espressif_tinyusb/src/portable/microchip/samx7x/dcd_samx7x.c

777 lines
23 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
* Copyright (c) 2021, HiFiPhile
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && CFG_TUSB_MCU == OPT_MCU_SAMX7X
#include "device/dcd.h"
#include "sam.h"
#include "common_usb_regs.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#ifndef USE_SOF
# define USE_SOF 0
#endif
// Dual bank can improve performance, but need 2 times bigger packet buffer
// As SAM7x has only 4KB packet buffer, use with caution !
// Enable in FS mode as packets are smaller
#ifndef USE_DUAL_BANK
# if TUD_OPT_HIGH_SPEED
# define USE_DUAL_BANK 0
# else
# define USE_DUAL_BANK 1
# endif
#endif
#define EP_GET_FIFO_PTR(ep, scale) (((TU_XSTRCAT(TU_STRCAT(uint, scale),_t) (*)[0x8000 / ((scale) / 8)])FIFO_RAM_ADDR)[(ep)])
// DMA Channel Transfer Descriptor
typedef struct {
volatile uint32_t next_desc;
volatile uint32_t buff_addr;
volatile uint32_t chnl_ctrl;
uint32_t padding;
} dma_desc_t;
// Transfer control context
typedef struct {
uint8_t * buffer;
uint16_t total_len;
uint16_t queued_len;
uint16_t max_packet_size;
uint8_t interval;
tu_fifo_t * fifo;
} xfer_ctl_t;
static tusb_speed_t get_speed(void);
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint8_t ep_ix);
// DMA descriptors shouldn't be placed in ITCM !
CFG_TUSB_MEM_SECTION static dma_desc_t dma_desc[6];
static xfer_ctl_t xfer_status[EP_MAX];
static const tusb_desc_endpoint_t ep0_desc =
{
.bEndpointAddress = 0x00,
.wMaxPacketSize = CFG_TUD_ENDPOINT0_SIZE,
};
TU_ATTR_ALWAYS_INLINE static inline void CleanInValidateCache(uint32_t *addr, int32_t size)
{
if (SCB->CCR & SCB_CCR_DC_Msk)
{
SCB_CleanInvalidateDCache_by_Addr(addr, size);
}
else
{
__DSB();
__ISB();
}
}
//------------------------------------------------------------------
// Device API
//------------------------------------------------------------------
// Initialize controller to device mode
void dcd_init (uint8_t rhport)
{
dcd_connect(rhport);
}
// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ((IRQn_Type) ID_USBHS);
}
// Disable device interrupt
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ((IRQn_Type) ID_USBHS);
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) dev_addr;
// DCD can only set address after status for this request is complete
// do it at dcd_edpt0_status_complete()
// Response with zlp status
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}
// Wake up host
void dcd_remote_wakeup (uint8_t rhport)
{
(void) rhport;
USB_REG->DEVCTRL |= DEVCTRL_RMWKUP;
}
// Connect by enabling internal pull-up resistor on D+/D-
void dcd_connect(uint8_t rhport)
{
(void) rhport;
dcd_int_disable(rhport);
// Enable the USB controller in device mode
USB_REG->CTRL = CTRL_UIMOD | CTRL_USBE;
while (!(USB_REG->SR & SR_CLKUSABLE));
#if TUD_OPT_HIGH_SPEED
USB_REG->DEVCTRL &= ~DEVCTRL_SPDCONF;
#else
USB_REG->DEVCTRL |= DEVCTRL_SPDCONF_LOW_POWER;
#endif
// Enable the End Of Reset, Suspend & Wakeup interrupts
USB_REG->DEVIER = (DEVIER_EORSTES | DEVIER_SUSPES | DEVIER_WAKEUPES);
#if USE_SOF
USB_REG->DEVIER = DEVIER_SOFES;
#endif
// Clear the End Of Reset, SOF & Wakeup interrupts
USB_REG->DEVICR = (DEVICR_EORSTC | DEVICR_SOFC | DEVICR_WAKEUPC);
// Manually set the Suspend Interrupt
USB_REG->DEVIFR |= DEVIFR_SUSPS;
// Ack the Wakeup Interrupt
USB_REG->DEVICR = DEVICR_WAKEUPC;
