espressif_tinyusb/src/portable/st/stm32_fsdev/dcd_stm32_fsdev.c

1173 lines
35 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Nathan Conrad
*
* Portions:
* Copyright (c) 2016 STMicroelectronics
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
/**********************************************
* This driver has been tested with the following MCUs:
* - F070, F072, L053, F042F6
*
* It also should work with minimal changes for any ST MCU with an "USB A"/"PCD"/"HCD" peripheral. This
* covers:
*
* F04x, F072, F078, 070x6/B 1024 byte buffer
* F102, F103 512 byte buffer; no internal D+ pull-up (maybe many more changes?)
* F302xB/C, F303xB/C, F373 512 byte buffer; no internal D+ pull-up
* F302x6/8, F302xD/E2, F303xD/E 1024 byte buffer; no internal D+ pull-up
* L0x2, L0x3 1024 byte buffer
* L1 512 byte buffer
* L4x2, L4x3 1024 byte buffer
*
* To use this driver, you must:
* - If you are using a device with crystal-less USB, set up the clock recovery system (CRS)
* - Remap pins to be D+/D- on devices that they are shared (for example: F042Fx)
* - This is different to the normal "alternate function" GPIO interface, needs to go through SYSCFG->CFGRx register
* - Enable USB clock; Perhaps use __HAL_RCC_USB_CLK_ENABLE();
* - (Optionally configure GPIO HAL to tell it the USB driver is using the USB pins)
* - call tusb_init();
* - periodically call tusb_task();
*
* Assumptions of the driver:
* - You are not using CAN (it must share the packet buffer)
* - APB clock is >= 10 MHz
* - On some boards, series resistors are required, but not on others.
* - On some boards, D+ pull up resistor (1.5kohm) is required, but not on others.
* - You don't have long-running interrupts; some USB packets must be quickly responded to.
* - You have the ST CMSIS library linked into the project. HAL is not used.
*
* Current driver limitations (i.e., a list of features for you to add):
* - STALL handled, but not tested.
* - Does it work? No clue.
* - All EP BTABLE buffers are created based on max packet size of first EP opened with that address.
* - No isochronous endpoints
* - Endpoint index is the ID of the endpoint
* - This means that priority is given to endpoints with lower ID numbers
* - Code is mixing up EP IX with EP ID. Everywhere.
* - Packet buffer memory is copied in the interrupt.
* - This is better for performance, but means interrupts are disabled for longer
* - DMA may be the best choice, but it could also be pushed to the USBD task.
* - No double-buffering
* - No DMA
* - Minimal error handling
* - Perhaps error interrupts should be reported to the stack, or cause a device reset?
* - Assumes a single USB peripheral; I think that no hardware has multiple so this is fine.
* - Add a callback for enabling/disabling the D+ PU on devices without an internal PU.
* - F3 models use three separate interrupts. I think we could only use the LP interrupt for
* everything? However, the interrupts are configurable so the DisableInt and EnableInt
* below functions could be adjusting the wrong interrupts (if they had been reconfigured)
* - LPM is not used correctly, or at all?
*
* USB documentation and Reference implementations
* - STM32 Reference manuals
* - STM32 USB Hardware Guidelines AN4879
*
* - STM32 HAL (much of this driver is based on this)
* - libopencm3/lib/stm32/common/st_usbfs_core.c
* - Keil USB Device http://www.keil.com/pack/doc/mw/USB/html/group__usbd.html
*
* - YouTube OpenTechLab 011; https://www.youtube.com/watch?v=4FOkJLp_PUw
*
* Advantages over HAL driver:
* - Tiny (saves RAM, assumes a single USB peripheral)
*
* Notes:
* - The buffer table is allocated as endpoints are opened. The allocation is only
* cleared when the device is reset. This may be bad if the USB device needs
* to be reconfigured.
*/
#include "tusb_option.h"
#if defined(STM32F102x6) || defined(STM32F102xB) || \
defined(STM32F103x6) || defined(STM32F103xB) || \
defined(STM32F103xE) || defined(STM32F103xG)
#define STM32F1_FSDEV
#endif
#if defined(STM32L412xx) || defined(STM32L422xx) || \
defined(STM32L432xx) || defined(STM32L433xx) || \
defined(STM32L442xx) || defined(STM32L443xx) || \
defined(STM32L452xx) || defined(STM32L462xx)
#define STM32L4_FSDEV
#endif
#if CFG_TUD_ENABLED && \
( TU_CHECK_MCU(OPT_MCU_STM32F0, OPT_MCU_STM32F3, OPT_MCU_STM32L0, OPT_MCU_STM32L1, OPT_MCU_STM32G4, OPT_MCU_STM32WB) || \
(TU_CHECK_MCU(OPT_MCU_STM32F1) && defined(STM32F1_FSDEV)) || \
(TU_CHECK_MCU(OPT_MCU_STM32L4) && defined(STM32L4_FSDEV)) \
)
// In order to reduce the dependence on HAL, we undefine this.
