espressif_tinyusb/src/portable/ehci/ehci.c

920 lines
28 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUH_ENABLED && defined(TUP_USBIP_EHCI)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "osal/osal.h"
#include "host/hcd.h"
#include "ehci_api.h"
#include "ehci.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// Debug level of EHCI
#define EHCI_DBG 2
// Framelist size as small as possible to save SRAM
#ifdef TUP_USBIP_CHIPIDEA_HS
// NXP Transdimension: 8 elements
#define FRAMELIST_SIZE_BIT_VALUE 7u
#define FRAMELIST_SIZE_USBCMD_VALUE (((FRAMELIST_SIZE_BIT_VALUE & 3) << EHCI_USBCMD_POS_FRAMELIST_SIZE) | \
((FRAMELIST_SIZE_BIT_VALUE >> 2) << EHCI_USBCMD_POS_NXP_FRAMELIST_SIZE_MSB))
#else
// STD EHCI: 256 elements
#define FRAMELIST_SIZE_BIT_VALUE 2u
#define FRAMELIST_SIZE_USBCMD_VALUE ((FRAMELIST_SIZE_BIT_VALUE & 3) << EHCI_USBCMD_POS_FRAMELIST_SIZE)
#endif
#define FRAMELIST_SIZE (1024 >> FRAMELIST_SIZE_BIT_VALUE)
#define QHD_MAX (CFG_TUH_DEVICE_MAX*CFG_TUH_ENDPOINT_MAX)
#define QTD_MAX QHD_MAX
typedef struct
{
ehci_link_t period_framelist[FRAMELIST_SIZE];
// TODO only implement 1 ms & 2 ms & 4 ms, 8 ms (framelist)
// [0] : 1ms, [1] : 2ms, [2] : 4ms, [3] : 8 ms
// TODO better implementation without dummy head to save SRAM
ehci_qhd_t period_head_arr[4];
// Note control qhd of dev0 is used as head of async list
struct {
ehci_qhd_t qhd;
ehci_qtd_t qtd;
}control[CFG_TUH_DEVICE_MAX+CFG_TUH_HUB+1];
ehci_qhd_t qhd_pool[QHD_MAX];
ehci_qtd_t qtd_pool[QTD_MAX] TU_ATTR_ALIGNED(32);
ehci_registers_t* regs;
volatile uint32_t uframe_number;
}ehci_data_t;
// Periodic frame list must be 4K alignment
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(4096) static ehci_data_t ehci_data;
//--------------------------------------------------------------------+
// PROTOTYPE
//--------------------------------------------------------------------+
static inline ehci_link_t* get_period_head(uint8_t rhport, uint32_t interval_ms)
{
(void) rhport;
return (ehci_link_t*) &ehci_data.period_head_arr[ tu_log2( tu_min32(FRAMELIST_SIZE, interval_ms) ) ];
}
static inline ehci_qhd_t* qhd_control(uint8_t dev_addr)
{
return &ehci_data.control[dev_addr].qhd;
}
static inline ehci_qhd_t* qhd_async_head(uint8_t rhport)
{
(void) rhport;
// control qhd of dev0 is used as async head
return qhd_control(0);
}
static inline ehci_qtd_t* qtd_control(uint8_t dev_addr)
{
return &ehci_data.control[dev_addr].qtd;
}
static inline ehci_qhd_t* qhd_next (ehci_qhd_t const * p_qhd);
static inline ehci_qhd_t* qhd_find_free (void);
static inline ehci_qhd_t* qhd_get_from_addr (uint8_t dev_addr, uint8_t ep_addr);
// determine if a queue head has bus-related error
static inline bool qhd_has_xact_error (ehci_qhd_t * p_qhd)
{
return (p_qhd->qtd_overlay.buffer_err || p_qhd->qtd_overlay.babble_err || p_qhd->qtd_overlay.xact_err);
//p_qhd->qtd_overlay.non_hs_period_missed_uframe || p_qhd->qtd_overlay.pingstate_err TODO split transaction error
}
static void qhd_init(ehci_qhd_t *p_qhd, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc);
