espressif_tinyusb/src/portable/microchip/samd/dcd_samd.c

428 lines
14 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && \
(CFG_TUSB_MCU == OPT_MCU_SAMD11 || CFG_TUSB_MCU == OPT_MCU_SAMD21 || \
CFG_TUSB_MCU == OPT_MCU_SAMD51 || CFG_TUSB_MCU == OPT_MCU_SAME5X || \
CFG_TUSB_MCU == OPT_MCU_SAML22 || CFG_TUSB_MCU == OPT_MCU_SAML21)
#include "sam.h"
#include "device/dcd.h"
/*------------------------------------------------------------------*/
/* MACRO TYPEDEF CONSTANT ENUM
*------------------------------------------------------------------*/
static TU_ATTR_ALIGNED(4) UsbDeviceDescBank sram_registers[8][2];
// Setup packet is only 8 bytes in length. However under certain scenario,
// USB DMA controller may decide to overwrite/overflow the buffer with
// 2 extra bytes of CRC. From datasheet's "Management of SETUP Transactions" section
// If the number of received data bytes is the maximum data payload specified by
// PCKSIZE.SIZE minus one, only the first CRC data is written to the data buffer.
// If the number of received data is equal or less than the data payload specified
// by PCKSIZE.SIZE minus two, both CRC data bytes are written to the data buffer.
// Therefore we will need to increase it to 10 bytes here.
static TU_ATTR_ALIGNED(4) uint8_t _setup_packet[8+2];
// ready for receiving SETUP packet
static inline void prepare_setup(void)
{
// Only make sure the EP0 OUT buffer is ready
sram_registers[0][0].ADDR.reg = (uint32_t) _setup_packet;
sram_registers[0][0].PCKSIZE.bit.MULTI_PACKET_SIZE = sizeof(tusb_control_request_t);
sram_registers[0][0].PCKSIZE.bit.BYTE_COUNT = 0;
}
// Setup the control endpoint 0.
static void bus_reset(void)
{
// Max size of packets is 64 bytes.
UsbDeviceDescBank* bank_out = &sram_registers[0][TUSB_DIR_OUT];
bank_out->PCKSIZE.bit.SIZE = 0x3;
UsbDeviceDescBank* bank_in = &sram_registers[0][TUSB_DIR_IN];
bank_in->PCKSIZE.bit.SIZE = 0x3;
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[0];
ep->EPCFG.reg = USB_DEVICE_EPCFG_EPTYPE0(0x1) | USB_DEVICE_EPCFG_EPTYPE1(0x1);
ep->EPINTENSET.reg = USB_DEVICE_EPINTENSET_TRCPT0 | USB_DEVICE_EPINTENSET_TRCPT1 | USB_DEVICE_EPINTENSET_RXSTP;
// Prepare for setup packet
prepare_setup();
}
/*------------------------------------------------------------------*/
/* Controller API
*------------------------------------------------------------------*/
void dcd_init (uint8_t rhport)
{
(void) rhport;
// Reset to get in a clean state.
USB->DEVICE.CTRLA.bit.SWRST = true;
while (USB->DEVICE.SYNCBUSY.bit.SWRST == 0) {}
while (USB->DEVICE.SYNCBUSY.bit.SWRST == 1) {}
USB->DEVICE.PADCAL.bit.TRANSP = (*((uint32_t*) USB_FUSES_TRANSP_ADDR) & USB_FUSES_TRANSP_Msk) >> USB_FUSES_TRANSP_Pos;
USB->DEVICE.PADCAL.bit.TRANSN = (*((uint32_t*) USB_FUSES_TRANSN_ADDR) & USB_FUSES_TRANSN_Msk) >> USB_FUSES_TRANSN_Pos;
USB->DEVICE.PADCAL.bit.TRIM = (*((uint32_t*) USB_FUSES_TRIM_ADDR) & USB_FUSES_TRIM_Msk) >> USB_FUSES_TRIM_Pos;
USB->DEVICE.QOSCTRL.bit.CQOS = 3; // High Quality
USB->DEVICE.QOSCTRL.bit.DQOS = 3; // High Quality
// Configure registers
USB->DEVICE.DESCADD.reg = (uint32_t) &sram_registers;
USB->DEVICE.CTRLB.reg = USB_DEVICE_CTRLB_SPDCONF_FS;
USB->DEVICE.CTRLA.reg = USB_CTRLA_MODE_DEVICE | USB_CTRLA_ENABLE | USB_CTRLA_RUNSTDBY;
while (USB->DEVICE.SYNCBUSY.bit.ENABLE == 1) {}