// Some definitions are copied to our private include file.
#undef USE_HAL_DRIVER
#include "device/dcd.h"
#include "portable/st/stm32_fsdev/dcd_stm32_fsdev_pvt_st.h"
/*****************************************************
* Configuration
*****************************************************/
// HW supports max of 8 bidirectional endpoints, but this can be reduced to save RAM
// (8u here would mean 8 IN and 8 OUT)
#ifndef MAX_EP_COUNT
# define MAX_EP_COUNT 8U
#endif
// If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it
// Both of these MUST be a multiple of 2, and are in byte units.
#ifndef DCD_STM32_BTABLE_BASE
# define DCD_STM32_BTABLE_BASE 0U
#endif
#ifndef DCD_STM32_BTABLE_LENGTH
# define DCD_STM32_BTABLE_LENGTH (PMA_LENGTH - DCD_STM32_BTABLE_BASE)
#endif
// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#ifndef USE_SOF
# define USE_SOF 0
#endif
/***************************************************
* Checks, structs, defines, function definitions, etc.
*/
TU_VERIFY_STATIC((MAX_EP_COUNT) <= STFSDEV_EP_COUNT, "Only 8 endpoints supported on the hardware");
TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) + (DCD_STM32_BTABLE_LENGTH))<=(PMA_LENGTH),
"BTABLE does not fit in PMA RAM");
TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) % 8) == 0, "BTABLE base must be aligned to 8 bytes");
// One of these for every EP IN & OUT, uses a bit of RAM....
typedef struct
{
uint8_t * buffer;
// tu_fifo_t * ff; // TODO support dcd_edpt_xfer_fifo API
uint16_t total_len;
uint16_t queued_len;
uint16_t pma_ptr;
uint8_t max_packet_size;
uint8_t pma_alloc_size;
} xfer_ctl_t;
static xfer_ctl_t xfer_status[MAX_EP_COUNT][2];
static inline xfer_ctl_t* xfer_ctl_ptr(uint32_t epnum, uint32_t dir)
{
return &xfer_status[epnum][dir];
}
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];
static uint8_t remoteWakeCountdown; // When wake is requested
// into the stack.
static void dcd_handle_bus_reset(void);
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix);
static void dcd_ep_ctr_handler(void);
// PMA allocation/access
static uint8_t open_ep_count;
static uint16_t ep_buf_ptr; ///< Points to first free memory location
static void dcd_pma_alloc_reset(void);
static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length);
static void dcd_pma_free(uint8_t ep_addr);
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes);
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes);
//static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes);
//static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes);
// Using a function due to better type checks
// This seems better than having to do type casts everywhere else
static inline void reg16_clear_bits(__IO uint16_t *reg, uint16_t mask) {
*reg = (uint16_t)(*reg & ~mask);
}
// Bits in ISTR are cleared upon writing 0
static inline void clear_istr_bits(uint16_t mask) {
USB->ISTR = ~mask;
}
void dcd_init (uint8_t rhport)
{
/* Clocks should already be enabled */
/* Use __HAL_RCC_USB_CLK_ENABLE(); to enable the clocks before calling this function */
/* The RM mentions to use a special ordering of PDWN and FRES, but this isn't done in HAL.
* Here, the RM is followed. */
for(uint32_t i = 0; i<200; i++) // should be a few us
{
asm("NOP");
}
// Perform USB peripheral reset
USB->CNTR = USB_CNTR_FRES | USB_CNTR_PDWN;
for(uint32_t i = 0; i<200; i++) // should be a few us
{
asm("NOP");
}
reg16_clear_bits(&USB->CNTR, USB_CNTR_PDWN);// Remove powerdown
// Wait startup time, for F042 and F070, this is <= 1 us.
for(uint32_t i = 0; i<200; i++) // should be a few us
{
asm("NOP");
}
USB->CNTR = 0; // Enable USB
USB->BTABLE = DCD_STM32_BTABLE_BASE;
USB->ISTR = 0; // Clear pending interrupts
// Reset endpoints to disabled
for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
{
// This doesn't clear all bits since some bits are "toggle", but does set the type to DISABLED.
pcd_set_endpoint(USB,i,0u);
}
USB->CNTR |= USB_CNTR_RESETM | (USE_SOF ? USB_CNTR_SOFM : 0) | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
dcd_handle_bus_reset();
// Enable pull-up if supported
if ( dcd_connect ) dcd_connect(rhport);
}
// Define only on MCU with internal pull-up. BSP can define on MCU without internal PU.