static inline ehci_qtd_t* qtd_find_free (void);
static inline ehci_qtd_t* qtd_next (ehci_qtd_t const * p_qtd);
static inline void qtd_insert_to_qhd (ehci_qhd_t *p_qhd, ehci_qtd_t *p_qtd_new);
static inline void qtd_remove_1st_from_qhd (ehci_qhd_t *p_qhd);
static void qtd_init (ehci_qtd_t* p_qtd, void const* buffer, uint16_t total_bytes);
static inline void list_insert (ehci_link_t *current, ehci_link_t *new, uint8_t new_type);
static inline ehci_link_t* list_next (ehci_link_t *p_link_pointer);
//--------------------------------------------------------------------+
// HCD API
//--------------------------------------------------------------------+
uint32_t hcd_frame_number(uint8_t rhport)
{
(void) rhport;
return (ehci_data.uframe_number + ehci_data.regs->frame_index) >> 3;
}
void hcd_port_reset(uint8_t rhport)
{
(void) rhport;
ehci_registers_t* regs = ehci_data.regs;
// regs->portsc_bm.port_enabled = 0; // disable port before reset
// regs->portsc_bm.port_reset = 1;
uint32_t portsc = regs->portsc;
portsc &= ~(EHCI_PORTSC_MASK_PORT_EANBLED);
portsc |= EHCI_PORTSC_MASK_PORT_RESET;
regs->portsc = portsc;
}
void hcd_port_reset_end(uint8_t rhport)
{
(void) rhport;
#if 0
ehci_registers_t* regs = ehci_data.regs;
regs->portsc_bm.port_reset = 0;
#endif
}
bool hcd_port_connect_status(uint8_t rhport)
{
(void) rhport;
return ehci_data.regs->portsc_bm.current_connect_status;
}
tusb_speed_t hcd_port_speed_get(uint8_t rhport)
{
(void) rhport;
return (tusb_speed_t) ehci_data.regs->portsc_bm.nxp_port_speed; // NXP specific port speed
}
static void list_remove_qhd_by_addr(ehci_link_t* list_head, uint8_t dev_addr)
{
for(ehci_link_t* prev = list_head;
!prev->terminate && (tu_align32(prev->address) != (uint32_t) list_head);
prev = list_next(prev) )
{
// TODO check type for ISO iTD and siTD
// TODO Suppress cast-align warning
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
ehci_qhd_t* qhd = (ehci_qhd_t*) list_next(prev);
#pragma GCC diagnostic pop
if ( qhd->dev_addr == dev_addr )
{
// TODO deactivate all TD, wait for QHD to inactive before removal
prev->address = qhd->next.address;
// EHCI 4.8.2 link the removed qhd to async head (which always reachable by Host Controller)
qhd->next.address = ((uint32_t) list_head) | (EHCI_QTYPE_QHD << 1);
if ( qhd->int_smask )
{
// period list queue element is guarantee to be free in the next frame (1 ms)
qhd->used = 0;
}else
{
// async list use async advance handshake
// mark as removing, will completely re-usable when async advance isr occurs
qhd->removing = 1;
}
}
}
}
// Close all opened endpoint belong to this device
void hcd_device_close(uint8_t rhport, uint8_t dev_addr)
{
// skip dev0
if (dev_addr == 0) return;
// Remove from async list
list_remove_qhd_by_addr( (ehci_link_t*) qhd_async_head(rhport), dev_addr );
// Remove from all interval period list
for(uint8_t i = 0; i < TU_ARRAY_SIZE(ehci_data.period_head_arr); i++)
{
list_remove_qhd_by_addr( (ehci_link_t*) &ehci_data.period_head_arr[i], dev_addr);
}