// Attach the device
USB_REG->DEVCTRL &= ~DEVCTRL_DETACH;
// Freeze USB clock
USB_REG->CTRL |= CTRL_FRZCLK;
}
// Disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
dcd_int_disable(rhport);
// Disable all endpoints
USB_REG->DEVEPT &= ~(0x3FF << DEVEPT_EPEN0_Pos);
// Unfreeze USB clock
USB_REG->CTRL &= ~CTRL_FRZCLK;
while (!(USB_REG->SR & SR_CLKUSABLE));
// Clear all the pending interrupts
USB_REG->DEVICR = DEVICR_Msk;
// Disable all interrupts
USB_REG->DEVIDR = DEVIDR_Msk;
// Detach the device
USB_REG->DEVCTRL |= DEVCTRL_DETACH;
// Disable the device address
USB_REG->DEVCTRL &=~(DEVCTRL_ADDEN | DEVCTRL_UADD);
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
(void) rhport;
(void) en;
// TODO implement later
}
static tusb_speed_t get_speed(void)
{
switch (USB_REG->SR & SR_SPEED) {
case SR_SPEED_FULL_SPEED:
default:
return TUSB_SPEED_FULL;
case SR_SPEED_HIGH_SPEED:
return TUSB_SPEED_HIGH;
case SR_SPEED_LOW_SPEED:
return TUSB_SPEED_LOW;
}
}
static void dcd_ep_handler(uint8_t ep_ix)
{
uint32_t int_status = USB_REG->DEVEPTISR[ep_ix];
int_status &= USB_REG->DEVEPTIMR[ep_ix];
uint16_t count = (USB_REG->DEVEPTISR[ep_ix] &
DEVEPTISR_BYCT) >> DEVEPTISR_BYCT_Pos;
xfer_ctl_t *xfer = &xfer_status[ep_ix];
if (ep_ix == 0U)
{
static uint8_t ctrl_dir;
if (int_status & DEVEPTISR_CTRL_RXSTPI)
{
ctrl_dir = (USB_REG->DEVEPTISR[0] & DEVEPTISR_CTRL_CTRLDIR) >> DEVEPTISR_CTRL_CTRLDIR_Pos;
// Setup packet should always be 8 bytes. If not, ignore it, and try again.
if (count == 8)
{
uint8_t *ptr = EP_GET_FIFO_PTR(0,8);
dcd_event_setup_received(0, ptr, true);
}
// Ack and disable SETUP interrupt
USB_REG->DEVEPTICR[0] = DEVEPTICR_CTRL_RXSTPIC;
USB_REG->DEVEPTIDR[0] = DEVEPTIDR_CTRL_RXSTPEC;
}
if (int_status & DEVEPTISR_RXOUTI)
{
uint8_t *ptr = EP_GET_FIFO_PTR(0,8);
if (count && xfer->total_len)
{
uint16_t remain = xfer->total_len - xfer->queued_len;
if (count > remain)
{
count = remain;
}
if (xfer->buffer)
{
memcpy(xfer->buffer + xfer->queued_len, ptr, count);
} else
{
tu_fifo_write_n(xfer->fifo, ptr, count);
}
xfer->queued_len = (uint16_t)(xfer->queued_len + count);
}
// Acknowledge the interrupt
USB_REG->DEVEPTICR[0] = DEVEPTICR_RXOUTIC;
if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len))
{
// RX COMPLETE
dcd_event_xfer_complete(0, 0, xfer->queued_len, XFER_RESULT_SUCCESS, true);
// Disable the interrupt
USB_REG->DEVEPTIDR[0] = DEVEPTIDR_RXOUTEC;
// Re-enable SETUP interrupt
if (ctrl_dir == 1)
{
USB_REG->DEVEPTIER[0] = DEVEPTIER_CTRL_RXSTPES;
}
}
}
if (int_status & DEVEPTISR_TXINI)
{
// Disable the interrupt
USB_REG->DEVEPTIDR[0] = DEVEPTIDR_TXINEC;
if ((xfer->total_len != xfer->queued_len))
{
// TX not complete
dcd_transmit_packet(xfer, 0);
} else
{
// TX complete
dcd_event_xfer_complete(0, 0x80 + 0, xfer->total_len, XFER_RESULT_SUCCESS, true);
// Re-enable SETUP interrupt
if (ctrl_dir == 0)
{
USB_REG->DEVEPTIER[0] = DEVEPTIER_CTRL_RXSTPES;
}
}
}
} else
{
if (int_status & DEVEPTISR_RXOUTI)
{
if (count && xfer->total_len)
{
uint16_t remain = xfer->total_len - xfer->queued_len;
if (count > remain)
{
count = remain;
}
uint8_t *ptr = EP_GET_FIFO_PTR(ep_ix,8);
if (xfer->buffer)
{
memcpy(xfer->buffer + xfer->queued_len, ptr, count);
} else {
tu_fifo_write_n(xfer->fifo, ptr, count);
}
xfer->queued_len = (uint16_t)(xfer->queued_len + count);
}
// Clear the FIFO control flag to receive more data.