#if defined(USB_BCDR_DPPU)
// Disable internal D+ PU
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
USB->BCDR &= ~(USB_BCDR_DPPU);
}
// Enable internal D+ PU
void dcd_connect(uint8_t rhport)
{
(void) rhport;
USB->BCDR |= USB_BCDR_DPPU;
}
#elif defined(SYSCFG_PMC_USB_PU) // works e.g. on STM32L151
// Disable internal D+ PU
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
SYSCFG->PMC &= ~(SYSCFG_PMC_USB_PU);
}
// Enable internal D+ PU
void dcd_connect(uint8_t rhport)
{
(void) rhport;
SYSCFG->PMC |= SYSCFG_PMC_USB_PU;
}
#endif
void dcd_sof_enable(uint8_t rhport, bool en)
{
(void) rhport;
(void) en;
// TODO implement later
}
// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
(void)rhport;
// Member here forces write to RAM before allowing ISR to execute
__DSB();
__ISB();
#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0 || \
CFG_TUSB_MCU == OPT_MCU_STM32L4
NVIC_EnableIRQ(USB_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32L1
NVIC_EnableIRQ(USB_LP_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
// Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
// shared USB/CAN IRQs to separate CAN and USB IRQs.
// This dynamically checks if this remap is active to enable the right IRQs.
#ifdef SYSCFG_CFGR1_USB_IT_RMP
if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
{
NVIC_EnableIRQ(USB_HP_IRQn);
NVIC_EnableIRQ(USB_LP_IRQn);
NVIC_EnableIRQ(USBWakeUp_RMP_IRQn);
}
else
#endif
{
NVIC_EnableIRQ(USB_HP_CAN_TX_IRQn);
NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn);
NVIC_EnableIRQ(USBWakeUp_IRQn);
}
#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
NVIC_EnableIRQ(USB_HP_CAN1_TX_IRQn);
NVIC_EnableIRQ(USB_LP_CAN1_RX0_IRQn);
NVIC_EnableIRQ(USBWakeUp_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32G4
NVIC_EnableIRQ(USB_HP_IRQn);
NVIC_EnableIRQ(USB_LP_IRQn);
NVIC_EnableIRQ(USBWakeUp_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32WB
NVIC_EnableIRQ(USB_HP_IRQn);
NVIC_EnableIRQ(USB_LP_IRQn);
#else
#error Unknown arch in USB driver
#endif
}
// Disable device interrupt
void dcd_int_disable(uint8_t rhport)
{
(void)rhport;
#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0 || \
CFG_TUSB_MCU == OPT_MCU_STM32L4
NVIC_DisableIRQ(USB_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32L1
NVIC_DisableIRQ(USB_LP_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
// Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
// shared USB/CAN IRQs to separate CAN and USB IRQs.
// This dynamically checks if this remap is active to disable the right IRQs.
#ifdef SYSCFG_CFGR1_USB_IT_RMP
if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
{
NVIC_DisableIRQ(USB_HP_IRQn);
NVIC_DisableIRQ(USB_LP_IRQn);
NVIC_DisableIRQ(USBWakeUp_RMP_IRQn);
}
else
#endif
{
NVIC_DisableIRQ(USB_HP_CAN_TX_IRQn);
NVIC_DisableIRQ(USB_LP_CAN_RX0_IRQn);
NVIC_DisableIRQ(USBWakeUp_IRQn);
}
#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
NVIC_DisableIRQ(USB_HP_CAN1_TX_IRQn);
NVIC_DisableIRQ(USB_LP_CAN1_RX0_IRQn);
NVIC_DisableIRQ(USBWakeUp_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32G4
NVIC_DisableIRQ(USB_HP_IRQn);
NVIC_DisableIRQ(USB_LP_IRQn);
NVIC_DisableIRQ(USBWakeUp_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32WB
NVIC_DisableIRQ(USB_HP_IRQn);
NVIC_DisableIRQ(USB_LP_IRQn);
#else
#error Unknown arch in USB driver
#endif
// CMSIS has a membar after disabling interrupts
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
(void) dev_addr;
// Respond with status
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
// DCD can only set address after status for this request is complete.