// Async doorbell (EHCI 4.8.2 for operational details)
ehci_data.regs->command_bm.async_adv_doorbell = 1;
}
bool ehci_init(uint8_t rhport, uint32_t capability_reg, uint32_t operatial_reg)
{
(void) capability_reg; // not used yet
tu_memclr(&ehci_data, sizeof(ehci_data_t));
ehci_data.regs = (ehci_registers_t* ) operatial_reg;
ehci_registers_t* regs = ehci_data.regs;
//------------- CTRLDSSEGMENT Register (skip) -------------//
//------------- USB INT Register -------------//
regs->inten = 0; // 1. disable all the interrupt
regs->status = EHCI_INT_MASK_ALL; // 2. clear all status
regs->inten = EHCI_INT_MASK_ERROR | EHCI_INT_MASK_PORT_CHANGE | EHCI_INT_MASK_ASYNC_ADVANCE |
EHCI_INT_MASK_NXP_PERIODIC | EHCI_INT_MASK_NXP_ASYNC | EHCI_INT_MASK_FRAMELIST_ROLLOVER;
//------------- Asynchronous List -------------//
ehci_qhd_t * const async_head = qhd_async_head(rhport);
tu_memclr(async_head, sizeof(ehci_qhd_t));
async_head->next.address = (uint32_t) async_head; // circular list, next is itself
async_head->next.type = EHCI_QTYPE_QHD;
async_head->head_list_flag = 1;
async_head->qtd_overlay.halted = 1; // inactive most of time
async_head->qtd_overlay.next.terminate = 1; // TODO removed if verified
regs->async_list_addr = (uint32_t) async_head;
//------------- Periodic List -------------//
// Build the polling interval tree with 1 ms, 2 ms, 4 ms and 8 ms (framesize) only
for ( uint32_t i = 0; i < TU_ARRAY_SIZE(ehci_data.period_head_arr); i++ )
{
ehci_data.period_head_arr[i].int_smask = 1; // queue head in period list must have smask non-zero
ehci_data.period_head_arr[i].qtd_overlay.halted = 1; // dummy node, always inactive
}
ehci_link_t * const framelist = ehci_data.period_framelist;
ehci_link_t * const period_1ms = get_period_head(rhport, 1u);
// all links --> period_head_arr[0] (1ms)
// 0, 2, 4, 6 etc --> period_head_arr[1] (2ms)
// 1, 5 --> period_head_arr[2] (4ms)
// 3 --> period_head_arr[3] (8ms)
// TODO EHCI_FRAMELIST_SIZE with other size than 8
for(uint32_t i=0; i<FRAMELIST_SIZE; i++)
{
framelist[i].address = (uint32_t) period_1ms;
framelist[i].type = EHCI_QTYPE_QHD;
}
for(uint32_t i=0; i<FRAMELIST_SIZE; i+=2)
{
list_insert(framelist + i, get_period_head(rhport, 2u), EHCI_QTYPE_QHD);
}
for(uint32_t i=1; i<FRAMELIST_SIZE; i+=4)
{
list_insert(framelist + i, get_period_head(rhport, 4u), EHCI_QTYPE_QHD);
}
list_insert(framelist+3, get_period_head(rhport, 8u), EHCI_QTYPE_QHD);
period_1ms->terminate = 1;
regs->periodic_list_base = (uint32_t) framelist;
//------------- TT Control (NXP only) -------------//
regs->nxp_tt_control = 0;
//------------- USB CMD Register -------------//
regs->command |= TU_BIT(EHCI_USBCMD_POS_RUN_STOP) | TU_BIT(EHCI_USBCMD_POS_ASYNC_ENABLE) |
TU_BIT(EHCI_USBCMD_POS_PERIOD_ENABLE) | // TODO enable period list only there is int/iso endpoint
FRAMELIST_SIZE_USBCMD_VALUE;
//------------- ConfigFlag Register (skip) -------------//
regs->portsc_bm.port_power = 1; // enable port power
return true;
}
#if 0
static void ehci_stop(uint8_t rhport)
{