USB_REG->DEVEPTIDR[ep_ix] = DEVEPTIDR_FIFOCONC;
// Acknowledge the interrupt
USB_REG->DEVEPTICR[ep_ix] = DEVEPTICR_RXOUTIC;
if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len))
{
// RX COMPLETE
dcd_event_xfer_complete(0, ep_ix, xfer->queued_len, XFER_RESULT_SUCCESS, true);
// Disable the interrupt
USB_REG->DEVEPTIDR[ep_ix] = DEVEPTIDR_RXOUTEC;
// Though the host could still send, we don't know.
}
}
if (int_status & DEVEPTISR_TXINI)
{
// Acknowledge the interrupt
USB_REG->DEVEPTICR[ep_ix] = DEVEPTICR_TXINIC;
if ((xfer->total_len != xfer->queued_len))
{
// TX not complete
dcd_transmit_packet(xfer, ep_ix);
} else
{
// TX complete
dcd_event_xfer_complete(0, 0x80 + ep_ix, xfer->total_len, XFER_RESULT_SUCCESS, true);
// Disable the interrupt
USB_REG->DEVEPTIDR[ep_ix] = DEVEPTIDR_TXINEC;
}
}
}
}
static void dcd_dma_handler(uint8_t ep_ix)
{
uint32_t status = USB_REG->DEVDMA[ep_ix - 1].DEVDMASTATUS;
if (status & DEVDMASTATUS_CHANN_ENB)
{
return; // Ignore EOT_STA interrupt
}
// Disable DMA interrupt
USB_REG->DEVIDR = DEVIDR_DMA_1 << (ep_ix - 1);
xfer_ctl_t *xfer = &xfer_status[ep_ix];
uint16_t count = xfer->total_len - ((status & DEVDMASTATUS_BUFF_COUNT) >> DEVDMASTATUS_BUFF_COUNT_Pos);
if(USB_REG->DEVEPTCFG[ep_ix] & DEVEPTCFG_EPDIR)
{
dcd_event_xfer_complete(0, 0x80 + ep_ix, count, XFER_RESULT_SUCCESS, true);
} else
{
dcd_event_xfer_complete(0, ep_ix, count, XFER_RESULT_SUCCESS, true);
}
}
void dcd_int_handler(uint8_t rhport)
{
(void) rhport;
uint32_t int_status = USB_REG->DEVISR;
int_status &= USB_REG->DEVIMR;
// End of reset interrupt
if (int_status & DEVISR_EORST)
{
// Unfreeze USB clock
USB_REG->CTRL &= ~CTRL_FRZCLK;
while(!(USB_REG->SR & SR_CLKUSABLE));
// Reset all endpoints
for (int ep_ix = 1; ep_ix < EP_MAX; ep_ix++)
{
USB_REG->DEVEPT |= 1 << (DEVEPT_EPRST0_Pos + ep_ix);
USB_REG->DEVEPT &=~(1 << (DEVEPT_EPRST0_Pos + ep_ix));
}
dcd_edpt_open (0, &ep0_desc);
USB_REG->DEVICR = DEVICR_EORSTC;
USB_REG->DEVICR = DEVICR_WAKEUPC;
USB_REG->DEVICR = DEVICR_SUSPC;
USB_REG->DEVIER = DEVIER_SUSPES;
dcd_event_bus_reset(rhport, get_speed(), true);
}
// End of Wakeup interrupt
if (int_status & DEVISR_WAKEUP)
{
USB_REG->CTRL &= ~CTRL_FRZCLK;
while (!(USB_REG->SR & SR_CLKUSABLE));
USB_REG->DEVICR = DEVICR_WAKEUPC;
USB_REG->DEVIDR = DEVIDR_WAKEUPEC;
USB_REG->DEVIER = DEVIER_SUSPES;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
// Suspend interrupt
if (int_status & DEVISR_SUSP)