// do it at dcd_edpt0_status_complete()
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
USB->CNTR |= (uint16_t) USB_CNTR_RESUME;
remoteWakeCountdown = 4u; // required to be 1 to 15 ms, ESOF should trigger every 1ms.
}
static const tusb_desc_endpoint_t ep0OUT_desc =
{
.bLength = sizeof(tusb_desc_endpoint_t),
.bDescriptorType = TUSB_DESC_ENDPOINT,
.bEndpointAddress = 0x00,
.bmAttributes = { .xfer = TUSB_XFER_CONTROL },
.wMaxPacketSize = CFG_TUD_ENDPOINT0_SIZE,
.bInterval = 0
};
static const tusb_desc_endpoint_t ep0IN_desc =
{
.bLength = sizeof(tusb_desc_endpoint_t),
.bDescriptorType = TUSB_DESC_ENDPOINT,
.bEndpointAddress = 0x80,
.bmAttributes = { .xfer = TUSB_XFER_CONTROL },
.wMaxPacketSize = CFG_TUD_ENDPOINT0_SIZE,
.bInterval = 0
};
static void dcd_handle_bus_reset(void)
{
//__IO uint16_t * const epreg = &(EPREG(0));
USB->DADDR = 0u; // disable USB peripheral by clearing the EF flag
// Clear all EPREG (or maybe this is automatic? I'm not sure)
for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
{
pcd_set_endpoint(USB,i,0u);
}
dcd_pma_alloc_reset();
dcd_edpt_open (0, &ep0OUT_desc);
dcd_edpt_open (0, &ep0IN_desc);
USB->DADDR = USB_DADDR_EF; // Set enable flag, and leaving the device address as zero.
}
// Handle CTR interrupt for the TX/IN direction
//
// Upon call, (wIstr & USB_ISTR_DIR) == 0U
static void dcd_ep_ctr_tx_handler(uint32_t wIstr)
{
uint32_t EPindex = wIstr & USB_ISTR_EP_ID;
uint32_t wEPRegVal = pcd_get_endpoint(USB, EPindex);
// Verify the CTR_TX bit is set. This was in the ST Micro code,
// but I'm not sure it's actually necessary?
if((wEPRegVal & USB_EP_CTR_TX) == 0U)
{
return;
}
/* clear int flag */
pcd_clear_tx_ep_ctr(USB, EPindex);
xfer_ctl_t * xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_IN);
if((xfer->total_len != xfer->queued_len)) /* TX not complete */
{
dcd_transmit_packet(xfer, EPindex);
}
else /* TX Complete */
{
dcd_event_xfer_complete(0, (uint8_t)(0x80 + EPindex), xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
// Handle CTR interrupt for the RX/OUT direction
//
// Upon call, (wIstr & USB_ISTR_DIR) == 0U
static void dcd_ep_ctr_rx_handler(uint32_t wIstr)
{
uint32_t EPindex = wIstr & USB_ISTR_EP_ID;
uint32_t wEPRegVal = pcd_get_endpoint(USB, EPindex);
uint32_t count = pcd_get_ep_rx_cnt(USB,EPindex);
xfer_ctl_t *xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_OUT);
// Verify the CTR_RX bit is set. This was in the ST Micro code,
// but I'm not sure it's actually necessary?
if((wEPRegVal & USB_EP_CTR_RX) == 0U)
{
return;
}
if((EPindex == 0U) && ((wEPRegVal & USB_EP_SETUP) != 0U)) /* Setup packet */
{
// The setup_received function uses memcpy, so this must first copy the setup data into
// user memory, to allow for the 32-bit access that memcpy performs.
uint8_t userMemBuf[8];
/* Get SETUP Packet*/
if(count == 8) // Setup packet should always be 8 bytes. If not, ignore it, and try again.
