espressif_tinyusb/src/portable/nxp/transdimension/dcd_transdimension.c

663 lines
22 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && \
(CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX || CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
#include "fsl_device_registers.h"
#define INCLUDE_FSL_DEVICE_REGISTERS
#else
// LPCOpen for 18xx & 43xx
#include "chip.h"
#endif
#include "common/tusb_common.h"
#include "device/dcd.h"
#include "common_transdimension.h"
#if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1
#define CleanInvalidateDCache_by_Addr SCB_CleanInvalidateDCache_by_Addr
#else
#define CleanInvalidateDCache_by_Addr(_addr, _dsize)
#endif
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// ENDPTCTRL
enum {
ENDPTCTRL_STALL = TU_BIT(0),
ENDPTCTRL_TOGGLE_INHIBIT = TU_BIT(5), // used for test only
ENDPTCTRL_TOGGLE_RESET = TU_BIT(6),
ENDPTCTRL_ENABLE = TU_BIT(7)
};
enum {
ENDPTCTRL_TYPE_POS = 2, // Endpoint type is 2-bit field
};
// USBSTS, USBINTR
enum {
INTR_USB = TU_BIT(0),
INTR_ERROR = TU_BIT(1),
INTR_PORT_CHANGE = TU_BIT(2),
INTR_RESET = TU_BIT(6),
INTR_SOF = TU_BIT(7),
INTR_SUSPEND = TU_BIT(8),
INTR_NAK = TU_BIT(16)
};
// Queue Transfer Descriptor
typedef struct
{
// Word 0: Next QTD Pointer
uint32_t next; ///< Next link pointer This field contains the physical memory address of the next dTD to be processed
// Word 1: qTQ Token
uint32_t : 3 ;
volatile uint32_t xact_err : 1 ;
uint32_t : 1 ;
volatile uint32_t buffer_err : 1 ;
volatile uint32_t halted : 1 ;
volatile uint32_t active : 1 ;
uint32_t : 2 ;
uint32_t iso_mult_override : 2 ; ///< This field can be used for transmit ISOs to override the MULT field in the dQH. This field must be zero for all packet types that are not transmit-ISO.
uint32_t : 3 ;
uint32_t int_on_complete : 1 ;
volatile uint32_t total_bytes : 15 ;
uint32_t : 1 ;
// Word 2-6: Buffer Page Pointer List, Each element in the list is a 4K page aligned, physical memory address. The lower 12 bits in each pointer are reserved (except for the first one) as each memory pointer must reference the start of a 4K page
uint32_t buffer[5]; ///< buffer1 has frame_n for TODO Isochronous
//--------------------------------------------------------------------+
// TD is 32 bytes aligned but occupies only 28 bytes
// Therefore there are 4 bytes padding that we can use.
//--------------------------------------------------------------------+
uint16_t expected_bytes;
uint8_t reserved[2];
} dcd_qtd_t;
TU_VERIFY_STATIC( sizeof(dcd_qtd_t) == 32, "size is not correct");
// Queue Head
typedef struct
{
// Word 0: Capabilities and Characteristics
uint32_t : 15 ; ///< Number of packets executed per transaction descriptor 00 - Execute N transactions as demonstrated by the USB variable length protocol where N is computed using Max_packet_length and the Total_bytes field in the dTD. 01 - Execute one transaction 10 - Execute two transactions 11 - Execute three transactions Remark: Non-isochronous endpoints must set MULT = 00. Remark: Isochronous endpoints must set MULT = 01, 10, or 11 as needed.
uint32_t int_on_setup : 1 ; ///< Interrupt on setup This bit is used on control type endpoints to indicate if USBINT is set in response to a setup being received.
uint32_t max_packet_size : 11 ; ///< Endpoint's wMaxPacketSize
uint32_t : 2 ;
uint32_t zero_length_termination : 1 ; ///< This bit is used for non-isochronous endpoints to indicate when a zero-length packet is received to terminate transfers in case the total transfer length is “multiple”. 0 - Enable zero-length packet to terminate transfers equal to a multiple of Max_packet_length (default). 1 - Disable zero-length packet on transfers that are equal in length to a multiple Max_packet_length.
uint32_t iso_mult : 2 ; ///<
// Word 1: Current qTD Pointer
volatile uint32_t qtd_addr;
// Word 2-9: Transfer Overlay
volatile dcd_qtd_t qtd_overlay;
// Word 10-11: Setup request (control OUT only)
volatile tusb_control_request_t setup_request;
//--------------------------------------------------------------------+
// QHD is 64 bytes aligned but occupies only 48 bytes
// Therefore there are 16 bytes padding that we can use.