{
// Unfreeze USB clock
USB_REG->CTRL &= ~CTRL_FRZCLK;
while (!(USB_REG->SR & SR_CLKUSABLE));
USB_REG->DEVICR = DEVICR_SUSPC;
USB_REG->DEVIDR = DEVIDR_SUSPEC;
USB_REG->DEVIER = DEVIER_WAKEUPES;
USB_REG->CTRL |= CTRL_FRZCLK;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
#if USE_SOF
if(int_status & DEVISR_SOF)
{
USB_REG->DEVICR = DEVICR_SOFC;
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
#endif
// Endpoints interrupt
for (int ep_ix = 0; ep_ix < EP_MAX; ep_ix++)
{
if (int_status & (DEVISR_PEP_0 << ep_ix))
{
dcd_ep_handler(ep_ix);
}
}
// Endpoints DMA interrupt
for (int ep_ix = 0; ep_ix < EP_MAX; ep_ix++)
{
if (EP_DMA_SUPPORT(ep_ix))
{
if (int_status & (DEVISR_DMA_1 << (ep_ix - 1)))
{
dcd_dma_handler(ep_ix);
}
}
}
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
USB_REG->DEVCTRL |= dev_addr | DEVCTRL_ADDEN;
}
}
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(ep_desc->bEndpointAddress);
uint16_t const epMaxPktSize = tu_edpt_packet_size(ep_desc);
tusb_xfer_type_t const eptype = (tusb_xfer_type_t)ep_desc->bmAttributes.xfer;
uint8_t fifoSize = 0; // FIFO size
uint16_t defaultEndpointSize = 8; // Default size of Endpoint
// Find upper 2 power number of epMaxPktSize
if (epMaxPktSize)
{
while (defaultEndpointSize < epMaxPktSize)
{
fifoSize++;
defaultEndpointSize <<= 1;
}
}
xfer_status[epnum].max_packet_size = epMaxPktSize;
USB_REG->DEVEPT |= 1 << (DEVEPT_EPRST0_Pos + epnum);
USB_REG->DEVEPT &=~(1 << (DEVEPT_EPRST0_Pos + epnum));
if (epnum == 0)
{
// Enable the control endpoint - Endpoint 0
USB_REG->DEVEPT |= DEVEPT_EPEN0;
// Configure the Endpoint 0 configuration register
USB_REG->DEVEPTCFG[0] =
(
(fifoSize << DEVEPTCFG_EPSIZE_Pos) |
(TUSB_XFER_CONTROL << DEVEPTCFG_EPTYPE_Pos) |
(DEVEPTCFG_EPBK_1_BANK << DEVEPTCFG_EPBK_Pos) |
DEVEPTCFG_ALLOC
);
USB_REG->DEVEPTIER[0] = DEVEPTIER_RSTDTS;
USB_REG->DEVEPTIDR[0] = DEVEPTIDR_CTRL_STALLRQC;
if (DEVEPTISR_CFGOK == (USB_REG->DEVEPTISR[0] & DEVEPTISR_CFGOK))
{
// Endpoint configuration is successful
USB_REG->DEVEPTIER[0] = DEVEPTIER_CTRL_RXSTPES;
// Enable Endpoint 0 Interrupts
USB_REG->DEVIER = DEVIER_PEP_0;
return true;
} else
{
// Endpoint configuration is not successful
return false;
}
} else
{
// Enable the endpoint
USB_REG->DEVEPT |= ((0x01 << epnum) << DEVEPT_EPEN0_Pos);
// Set up the maxpacket size, fifo start address fifosize
// and enable the interrupt. CLear the data toggle.
// AUTOSW is needed for DMA ack !