{
// Must reset EP to NAK (in case it had been stalling) (though, maybe too late here)
pcd_set_ep_rx_status(USB,0u,USB_EP_RX_NAK);
pcd_set_ep_tx_status(USB,0u,USB_EP_TX_NAK);
dcd_read_packet_memory(userMemBuf, *pcd_ep_rx_address_ptr(USB,EPindex), 8);
dcd_event_setup_received(0, (uint8_t*)userMemBuf, true);
}
}
else
{
// Clear RX CTR interrupt flag
if(EPindex != 0u)
{
pcd_clear_rx_ep_ctr(USB, EPindex);
}
if (count != 0U)
{
#if 0 // TODO support dcd_edpt_xfer_fifo API
if (xfer->ff)
{
dcd_read_packet_memory_ff(xfer->ff, *pcd_ep_rx_address_ptr(USB,EPindex), count);
}
else
#endif
{
dcd_read_packet_memory(&(xfer->buffer[xfer->queued_len]), *pcd_ep_rx_address_ptr(USB,EPindex), count);
}
xfer->queued_len = (uint16_t)(xfer->queued_len + count);
}
if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len))
{
/* RX COMPLETE */
dcd_event_xfer_complete(0, EPindex, xfer->queued_len, XFER_RESULT_SUCCESS, true);
// Though the host could still send, we don't know.
// Does the bulk pipe need to be reset to valid to allow for a ZLP?
}
else
{
uint32_t remaining = (uint32_t)xfer->total_len - (uint32_t)xfer->queued_len;
if(remaining >= xfer->max_packet_size) {
pcd_set_ep_rx_cnt(USB, EPindex,xfer->max_packet_size);
} else {
pcd_set_ep_rx_cnt(USB, EPindex,remaining);
}
pcd_set_ep_rx_status(USB, EPindex, USB_EP_RX_VALID);
}
}
// For EP0, prepare to receive another SETUP packet.
// Clear CTR last so that a new packet does not overwrite the packing being read.
// (Based on the docs, it seems SETUP will always be accepted after CTR is cleared)
if(EPindex == 0u)
{
// Always be prepared for a status packet...
pcd_set_ep_rx_cnt(USB, EPindex, CFG_TUD_ENDPOINT0_SIZE);
pcd_clear_rx_ep_ctr(USB, EPindex);
}
}
static void dcd_ep_ctr_handler(void)
{
uint32_t wIstr;
/* stay in loop while pending interrupts */
while (((wIstr = USB->ISTR) & USB_ISTR_CTR) != 0U)
{
if ((wIstr & USB_ISTR_DIR) == 0U) /* TX/IN */
{
dcd_ep_ctr_tx_handler(wIstr);
}
else /* RX/OUT*/
{
dcd_ep_ctr_rx_handler(wIstr);
}
}
}
void dcd_int_handler(uint8_t rhport) {
(void) rhport;
uint32_t int_status = USB->ISTR;
//const uint32_t handled_ints = USB_ISTR_CTR | USB_ISTR_RESET | USB_ISTR_WKUP
// | USB_ISTR_SUSP | USB_ISTR_SOF | USB_ISTR_ESOF;
// unused IRQs: (USB_ISTR_PMAOVR | USB_ISTR_ERR | USB_ISTR_L1REQ )
// The ST driver loops here on the CTR bit, but that loop has been moved into the
// dcd_ep_ctr_handler(), so less need to loop here. The other interrupts shouldn't
// be triggered repeatedly.
if(int_status & USB_ISTR_RESET) {
// USBRST is start of reset.
clear_istr_bits(USB_ISTR_RESET);
dcd_handle_bus_reset();
dcd_event_bus_reset(0, TUSB_SPEED_FULL, true);
return; // Don't do the rest of the things here; perhaps they've been cleared?
}
if (int_status & USB_ISTR_CTR)
{
/* servicing of the endpoint correct transfer interrupt */
/* clear of the CTR flag into the sub */
dcd_ep_ctr_handler();
}
if (int_status & USB_ISTR_WKUP)
{
reg16_clear_bits(&USB->CNTR, USB_CNTR_LPMODE);
reg16_clear_bits(&USB->CNTR, USB_CNTR_FSUSP);
clear_istr_bits(USB_ISTR_WKUP);
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
if (int_status & USB_ISTR_SUSP)
{
/* Suspend is asserted for both suspend and unplug events. without Vbus monitoring,
* these events cannot be differentiated, so we only trigger suspend. */
/* Force low-power mode in the macrocell */
USB->CNTR |= USB_CNTR_FSUSP;
USB->CNTR |= USB_CNTR_LPMODE;
/* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
clear_istr_bits(USB_ISTR_SUSP);
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
#if USE_SOF
if(int_status & USB_ISTR_SOF) {
clear_istr_bits(USB_ISTR_SOF);
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
#endif
if(int_status & USB_ISTR_ESOF) {
if(remoteWakeCountdown == 1u)
{
USB->CNTR &= (uint16_t)(~USB_CNTR_RESUME);
}
if(remoteWakeCountdown > 0u)
{
remoteWakeCountdown--;
}
clear_istr_bits(USB_ISTR_ESOF);
}
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
// Setting new address after the whole request is complete
reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
USB->DADDR = (uint16_t)(USB->DADDR | dev_addr); // leave the enable bit set
}
}
static void dcd_pma_alloc_reset(void)
{
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
//TU_LOG2("dcd_pma_alloc_reset()\r\n");
for(uint32_t i=0; i<MAX_EP_COUNT; i++)
{
xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_alloc_size = 0U;
xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_alloc_size = 0U;
xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_ptr = 0U;
xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_ptr = 0U;
}
}
/***
* Allocate a section of PMA
*
* If the EP number has already been allocated, and the new allocation
* is larger than the old allocation, then this will fail with a TU_ASSERT.