(void) rhport;
ehci_registers_t* regs = ehci_data.regs;
regs->command_bm.run_stop = 0;
// USB Spec: controller has to stop within 16 uframe = 2 frames
while( regs->status_bm.hc_halted == 0 ) {}
}
#endif
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
// TODO not support ISO yet
TU_ASSERT (ep_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
//------------- Prepare Queue Head -------------//
ehci_qhd_t * p_qhd;
if ( ep_desc->bEndpointAddress == 0 )
{
p_qhd = qhd_control(dev_addr);
}else
{
p_qhd = qhd_find_free();
}
TU_ASSERT(p_qhd);
qhd_init(p_qhd, dev_addr, ep_desc);
// control of dev0 is always present as async head
if ( dev_addr == 0 ) return true;
// Insert to list
ehci_link_t * list_head = NULL;
switch (ep_desc->bmAttributes.xfer)
{
case TUSB_XFER_CONTROL:
case TUSB_XFER_BULK:
list_head = (ehci_link_t*) qhd_async_head(rhport);
break;
case TUSB_XFER_INTERRUPT:
list_head = get_period_head(rhport, p_qhd->interval_ms);
break;
case TUSB_XFER_ISOCHRONOUS:
// TODO iso is not supported
break;
default: break;
}
TU_ASSERT(list_head);
// TODO might need to disable async/period list
list_insert(list_head, (ehci_link_t*) p_qhd, EHCI_QTYPE_QHD);
return true;
}
bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8])
{
(void) rhport;
ehci_qhd_t* qhd = &ehci_data.control[dev_addr].qhd;
ehci_qtd_t* td = &ehci_data.control[dev_addr].qtd;
qtd_init(td, setup_packet, 8);
td->pid = EHCI_PID_SETUP;
td->int_on_complete = 1;
td->next.terminate = 1;
// sw region
qhd->p_qtd_list_head = td;
qhd->p_qtd_list_tail = td;
// attach TD
qhd->qtd_overlay.next.address = (uint32_t) td;
return true;
}
bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if ( epnum == 0 )
{
ehci_qhd_t* qhd = qhd_control(dev_addr);
ehci_qtd_t* qtd = qtd_control(dev_addr);
qtd_init(qtd, buffer, buflen);
// first first data toggle is always 1 (data & setup stage)
qtd->data_toggle = 1;
qtd->pid = dir ? EHCI_PID_IN : EHCI_PID_OUT;
qtd->int_on_complete = 1;
qtd->next.terminate = 1;
// sw region
qhd->p_qtd_list_head = qtd;
qhd->p_qtd_list_tail = qtd;
// attach TD
qhd->qtd_overlay.next.address = (uint32_t) qtd;
}else
{
ehci_qhd_t *p_qhd = qhd_get_from_addr(dev_addr, ep_addr);
ehci_qtd_t *p_qtd = qtd_find_free();
TU_ASSERT(p_qtd);
qtd_init(p_qtd, buffer, buflen);
p_qtd->pid = p_qhd->pid;
// Insert TD to QH
qtd_insert_to_qhd(p_qhd, p_qtd);
p_qhd->p_qtd_list_tail->int_on_complete = 1;
// attach head QTD to QHD start transferring
p_qhd->qtd_overlay.next.address = (uint32_t) p_qhd->p_qtd_list_head;
}
return true;
}
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
ehci_qhd_t *p_qhd = qhd_get_from_addr(dev_addr, ep_addr);
p_qhd->qtd_overlay.halted = 0;
// TODO reset data toggle ?
return true;
}
//--------------------------------------------------------------------+
// EHCI Interrupt Handler
//--------------------------------------------------------------------+
// async_advance is handshake between usb stack & ehci controller.
// This isr mean it is safe to modify previously removed queue head from async list.