USB_REG->DEVEPTCFG[epnum] =
(
(fifoSize << DEVEPTCFG_EPSIZE_Pos) |
(eptype << DEVEPTCFG_EPTYPE_Pos) |
(DEVEPTCFG_EPBK_1_BANK << DEVEPTCFG_EPBK_Pos) |
DEVEPTCFG_AUTOSW |
((dir & 0x01) << DEVEPTCFG_EPDIR_Pos)
);
if (eptype == TUSB_XFER_ISOCHRONOUS)
{
USB_REG->DEVEPTCFG[epnum] |= DEVEPTCFG_NBTRANS_1_TRANS;
}
#if USE_DUAL_BANK
if (eptype == TUSB_XFER_ISOCHRONOUS || eptype == TUSB_XFER_BULK)
{
USB_REG->DEVEPTCFG[epnum] |= DEVEPTCFG_EPBK_2_BANK;
}
#endif
USB_REG->DEVEPTCFG[epnum] |= DEVEPTCFG_ALLOC;
USB_REG->DEVEPTIER[epnum] = DEVEPTIER_RSTDTS;
USB_REG->DEVEPTIDR[epnum] = DEVEPTIDR_CTRL_STALLRQC;
if (DEVEPTISR_CFGOK == (USB_REG->DEVEPTISR[epnum] & DEVEPTISR_CFGOK))
{
USB_REG->DEVIER = ((0x01 << epnum) << DEVIER_PEP_0_Pos);
return true;
} else
{
// Endpoint configuration is not successful
return false;
}
}
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
// Disable endpoint interrupt
USB_REG->DEVIDR = 1 << (DEVIDR_PEP_0_Pos + epnum);
// Disable EP
USB_REG->DEVEPT &=~(1 << (DEVEPT_EPEN0_Pos + epnum));
}
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint8_t ep_ix)
{
uint16_t len = (uint16_t)(xfer->total_len - xfer->queued_len);
if (len)
{
if (len > xfer->max_packet_size)
{
len = xfer->max_packet_size;
}
uint8_t *ptr = EP_GET_FIFO_PTR(ep_ix,8);
if(xfer->buffer)
{
memcpy(ptr, xfer->buffer + xfer->queued_len, len);
}
else
{
tu_fifo_read_n(xfer->fifo, ptr, len);
}
__DSB();
__ISB();
xfer->queued_len = (uint16_t)(xfer->queued_len + len);
}
if (ep_ix == 0U)
{
// Control endpoint: clear the interrupt flag to send the data
USB_REG->DEVEPTICR[0] = DEVEPTICR_TXINIC;
} else
{
// Other endpoint types: clear the FIFO control flag to send the data
USB_REG->DEVEPTIDR[ep_ix] = DEVEPTIDR_FIFOCONC;
}
USB_REG->DEVEPTIER[ep_ix] = DEVEPTIER_TXINES;
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = &xfer_status[epnum];
xfer->buffer = buffer;
xfer->total_len = total_bytes;
xfer->queued_len = 0;
xfer->fifo = NULL;
if (EP_DMA_SUPPORT(epnum) && total_bytes != 0)
{
// Force the CPU to flush the buffer. We increase the size by 32 because the call aligns the
// address to 32-byte boundaries.
CleanInValidateCache((uint32_t*) tu_align((uint32_t) buffer, 4), total_bytes + 31);
uint32_t udd_dma_ctrl = total_bytes << DEVDMACONTROL_BUFF_LENGTH_Pos;
if (dir == TUSB_DIR_OUT)
{
udd_dma_ctrl |= DEVDMACONTROL_END_TR_IT | DEVDMACONTROL_END_TR_EN;
} else {
udd_dma_ctrl |= DEVDMACONTROL_END_B_EN;
}
USB_REG->DEVDMA[epnum - 1].DEVDMAADDRESS = (uint32_t)buffer;
udd_dma_ctrl |= DEVDMACONTROL_END_BUFFIT | DEVDMACONTROL_CHANN_ENB;
// Disable IRQs to have a short sequence
// between read of EOT_STA and DMA enable
uint32_t irq_state = __get_PRIMASK();
__disable_irq();
if (!(USB_REG->DEVDMA[epnum - 1].DEVDMASTATUS & DEVDMASTATUS_END_TR_ST))
{
USB_REG->DEVDMA[epnum - 1].DEVDMACONTROL = udd_dma_ctrl;
USB_REG->DEVIER = DEVIER_DMA_1 << (epnum - 1);
__set_PRIMASK(irq_state);
return true;
}
__set_PRIMASK(irq_state);
// Here a ZLP has been received
// and the DMA transfer must be not started.