* (This is done to simplify the code. More complicated algorithms could be used)
*
* During failure, TU_ASSERT is used. If this happens, rework/reallocate memory manually.
*/
static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t* epXferCtl = xfer_ctl_ptr(epnum,dir);
if(epXferCtl->pma_alloc_size != 0U)
{
//TU_LOG2("dcd_pma_alloc(%x,%x)=%x (cached)\r\n",ep_addr,length,epXferCtl->pma_ptr);
// Previously allocated
TU_ASSERT(length <= epXferCtl->pma_alloc_size, 0xFFFF); // Verify no larger than previous alloc
return epXferCtl->pma_ptr;
}
uint16_t addr = ep_buf_ptr;
ep_buf_ptr = (uint16_t)(ep_buf_ptr + length); // increment buffer pointer
// Verify no overflow
TU_ASSERT(ep_buf_ptr <= PMA_LENGTH, 0xFFFF);
epXferCtl->pma_ptr = addr;
epXferCtl->pma_alloc_size = length;
//TU_LOG2("dcd_pma_alloc(%x,%x)=%x\r\n",ep_addr,length,addr);
return addr;
}
/***
* Free a block of PMA space
*/
static void dcd_pma_free(uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// Presently, this should never be called for EP0 IN/OUT
TU_ASSERT(open_ep_count > 2, /**/);
TU_ASSERT(xfer_ctl_ptr(epnum,dir)->max_packet_size != 0, /**/);
open_ep_count--;
// If count is 2, only EP0 should be open, so allocations can be mostly reset.
if(open_ep_count == 2)
{
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT + 2*CFG_TUD_ENDPOINT0_SIZE; // 8 bytes per endpoint (two TX and two RX words, each), and EP0
// Skip EP0
for(uint32_t i=1; i<MAX_EP_COUNT; i++)
{
xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_alloc_size = 0U;
xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_alloc_size = 0U;
xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_ptr = 0U;
xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_ptr = 0U;
}
}
}
// The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers,
// so I'm using the #define from HAL here, instead.
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void)rhport;
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
const uint16_t epMaxPktSize = tu_edpt_packet_size(p_endpoint_desc);
uint16_t pma_addr;
uint32_t wType;
// Isochronous not supported (yet), and some other driver assumptions.
TU_ASSERT(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
TU_ASSERT(epnum < MAX_EP_COUNT);
// Set type
switch(p_endpoint_desc->bmAttributes.xfer) {
case TUSB_XFER_CONTROL:
wType = USB_EP_CONTROL;
break;
#if (0)
case TUSB_XFER_ISOCHRONOUS: // FIXME: Not yet supported
wType = USB_EP_ISOCHRONOUS;
break;
#endif
case TUSB_XFER_BULK:
wType = USB_EP_CONTROL;
break;
case TUSB_XFER_INTERRUPT:
wType = USB_EP_INTERRUPT;
break;
default:
TU_ASSERT(false);
}
pcd_set_eptype(USB, epnum, wType);
pcd_set_ep_address(USB, epnum, epnum);
// Be normal, for now, instead of only accepting zero-byte packets (on control endpoint)
// or being double-buffered (bulk endpoints)
pcd_clear_ep_kind(USB,0);
pma_addr = dcd_pma_alloc(p_endpoint_desc->bEndpointAddress, epMaxPktSize);
if(dir == TUSB_DIR_IN)
{
*pcd_ep_tx_address_ptr(USB, epnum) = pma_addr;
pcd_set_ep_tx_cnt(USB, epnum, epMaxPktSize);
pcd_clear_tx_dtog(USB, epnum);
pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_NAK);
}
else
{
*pcd_ep_rx_address_ptr(USB, epnum) = pma_addr;
pcd_set_ep_rx_cnt(USB, epnum, epMaxPktSize);
pcd_clear_rx_dtog(USB, epnum);
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_NAK);
}
xfer_ctl_ptr(epnum, dir)->max_packet_size = epMaxPktSize;
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
/**
* Close an endpoint.