// In tinyusb, queue head is only removed when device is unplugged.
static void async_advance_isr(uint8_t rhport)
{
(void) rhport;
ehci_qhd_t* qhd_pool = ehci_data.qhd_pool;
for(uint32_t i = 0; i < QHD_MAX; i++)
{
if ( qhd_pool[i].removing )
{
qhd_pool[i].removing = 0;
qhd_pool[i].used = 0;
}
}
}
static void port_connect_status_change_isr(uint8_t rhport)
{
// NOTE There is an sequence plug->unplug->…..-> plug if device is powering with pre-plugged device
if (ehci_data.regs->portsc_bm.current_connect_status)
{
hcd_port_reset(rhport);
hcd_event_device_attach(rhport, true);
}else // device unplugged
{
hcd_event_device_remove(rhport, true);
}
}
static void qhd_xfer_complete_isr(ehci_qhd_t * p_qhd)
{
// free all TDs from the head td to the first active TD
while(p_qhd->p_qtd_list_head != NULL && !p_qhd->p_qtd_list_head->active)
{
ehci_qtd_t * volatile qtd = (ehci_qtd_t * volatile) p_qhd->p_qtd_list_head;
bool const is_ioc = (qtd->int_on_complete != 0);
uint8_t const ep_addr = tu_edpt_addr(p_qhd->ep_number, qtd->pid == EHCI_PID_IN ? 1 : 0);
p_qhd->total_xferred_bytes += qtd->expected_bytes - qtd->total_bytes;
// TD need to be freed and removed from qhd, before invoking callback
qtd->used = 0; // free QTD
qtd_remove_1st_from_qhd(p_qhd);
if (is_ioc)
{
hcd_event_xfer_complete(p_qhd->dev_addr, ep_addr, p_qhd->total_xferred_bytes, XFER_RESULT_SUCCESS, true);
p_qhd->total_xferred_bytes = 0;
}
}
}
static void async_list_xfer_complete_isr(ehci_qhd_t * const async_head)
{
ehci_qhd_t *p_qhd = async_head;
do
{
if ( !p_qhd->qtd_overlay.halted ) // halted or error is processed in error isr
{
qhd_xfer_complete_isr(p_qhd);
}
p_qhd = qhd_next(p_qhd);
}while(p_qhd != async_head); // async list traversal, stop if loop around
}
static void period_list_xfer_complete_isr(uint8_t hostid, uint32_t interval_ms)
{
uint16_t max_loop = 0;
uint32_t const period_1ms_addr = (uint32_t) get_period_head(hostid, 1u);
ehci_link_t next_item = * get_period_head(hostid, interval_ms);
// TODO abstract max loop guard for period
while( !next_item.terminate &&
!(interval_ms > 1 && period_1ms_addr == tu_align32(next_item.address)) &&
max_loop < (QHD_MAX + EHCI_MAX_ITD + EHCI_MAX_SITD)*CFG_TUH_DEVICE_MAX)
{
switch ( next_item.type )
{
case EHCI_QTYPE_QHD:
{
ehci_qhd_t *p_qhd_int = (ehci_qhd_t *) tu_align32(next_item.address);
if ( !p_qhd_int->qtd_overlay.halted )
{
qhd_xfer_complete_isr(p_qhd_int);
}
}
break;
case EHCI_QTYPE_ITD: // TODO support hs/fs ISO
case EHCI_QTYPE_SITD:
case EHCI_QTYPE_FSTN:
default: break;
}
next_item = *list_next(&next_item);
max_loop++;
}
}
static void qhd_xfer_error_isr(ehci_qhd_t * p_qhd)
{
if ( (p_qhd->dev_addr != 0 && p_qhd->qtd_overlay.halted) || // addr0 cannot be protocol STALL
qhd_has_xact_error(p_qhd) )
{
// current qhd has error in transaction
xfer_result_t error_event;
// no error bits are set, endpoint is halted due to STALL
error_event = qhd_has_xact_error(p_qhd) ? XFER_RESULT_FAILED : XFER_RESULT_STALLED;
