA_TOGGLE) | (1 << USBC_BP_TXCSR_D_FLUSH_FIFO),
USBC_REG_TXCSR(USBC0_BASE));
USBC_Writew(0, USBC_REG_TXFIFOAD(USBC0_BASE));
USBC_Writeb(0, USBC_REG_TXFIFOSZ(USBC0_BASE));
} else {
USBC_INT_DisableRxEp(epn);
USBC_Writew(0, USBC_REG_RXMAXP(USBC0_BASE));
USBC_Writew((1 << USBC_BP_RXCSR_D_CLEAR_DATA_TOGGLE) | (1 << USBC_BP_RXCSR_D_FLUSH_FIFO),
USBC_REG_RXCSR(USBC0_BASE));
USBC_Writew(0, USBC_REG_RXFIFOAD(USBC0_BASE));
USBC_Writeb(0, USBC_REG_RXFIFOSZ(USBC0_BASE));
}
musb_int_unmask();
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void)rhport;
bool ret;
// TU_LOG1("X %x %d\n", ep_addr, total_bytes);
unsigned const epnum = tu_edpt_number(ep_addr);
musb_int_mask();
if (epnum) {
_dcd.pipe_buf_is_fifo[tu_edpt_dir(ep_addr)] &= ~TU_BIT(epnum - 1);
ret = edpt_n_xfer(rhport, ep_addr, buffer, total_bytes);
} else {
ret = edpt0_xfer(rhport, ep_addr, buffer, total_bytes);
}
musb_int_unmask();
return ret;
}
// Submit a transfer where is managed by FIFO, When complete dcd_event_xfer_complete() is invoked to notify the stack - optional, however, must be listed in usbd.c
bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
(void)rhport;
bool ret;
// TU_LOG1("X %x %d\n", ep_addr, total_bytes);
unsigned const epnum = tu_edpt_number(ep_addr);
TU_ASSERT(epnum);
musb_int_mask();
_dcd.pipe_buf_is_fifo[tu_edpt_dir(ep_addr)] |= TU_BIT(epnum - 1);
ret = edpt_n_xfer(rhport, ep_addr, (uint8_t*)ff, total_bytes);
musb_int_unmask();
return ret;
}
// Stall endpoint
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
unsigned const epn = tu_edpt_number(ep_addr);
musb_int_mask();
USBC_SelectActiveEp(epn);
if (0 == epn) {
if (!ep_addr) { /* Ignore EP80 */
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
_dcd.pipe0.buf = NULL;
__USBC_Dev_ep0_SendStall();
}
} else {
if (tu_edpt_dir(ep_addr)) { /* IN */
__USBC_Dev_Tx_SendStall();
} else { /* OUT */
TU_ASSERT(!__USBC_Dev_Rx_IsReadDataReady(),);
__USBC_Dev_Rx_SendStall();
}
}
musb_int_unmask();
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
unsigned const epn = tu_edpt_number(ep_addr);
musb_int_mask();
USBC_SelectActiveEp(epn);
if (0 != epn) {
if (tu_edpt_dir(ep_addr)) { /* IN */
__USBC_Dev_Tx_ClearStall();
} else { /* OUT */
__USBC_Dev_Rx_ClearStall();
}
}
musb_int_unmask();
}
void dcd_int_handler(uint8_t rhport)
{
uint8_t is;
uint16_t txis, rxis;
is = USBC_Readb(USBC_REG_INTUSB(USBC0_BASE)); /* read interrupt status */
txis = USBC_Readw(USBC_REG_INTTx(USBC0_BASE)); /* read interrupt status */
rxis = USBC_Readw(USBC_REG_INTRx(USBC0_BASE)); /* read interrupt status */
is &= USBC_Readb(USBC_REG_INTUSBE(USBC0_BASE)); /* ignore disabled interrupts */
USBC_Writeb(is, USBC_REG_INTUSB(USBC0_BASE)); /* sunxi musb requires a write to interrupt register to clear */
if (is & USBC_INTUSB_DISCONNECT) {
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
if (is & USBC_INTUSB_SOF) {
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
if (is & USBC_INTUSB_RESET) {
/* ep0 FADDR must be 0 when (re)entering peripheral mode */
USBC_SelectActiveEp(0);
USBC_Dev_SetAddress(0);
process_bus_reset(rhport);
}
if (is & USBC_INTUSB_RESUME) {
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
if (is & USBC_INTUSB_SUSPEND) {
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
txis &= USBC_Readw(USBC_REG_INTTxE(USBC0_BASE));
USBC_Writew(txis, USBC_REG_INTTx(USBC0_BASE));
if (txis & USBC_INTTx_FLAG_EP0) {
process_ep0(rhport);
txis &= ~TU_BIT(0);
}
while (txis) {
unsigned const num = __builtin_ctz(txis);
process_edpt_n(rhport, tu_edpt_addr(num, TUSB_DIR_IN));
txis &= ~TU_BIT(num);
}
rxis &= USBC_Readw(USBC_REG_INTRxE(USBC0_BASE));
USBC_Writew(rxis, USBC_REG_INTRx(USBC0_BASE));
while (rxis) {
unsigned const num = __builtin_ctz(rxis);
process_edpt_n(rhport, tu_edpt_addr(num, TUSB_DIR_OUT));
rxis &= ~TU_BIT(num);
}
}
#endif