// It is the end of transfer
return false;
} else
{
if (dir == TUSB_DIR_OUT)
{
USB_REG->DEVEPTIER[epnum] = DEVEPTIER_RXOUTES;
} else
{
dcd_transmit_packet(xfer,epnum);
}
}
return true;
}
// The number of bytes has to be given explicitly to allow more flexible control of how many
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = &xfer_status[epnum];
if(epnum == 0x80)
xfer = &xfer_status[EP_MAX];
xfer->buffer = NULL;
xfer->total_len = total_bytes;
xfer->queued_len = 0;
xfer->fifo = ff;
if (EP_DMA_SUPPORT(epnum) && total_bytes != 0)
{
tu_fifo_buffer_info_t info;
uint32_t udd_dma_ctrl_lin = DEVDMACONTROL_CHANN_ENB;
uint32_t udd_dma_ctrl_wrap = DEVDMACONTROL_CHANN_ENB | DEVDMACONTROL_END_BUFFIT;
if (dir == TUSB_DIR_OUT)
{
tu_fifo_get_write_info(ff, &info);
udd_dma_ctrl_lin |= DEVDMACONTROL_END_TR_IT | DEVDMACONTROL_END_TR_EN;
udd_dma_ctrl_wrap |= DEVDMACONTROL_END_TR_IT | DEVDMACONTROL_END_TR_EN;
} else {
tu_fifo_get_read_info(ff, &info);
if(info.len_wrap == 0)
{
udd_dma_ctrl_lin |= DEVDMACONTROL_END_B_EN;
}
udd_dma_ctrl_wrap |= DEVDMACONTROL_END_B_EN;
}
// Clean invalidate cache of linear part
CleanInValidateCache((uint32_t*) tu_align((uint32_t) info.ptr_lin, 4), info.len_lin + 31);
USB_REG->DEVDMA[epnum - 1].DEVDMAADDRESS = (uint32_t)info.ptr_lin;
if (info.len_wrap)
{
// Clean invalidate cache of wrapped part
CleanInValidateCache((uint32_t*) tu_align((uint32_t) info.ptr_wrap, 4), info.len_wrap + 31);
dma_desc[epnum - 1].next_desc = 0;
dma_desc[epnum - 1].buff_addr = (uint32_t)info.ptr_wrap;
dma_desc[epnum - 1].chnl_ctrl =
udd_dma_ctrl_wrap | (info.len_wrap << DEVDMACONTROL_BUFF_LENGTH_Pos);
// Clean cache of wrapped DMA descriptor
CleanInValidateCache((uint32_t*)&dma_desc[epnum - 1], sizeof(dma_desc_t));
udd_dma_ctrl_lin |= DEVDMASTATUS_DESC_LDST;
USB_REG->DEVDMA[epnum - 1].DEVDMANXTDSC = (uint32_t)&dma_desc[epnum - 1];
} else {
udd_dma_ctrl_lin |= DEVDMACONTROL_END_BUFFIT;
}
udd_dma_ctrl_lin |= (info.len_lin << DEVDMACONTROL_BUFF_LENGTH_Pos);
// Disable IRQs to have a short sequence
// between read of EOT_STA and DMA enable
uint32_t irq_state = __get_PRIMASK();
__disable_irq();
if (!(USB_REG->DEVDMA[epnum - 1].DEVDMASTATUS & DEVDMASTATUS_END_TR_ST))
{
USB_REG->DEVDMA[epnum - 1].DEVDMACONTROL = udd_dma_ctrl_lin;
USB_REG->DEVIER = DEVIER_DMA_1 << (epnum - 1);
__set_PRIMASK(irq_state);
return true;
}
__set_PRIMASK(irq_state);
// Here a ZLP has been received
// and the DMA transfer must be not started.
// It is the end of transfer
return false;
} else
{
if (dir == TUSB_DIR_OUT)
{
USB_REG->DEVEPTIER[epnum] = DEVEPTIER_RXOUTES;
} else
{
dcd_transmit_packet(xfer,epnum);
}
}
return true;
}
// Stall endpoint
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
USB_REG->DEVEPTIER[epnum] = DEVEPTIER_CTRL_STALLRQS;
// Re-enable SETUP interrupt
if (epnum == 0)
{
USB_REG->DEVEPTIER[0] = DEVEPTIER_CTRL_RXSTPES;
}
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
USB_REG->DEVEPTIDR[epnum] = DEVEPTIDR_CTRL_STALLRQC;
USB_REG->DEVEPTIER[epnum] = HSTPIPIER_RSTDTS;
}
#endif