p_qhd->total_xferred_bytes += p_qhd->p_qtd_list_head->expected_bytes - p_qhd->p_qtd_list_head->total_bytes;
// if ( XFER_RESULT_FAILED == error_event ) TU_BREAKPOINT(); // TODO skip unplugged device
p_qhd->p_qtd_list_head->used = 0; // free QTD
qtd_remove_1st_from_qhd(p_qhd);
if ( 0 == p_qhd->ep_number )
{
// control cannot be halted --> clear all qtd list
p_qhd->p_qtd_list_head = NULL;
p_qhd->p_qtd_list_tail = NULL;
p_qhd->qtd_overlay.next.terminate = 1;
p_qhd->qtd_overlay.alternate.terminate = 1;
p_qhd->qtd_overlay.halted = 0;
ehci_qtd_t *p_setup = qtd_control(p_qhd->dev_addr);
p_setup->used = 0;
}
// call USBH callback
hcd_event_xfer_complete(p_qhd->dev_addr, tu_edpt_addr(p_qhd->ep_number, p_qhd->pid == EHCI_PID_IN ? 1 : 0), p_qhd->total_xferred_bytes, error_event, true);
p_qhd->total_xferred_bytes = 0;
}
}
static void xfer_error_isr(uint8_t hostid)
{
//------------- async list -------------//
ehci_qhd_t * const async_head = qhd_async_head(hostid);
ehci_qhd_t *p_qhd = async_head;
do
{
qhd_xfer_error_isr( p_qhd );
p_qhd = qhd_next(p_qhd);
}while(p_qhd != async_head); // async list traversal, stop if loop around
//------------- TODO refractor period list -------------//
uint32_t const period_1ms_addr = (uint32_t) get_period_head(hostid, 1u);
for (uint32_t interval_ms=1; interval_ms <= FRAMELIST_SIZE; interval_ms *= 2)
{
ehci_link_t next_item = * get_period_head(hostid, interval_ms);
// TODO abstract max loop guard for period
while( !next_item.terminate &&
!(interval_ms > 1 && period_1ms_addr == tu_align32(next_item.address)) )
{
switch ( next_item.type )
{
case EHCI_QTYPE_QHD:
{
ehci_qhd_t *p_qhd_int = (ehci_qhd_t *) tu_align32(next_item.address);
qhd_xfer_error_isr(p_qhd_int);
}
break;
// TODO support hs/fs ISO
case EHCI_QTYPE_ITD:
case EHCI_QTYPE_SITD:
case EHCI_QTYPE_FSTN:
default: break;
}
next_item = *list_next(&next_item);
}
}
}
#if CFG_TUSB_DEBUG >= EHCI_DBG
static inline void print_portsc(ehci_registers_t* regs)
{
TU_LOG_HEX(EHCI_DBG, regs->portsc);
TU_LOG(EHCI_DBG, " Current Connect Status: %u\r\n", regs->portsc_bm.current_connect_status);
TU_LOG(EHCI_DBG, " Connect Status Change : %u\r\n", regs->portsc_bm.connect_status_change);
TU_LOG(EHCI_DBG, " Port Enabled : %u\r\n", regs->portsc_bm.port_enabled);
TU_LOG(EHCI_DBG, " Port Enabled Change : %u\r\n", regs->portsc_bm.port_enable_change);
TU_LOG(EHCI_DBG, " Port Reset : %u\r\n", regs->portsc_bm.port_reset);
TU_LOG(EHCI_DBG, " Port Power : %u\r\n", regs->portsc_bm.port_power);
}
#else
#define print_portsc(_reg)
#endif
//------------- Host Controller Driver's Interrupt Handler -------------//
void hcd_int_handler(uint8_t rhport)
{
ehci_registers_t* regs = ehci_data.regs;
uint32_t int_status = regs->status;
int_status &= regs->inten;
regs->status = int_status; // Acknowledge handled interrupt
if (int_status == 0) return;
if (int_status & EHCI_INT_MASK_FRAMELIST_ROLLOVER)
{
ehci_data.uframe_number += (FRAMELIST_SIZE << 3);
}
if (int_status & EHCI_INT_MASK_PORT_CHANGE)
{