*
* This function may be called with interrupts enabled or disabled.
*
* This also clears transfers in progress, should there be any.
*/
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
uint32_t const epnum = tu_edpt_number(ep_addr);
uint32_t const dir = tu_edpt_dir(ep_addr);
if(dir == TUSB_DIR_IN)
{
pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_DIS);
}
else
{
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_DIS);
}
dcd_pma_free(ep_addr);
}
// Currently, single-buffered, and only 64 bytes at a time (max)
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix)
{
uint16_t len = (uint16_t)(xfer->total_len - xfer->queued_len);
if(len > xfer->max_packet_size) // max packet size for FS transfer
{
len = xfer->max_packet_size;
}
uint16_t oldAddr = *pcd_ep_tx_address_ptr(USB,ep_ix);
#if 0 // TODO support dcd_edpt_xfer_fifo API
if (xfer->ff)
{
dcd_write_packet_memory_ff(xfer->ff, oldAddr, len);
}
else
#endif
{
dcd_write_packet_memory(oldAddr, &(xfer->buffer[xfer->queued_len]), len);
}
xfer->queued_len = (uint16_t)(xfer->queued_len + len);
pcd_set_ep_tx_cnt(USB,ep_ix,len);
pcd_set_ep_tx_status(USB, ep_ix, USB_EP_TX_VALID);
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir);
xfer->buffer = buffer;
// xfer->ff = NULL; // TODO support dcd_edpt_xfer_fifo API
xfer->total_len = total_bytes;
xfer->queued_len = 0;
if ( dir == TUSB_DIR_OUT )
{
// A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid
// buffer for the control endpoint.
if (epnum == 0 && buffer == NULL)
{
xfer->buffer = (uint8_t*)_setup_packet;
}
if(total_bytes > xfer->max_packet_size)
{
pcd_set_ep_rx_cnt(USB,epnum,xfer->max_packet_size);
} else {
pcd_set_ep_rx_cnt(USB,epnum,total_bytes);
}
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_VALID);
}
else // IN
{
dcd_transmit_packet(xfer,epnum);
}
return true;
}
#if 0 // TODO support dcd_edpt_xfer_fifo API
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir);
xfer->buffer = NULL;
// xfer->ff = ff; // TODO support dcd_edpt_xfer_fifo API
xfer->total_len = total_bytes;
xfer->queued_len = 0;
if ( dir == TUSB_DIR_OUT )
{
if(total_bytes > xfer->max_packet_size)
{
pcd_set_ep_rx_cnt(USB,epnum,xfer->max_packet_size);
} else {
pcd_set_ep_rx_cnt(USB,epnum,total_bytes);
}
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_VALID);
}
else // IN
{
dcd_transmit_packet(xfer,epnum);
}
return true;
}
#endif
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
if (ep_addr & 0x80)
{ // IN
pcd_set_ep_tx_status(USB, ep_addr & 0x7F, USB_EP_TX_STALL);
}
else
{ // OUT
pcd_set_ep_rx_status(USB, ep_addr, USB_EP_RX_STALL);
}
}
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
if (ep_addr & 0x80)
{ // IN
ep_addr &= 0x7F;
pcd_set_ep_tx_status(USB,ep_addr, USB_EP_TX_NAK);
/* Reset to DATA0 if clearing stall condition. */
pcd_clear_tx_dtog(USB,ep_addr);
}
else
{ // OUT
/* Reset to DATA0 if clearing stall condition. */
pcd_clear_rx_dtog(USB,ep_addr);
pcd_set_ep_rx_status(USB,ep_addr, USB_EP_RX_NAK);
}
}
// Packet buffer access can only be 8- or 16-bit.
/**
* @brief Copy a buffer from user memory area to packet memory area (PMA).
* This uses byte-access for user memory (so support non-aligned buffers)
* and 16-bit access for packet memory.
* @param dst, byte address in PMA; must be 16-bit aligned
* @param src pointer to user memory area.
* @param wPMABufAddr address into PMA.