USB->DEVICE.INTFLAG.reg |= USB->DEVICE.INTFLAG.reg; // clear pending
USB->DEVICE.INTENSET.reg = /* USB_DEVICE_INTENSET_SOF | */ USB_DEVICE_INTENSET_EORST;
}
#if CFG_TUSB_MCU == OPT_MCU_SAMD51 || CFG_TUSB_MCU == OPT_MCU_SAME5X
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USB_0_IRQn);
NVIC_EnableIRQ(USB_1_IRQn);
NVIC_EnableIRQ(USB_2_IRQn);
NVIC_EnableIRQ(USB_3_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB_3_IRQn);
NVIC_DisableIRQ(USB_2_IRQn);
NVIC_DisableIRQ(USB_1_IRQn);
NVIC_DisableIRQ(USB_0_IRQn);
}
#elif CFG_TUSB_MCU == OPT_MCU_SAMD11 || CFG_TUSB_MCU == OPT_MCU_SAMD21 || \
CFG_TUSB_MCU == OPT_MCU_SAML22 || CFG_TUSB_MCU == OPT_MCU_SAML21
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USB_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB_IRQn);
}
#else
#error "No implementation available for dcd_int_enable / dcd_int_disable"
#endif
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) dev_addr;
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
// DCD can only set address after status for this request is complete
// do it at dcd_edpt0_status_complete()
// Enable SUSPEND interrupt since the bus signal D+/D- are stable now.
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTENCLR_SUSPEND; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTENSET_SUSPEND;
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
USB->DEVICE.CTRLB.bit.UPRSM = 1;
}
// disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
USB->DEVICE.CTRLB.reg |= USB_DEVICE_CTRLB_DETACH;
}
// connect by enabling internal pull-up resistor on D+/D-
void dcd_connect(uint8_t rhport)
{
(void) rhport;
USB->DEVICE.CTRLB.reg &= ~USB_DEVICE_CTRLB_DETACH;
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
(void) rhport;
(void) en;
// TODO implement later
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
}
// Just finished status stage, prepare for next setup packet
// Note: we may already prepare setup when queueing the control status.
// but it has no harm to do it again here
prepare_setup();
}
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
UsbDeviceDescBank* bank = &sram_registers[epnum][dir];
uint32_t size_value = 0;
while (size_value < 7) {
if (1 << (size_value + 3) == tu_edpt_packet_size(desc_edpt)) {
break;
}
size_value++;
}
// unsupported endpoint size
if ( size_value == 7 && tu_edpt_packet_size(desc_edpt) != 1023 ) return false;
bank->PCKSIZE.bit.SIZE = size_value;
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
if ( dir == TUSB_DIR_OUT )
{
ep->EPCFG.bit.EPTYPE0 = desc_edpt->bmAttributes.xfer + 1;
ep->EPSTATUSCLR.reg = USB_DEVICE_EPSTATUSCLR_STALLRQ0 | USB_DEVICE_EPSTATUSCLR_DTGLOUT; // clear stall & dtoggle
ep->EPINTENSET.bit.TRCPT0 = true;
}else
{
ep->EPCFG.bit.EPTYPE1 = desc_edpt->bmAttributes.xfer + 1;
ep->EPSTATUSCLR.reg = USB_DEVICE_EPSTATUSCLR_STALLRQ1 | USB_DEVICE_EPSTATUSCLR_DTGLIN; // clear stall & dtoggle
ep->EPINTENSET.bit.TRCPT1 = true;
}
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
UsbDeviceDescBank* bank = &sram_registers[epnum][dir];
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
bank->ADDR.reg = (uint32_t) buffer;
// A SETUP token can occur immediately after an ZLP Status.
// So make sure we have a valid buffer for setup packet.