uint32_t const port_status = regs->portsc & EHCI_PORTSC_MASK_ALL;
print_portsc(regs);
if (regs->portsc_bm.connect_status_change)
{
port_connect_status_change_isr(rhport);
}
regs->portsc |= port_status; // Acknowledge change bits in portsc
}
if (int_status & EHCI_INT_MASK_ERROR)
{
xfer_error_isr(rhport);
}
//------------- some QTD/SITD/ITD with IOC set is completed -------------//
if (int_status & EHCI_INT_MASK_NXP_ASYNC)
{
async_list_xfer_complete_isr( qhd_async_head(rhport) );
}
if (int_status & EHCI_INT_MASK_NXP_PERIODIC)
{
for (uint32_t i=1; i <= FRAMELIST_SIZE; i *= 2)
{
period_list_xfer_complete_isr( rhport, i );
}
}
//------------- There is some removed async previously -------------//
if (int_status & EHCI_INT_MASK_ASYNC_ADVANCE) // need to place after EHCI_INT_MASK_NXP_ASYNC
{
async_advance_isr(rhport);
}
}
//--------------------------------------------------------------------+
// HELPER
//--------------------------------------------------------------------+
//------------- queue head helper -------------//
static inline ehci_qhd_t* qhd_find_free (void)
{
for (uint32_t i=0; i<QHD_MAX; i++)
{
if ( !ehci_data.qhd_pool[i].used ) return &ehci_data.qhd_pool[i];
}
return NULL;
}
static inline ehci_qhd_t* qhd_next(ehci_qhd_t const * p_qhd)
{
return (ehci_qhd_t*) tu_align32(p_qhd->next.address);
}
static inline ehci_qhd_t* qhd_get_from_addr(uint8_t dev_addr, uint8_t ep_addr)
{
ehci_qhd_t* qhd_pool = ehci_data.qhd_pool;
for(uint32_t i=0; i<QHD_MAX; i++)
{
if ( (qhd_pool[i].dev_addr == dev_addr) &&
ep_addr == tu_edpt_addr(qhd_pool[i].ep_number, qhd_pool[i].pid) )
{
return &qhd_pool[i];
}
}
return NULL;
}
//------------- TD helper -------------//
static inline ehci_qtd_t* qtd_find_free(void)
{
for (uint32_t i=0; i<QTD_MAX; i++)
{
if ( !ehci_data.qtd_pool[i].used ) return &ehci_data.qtd_pool[i];
}
return NULL;
}
static inline ehci_qtd_t* qtd_next(ehci_qtd_t const * p_qtd )
{
return (ehci_qtd_t*) tu_align32(p_qtd->next.address);
}
static inline void qtd_remove_1st_from_qhd(ehci_qhd_t *p_qhd)
{
if (p_qhd->p_qtd_list_head == p_qhd->p_qtd_list_tail) // last TD --> make it NULL
{
p_qhd->p_qtd_list_head = p_qhd->p_qtd_list_tail = NULL;
}else
{
p_qhd->p_qtd_list_head = qtd_next( p_qhd->p_qtd_list_head );
}
}
static inline void qtd_insert_to_qhd(ehci_qhd_t *p_qhd, ehci_qtd_t *p_qtd_new)
{
if (p_qhd->p_qtd_list_head == NULL) // empty list
{
p_qhd->p_qtd_list_head = p_qhd->p_qtd_list_tail = p_qtd_new;
}else
{
p_qhd->p_qtd_list_tail->next.address = (uint32_t) p_qtd_new;
p_qhd->p_qtd_list_tail = p_qtd_new;
}
}
static void qhd_init(ehci_qhd_t *p_qhd, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
// address 0 is used as async head, which always on the list --> cannot be cleared (ehci halted otherwise)
if (dev_addr != 0)
{
tu_memclr(p_qhd, sizeof(ehci_qhd_t));
}
hcd_devtree_info_t devtree_info;
hcd_devtree_get_info(dev_addr, &devtree_info);
uint8_t const xfer_type = ep_desc->bmAttributes.xfer;
uint8_t const interval = ep_desc->bInterval;