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes)
{
uint32_t n = ((uint32_t)wNBytes + 1U) >> 1U;
uint32_t i;
uint16_t temp1, temp2;
const uint8_t * srcVal;
// The GCC optimizer will combine access to 32-bit sizes if we let it. Force
// it volatile so that it won't do that.
__IO uint16_t *pdwVal;
srcVal = src;
pdwVal = &pma[PMA_STRIDE*(dst>>1)];
for (i = n; i != 0; i--)
{
temp1 = (uint16_t) *srcVal;
srcVal++;
temp2 = temp1 | ((uint16_t)((uint16_t) ((*srcVal) << 8U))) ;
*pdwVal = temp2;
pdwVal += PMA_STRIDE;
srcVal++;
}
return true;
}
#if 0 // TODO support dcd_edpt_xfer_fifo API
/**
* @brief Copy from FIFO to packet memory area (PMA).
* Uses byte-access of system memory and 16-bit access of packet memory
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
// THIS FUNCTION IS UNTESTED
static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes)
{
// Since we copy from a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
// Check for first linear part
void * src;
uint16_t len = tu_fifo_get_linear_read_info(ff, 0, &src, wNBytes); // We want to read from the FIFO - THIS FUNCTION CHANGED!!!
TU_VERIFY(len && dcd_write_packet_memory(dst, src, len)); // and write it into the PMA
tu_fifo_advance_read_pointer(ff, len);
// Check for wrapped part
if (len < wNBytes)
{
// Get remaining wrapped length
uint16_t len2 = tu_fifo_get_linear_read_info(ff, 0, &src, wNBytes - len);
TU_VERIFY(len2);
// Update destination pointer
dst += len;
// Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split
if (len % 2) // If len is uneven there is a byte left to copy
{
// Since PMA can accessed only 16 bit-wise we copy the last byte again
tu_fifo_backward_read_pointer(ff, 1); // Move one byte back and copy two bytes for the PMA
tu_fifo_read_n(ff, (void *) &pma[PMA_STRIDE*(dst>>1)], 2); // Since EP FIFOs must be of item size 1 this is safe to do
dst++;
len2--;
}
TU_VERIFY(dcd_write_packet_memory(dst, src, len2));
tu_fifo_advance_write_pointer(ff, len2);
}
return true;
}
#endif
/**
* @brief Copy a buffer from packet memory area (PMA) to user memory area.
* Uses byte-access of system memory and 16-bit access of packet memory
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes)
{
uint32_t n = (uint32_t)wNBytes >> 1U;
uint32_t i;
// The GCC optimizer will combine access to 32-bit sizes if we let it. Force
// it volatile so that it won't do that.
__IO const uint16_t *pdwVal;
uint32_t temp;
pdwVal = &pma[PMA_STRIDE*(src>>1)];
uint8_t *dstVal = (uint8_t*)dst;
for (i = n; i != 0U; i--)
{
temp = *pdwVal;
pdwVal += PMA_STRIDE;
*dstVal++ = ((temp >> 0) & 0xFF);
*dstVal++ = ((temp >> 8) & 0xFF);
}
if (wNBytes % 2)
{
temp = *pdwVal;
pdwVal += PMA_STRIDE;
*dstVal++ = ((temp >> 0) & 0xFF);
}
return true;
}
#if 0 // TODO support dcd_edpt_xfer_fifo API
/**
* @brief Copy a buffer from user packet memory area (PMA) to FIFO.
* Uses byte-access of system memory and 16-bit access of packet memory
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
// THIS FUNCTION IS UNTESTED
static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes)
{
// Since we copy into a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
// Check for first linear part
void * dst;
uint16_t len = tu_fifo_get_linear_write_info(ff, 0, &dst, wNBytes); // THIS FUNCTION CHANGED!!!!
TU_VERIFY(len && dcd_read_packet_memory(dst, src, len));
tu_fifo_advance_write_pointer(ff, len);
// Check for wrapped part
if (len < wNBytes)
{
// Get remaining wrapped length
uint16_t len2 = tu_fifo_get_linear_write_info(ff, 0, &dst, wNBytes - len);
TU_VERIFY(len2);
// Update source pointer
src += len;
// Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split
if (len % 2) // If len is uneven there is a byte left to copy
{
uint32_t temp = pma[PMA_STRIDE*(src>>1)];
*((uint8_t *)dst++) = ((temp >> 8) & 0xFF);
src++;
len2--;
}
TU_VERIFY(dcd_read_packet_memory(dst, src, len2));
tu_fifo_advance_write_pointer(ff, len2);
}
return true;
}
#endif
#endif