// Status = ZLP EP0 with direction opposite to one in the dir bit of current setup
if ( (epnum == 0) && (buffer == NULL) && (total_bytes == 0) && (dir != tu_edpt_dir(_setup_packet[0])) ) {
prepare_setup();
}
if ( dir == TUSB_DIR_OUT )
{
bank->PCKSIZE.bit.MULTI_PACKET_SIZE = total_bytes;
bank->PCKSIZE.bit.BYTE_COUNT = 0;
ep->EPSTATUSCLR.reg |= USB_DEVICE_EPSTATUSCLR_BK0RDY;
ep->EPINTFLAG.reg |= USB_DEVICE_EPINTFLAG_TRFAIL0;
} else
{
bank->PCKSIZE.bit.MULTI_PACKET_SIZE = 0;
bank->PCKSIZE.bit.BYTE_COUNT = total_bytes;
ep->EPSTATUSSET.reg |= USB_DEVICE_EPSTATUSSET_BK1RDY;
ep->EPINTFLAG.reg |= USB_DEVICE_EPINTFLAG_TRFAIL1;
}
return true;
}
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
ep->EPSTATUSSET.reg = USB_DEVICE_EPSTATUSSET_STALLRQ1;
} else {
ep->EPSTATUSSET.reg = USB_DEVICE_EPSTATUSSET_STALLRQ0;
}
}
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
ep->EPSTATUSCLR.reg = USB_DEVICE_EPSTATUSCLR_STALLRQ1 | USB_DEVICE_EPSTATUSCLR_DTGLIN;
} else {
ep->EPSTATUSCLR.reg = USB_DEVICE_EPSTATUSCLR_STALLRQ0 | USB_DEVICE_EPSTATUSCLR_DTGLOUT;
}
}
//--------------------------------------------------------------------+
// Interrupt Handler
//--------------------------------------------------------------------+
void maybe_transfer_complete(void) {
uint32_t epints = USB->DEVICE.EPINTSMRY.reg;
for (uint8_t epnum = 0; epnum < USB_EPT_NUM; epnum++) {
if ((epints & (1 << epnum)) == 0) {
continue;
}
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
uint32_t epintflag = ep->EPINTFLAG.reg;
// Handle IN completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT1) != 0) {
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_IN];
uint16_t const total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
dcd_event_xfer_complete(0, epnum | TUSB_DIR_IN_MASK, total_transfer_size, XFER_RESULT_SUCCESS, true);
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT1;
}
// Handle OUT completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT0) != 0) {
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_OUT];
uint16_t const total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
dcd_event_xfer_complete(0, epnum, total_transfer_size, XFER_RESULT_SUCCESS, true);
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT0;
}
}
}
void dcd_int_handler (uint8_t rhport)
{
(void) rhport;
uint32_t int_status = USB->DEVICE.INTFLAG.reg & USB->DEVICE.INTENSET.reg;
// Start of Frame
if ( int_status & USB_DEVICE_INTFLAG_SOF )
{
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_SOF;
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
// SAMD doesn't distinguish between Suspend and Disconnect state.
// Both condition will cause SUSPEND interrupt triggered.
// To prevent being triggered when D+/D- are not stable, SUSPEND interrupt is only
// enabled when we received SET_ADDRESS request and cleared on Bus Reset
if ( int_status & USB_DEVICE_INTFLAG_SUSPEND )
{
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_SUSPEND;
// Enable wakeup interrupt
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_WAKEUP; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTFLAG_WAKEUP;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
// Wakeup interrupt is only enabled when we got suspended.
// Wakeup interrupt will disable itself
if ( int_status & USB_DEVICE_INTFLAG_WAKEUP )
{
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_WAKEUP;
// disable wakeup interrupt itself
USB->DEVICE.INTENCLR.reg = USB_DEVICE_INTFLAG_WAKEUP;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
// Enable of Reset
if ( int_status & USB_DEVICE_INTFLAG_EORST )
{
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_EORST;
// Disable both suspend and wakeup interrupt
USB->DEVICE.INTENCLR.reg = USB_DEVICE_INTFLAG_WAKEUP | USB_DEVICE_INTFLAG_SUSPEND;
bus_reset();
dcd_event_bus_reset(0, TUSB_SPEED_FULL, true);
}
// Handle SETUP packet
if (USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.bit.RXSTP)
{
// This copies the data elsewhere so we can reuse the buffer.
dcd_event_setup_received(0, _setup_packet, true);
// Although Setup packet only set RXSTP bit,
// TRCPT0 bit could already be set by previous ZLP OUT Status (not handled until now).
// Since control status complete event is optional, we can just clear TRCPT0 and skip the status event
USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_RXSTP | USB_DEVICE_EPINTFLAG_TRCPT0;
}
// Handle complete transfer
maybe_transfer_complete();
}
#endif