p_qhd->dev_addr = dev_addr;
p_qhd->fl_inactive_next_xact = 0;
p_qhd->ep_number = tu_edpt_number(ep_desc->bEndpointAddress);
p_qhd->ep_speed = devtree_info.speed;
p_qhd->data_toggle_control= (xfer_type == TUSB_XFER_CONTROL) ? 1 : 0;
p_qhd->head_list_flag = (dev_addr == 0) ? 1 : 0; // addr0's endpoint is the static asyn list head
p_qhd->max_packet_size = tu_edpt_packet_size(ep_desc);
p_qhd->fl_ctrl_ep_flag = ((xfer_type == TUSB_XFER_CONTROL) && (p_qhd->ep_speed != TUSB_SPEED_HIGH)) ? 1 : 0;
p_qhd->nak_reload = 0;
// Bulk/Control -> smask = cmask = 0
// TODO Isochronous
if (TUSB_XFER_INTERRUPT == xfer_type)
{
if (TUSB_SPEED_HIGH == p_qhd->ep_speed)
{
TU_ASSERT( interval <= 16, );
if ( interval < 4) // sub millisecond interval
{
p_qhd->interval_ms = 0;
p_qhd->int_smask = (interval == 1) ? TU_BIN8(11111111) :
(interval == 2) ? TU_BIN8(10101010) : TU_BIN8(01000100);
}else
{
p_qhd->interval_ms = (uint8_t) tu_min16( 1 << (interval-4), 255 );
p_qhd->int_smask = TU_BIT(interval % 8);
}
}else
{
TU_ASSERT( 0 != interval, );
// Full/Low: 4.12.2.1 (EHCI) case 1 schedule start split at 1 us & complete split at 2,3,4 uframes
p_qhd->int_smask = 0x01;
p_qhd->fl_int_cmask = TU_BIN8(11100);
p_qhd->interval_ms = interval;
}
}else
{
p_qhd->int_smask = p_qhd->fl_int_cmask = 0;
}
p_qhd->fl_hub_addr = devtree_info.hub_addr;
p_qhd->fl_hub_port = devtree_info.hub_port;
p_qhd->mult = 1; // TODO not use high bandwidth/park mode yet
//------------- HCD Management Data -------------//
p_qhd->used = 1;
p_qhd->removing = 0;
p_qhd->p_qtd_list_head = NULL;
p_qhd->p_qtd_list_tail = NULL;
p_qhd->pid = tu_edpt_dir(ep_desc->bEndpointAddress) ? EHCI_PID_IN : EHCI_PID_OUT; // PID for TD under this endpoint
//------------- active, but no TD list -------------//
p_qhd->qtd_overlay.halted = 0;
p_qhd->qtd_overlay.next.terminate = 1;
p_qhd->qtd_overlay.alternate.terminate = 1;
if (TUSB_XFER_BULK == xfer_type && p_qhd->ep_speed == TUSB_SPEED_HIGH && p_qhd->pid == EHCI_PID_OUT)
{
p_qhd->qtd_overlay.ping_err = 1; // do PING for Highspeed Bulk OUT, EHCI section 4.11
}
}
static void qtd_init(ehci_qtd_t* p_qtd, void const* buffer, uint16_t total_bytes)
{
tu_memclr(p_qtd, sizeof(ehci_qtd_t));
p_qtd->used = 1;
p_qtd->next.terminate = 1; // init to null
p_qtd->alternate.terminate = 1; // not used, always set to terminated
p_qtd->active = 1;
p_qtd->err_count = 3; // TODO 3 consecutive errors tolerance
p_qtd->data_toggle = 0;
p_qtd->total_bytes = total_bytes;
p_qtd->expected_bytes = total_bytes;
p_qtd->buffer[0] = (uint32_t) buffer;
for(uint8_t i=1; i<5; i++)
{
p_qtd->buffer[i] |= tu_align4k( p_qtd->buffer[i-1] ) + 4096;
}
}
//------------- List Managing Helper -------------//
static inline void list_insert(ehci_link_t *current, ehci_link_t *new, uint8_t new_type)
{
new->address = current->address;
current->address = ((uint32_t) new) | (new_type << 1);
}
static inline ehci_link_t* list_next(ehci_link_t *p_link_pointer)
{
return (ehci_link_t*) tu_align32(p_link_pointer->address);
}
#endif