//--------------------------------------------------------------------+
tu_fifo_t * ff;
uint8_t reserved[12];
} dcd_qhd_t;
TU_VERIFY_STATIC( sizeof(dcd_qhd_t) == 64, "size is not correct");
//--------------------------------------------------------------------+
// Variables
//--------------------------------------------------------------------+
typedef struct
{
dcd_registers_t* regs; // registers
const IRQn_Type irqnum; // IRQ number
const uint8_t ep_count; // Max bi-directional Endpoints
}dcd_controller_t;
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
static const dcd_controller_t _dcd_controller[] =
{
// RT1010 and RT1020 only has 1 USB controller
#if FSL_FEATURE_SOC_USBHS_COUNT == 1
{ .regs = (dcd_registers_t*) USB_BASE , .irqnum = USB_OTG1_IRQn, .ep_count = 8 }
#else
{ .regs = (dcd_registers_t*) USB1_BASE, .irqnum = USB_OTG1_IRQn, .ep_count = 8 },
{ .regs = (dcd_registers_t*) USB2_BASE, .irqnum = USB_OTG2_IRQn, .ep_count = 8 }
#endif
};
#else
static const dcd_controller_t _dcd_controller[] =
{
{ .regs = (dcd_registers_t*) LPC_USB0_BASE, .irqnum = USB0_IRQn, .ep_count = 6 },
{ .regs = (dcd_registers_t*) LPC_USB1_BASE, .irqnum = USB1_IRQn, .ep_count = 4 }
};
#endif
#define QTD_NEXT_INVALID 0x01
typedef struct {
// Must be at 2K alignment
// Each endpoint with direction (IN/OUT) occupies a queue head
// for portability, TinyUSB only queue 1 TD for each Qhd
dcd_qhd_t qhd[DCD_ATTR_ENDPOINT_MAX][2] TU_ATTR_ALIGNED(64);
dcd_qtd_t qtd[DCD_ATTR_ENDPOINT_MAX][2] TU_ATTR_ALIGNED(32);
}dcd_data_t;
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048)
static dcd_data_t _dcd_data;
//--------------------------------------------------------------------+
// Controller API
//--------------------------------------------------------------------+
/// follows LPC43xx User Manual 23.10.3
static void bus_reset(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
// The reset value for all endpoint types is the control endpoint. If one endpoint
// direction is enabled and the paired endpoint of opposite direction is disabled, then the
// endpoint type of the unused direction must be changed from the control type to any other
// type (e.g. bulk). Leaving an un-configured endpoint control will cause undefined behavior
// for the data PID tracking on the active endpoint.
for( uint8_t i=1; i < _dcd_controller[rhport].ep_count; i++)
{
dcd_reg->ENDPTCTRL[i] = (TUSB_XFER_BULK << ENDPTCTRL_TYPE_POS) | (TUSB_XFER_BULK << (16+ENDPTCTRL_TYPE_POS));
}
//------------- Clear All Registers -------------//
dcd_reg->ENDPTNAK = dcd_reg->ENDPTNAK;
dcd_reg->ENDPTNAKEN = 0;
dcd_reg->USBSTS = dcd_reg->USBSTS;
dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT;
dcd_reg->ENDPTCOMPLETE = dcd_reg->ENDPTCOMPLETE;
while (dcd_reg->ENDPTPRIME) {}
dcd_reg->ENDPTFLUSH = 0xFFFFFFFF;
while (dcd_reg->ENDPTFLUSH) {}
// read reset bit in portsc
//------------- Queue Head & Queue TD -------------//
tu_memclr(&_dcd_data, sizeof(dcd_data_t));
//------------- Set up Control Endpoints (0 OUT, 1 IN) -------------//
_dcd_data.qhd[0][0].zero_length_termination = _dcd_data.qhd[0][1].zero_length_termination = 1;
_dcd_data.qhd[0][0].max_packet_size = _dcd_data.qhd[0][1].max_packet_size = CFG_TUD_ENDPOINT0_SIZE;
_dcd_data.qhd[0][0].qtd_overlay.next = _dcd_data.qhd[0][1].qtd_overlay.next = QTD_NEXT_INVALID;
_dcd_data.qhd[0][0].int_on_setup = 1; // OUT only
}
void dcd_init(uint8_t rhport)
{
tu_memclr(&_dcd_data, sizeof(dcd_data_t));
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
// Reset controller
dcd_reg->USBCMD |= USBCMD_RESET;
while( dcd_reg->USBCMD & USBCMD_RESET ) {}
// Set mode to device, must be set immediately after reset
dcd_reg->USBMODE = USBMODE_CM_DEVICE;
dcd_reg->OTGSC = OTGSC_VBUS_DISCHARGE | OTGSC_OTG_TERMINATION;
#if !TUD_OPT_HIGH_SPEED
dcd_reg->PORTSC1 = PORTSC1_FORCE_FULL_SPEED;
#endif
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
dcd_reg->ENDPTLISTADDR = (uint32_t) _dcd_data.qhd; // Endpoint List Address has to be 2K alignment
dcd_reg->USBSTS = dcd_reg->USBSTS;
dcd_reg->USBINTR = INTR_USB | INTR_ERROR | INTR_PORT_CHANGE | INTR_SUSPEND;
dcd_reg->USBCMD &= ~0x00FF0000; // Interrupt Threshold Interval = 0
dcd_reg->USBCMD |= USBCMD_RUN_STOP; // Connect
}
void dcd_int_enable(uint8_t rhport)
{
NVIC_EnableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_int_disable(uint8_t rhport)
{
NVIC_DisableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->DEVICEADDR = (dev_addr << 25) | TU_BIT(24);
}
void dcd_remote_wakeup(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->PORTSC1 |= PORTSC1_FORCE_PORT_RESUME;
}
void dcd_connect(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->USBCMD |= USBCMD_RUN_STOP;
}
void dcd_disconnect(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->USBCMD &= ~USBCMD_RUN_STOP;
}
//--------------------------------------------------------------------+
// HELPER
//--------------------------------------------------------------------+
static void qtd_init(dcd_qtd_t* p_qtd, void * data_ptr, uint16_t total_bytes)
{
// Force the CPU to flush the buffer. We increase the size by 31 because the call aligns the
// address to 32-byte boundaries. Buffer must be word aligned
CleanInvalidateDCache_by_Addr((uint32_t*) tu_align((uint32_t) data_ptr, 4), total_bytes + 31);
tu_memclr(p_qtd, sizeof(dcd_qtd_t));
p_qtd->next = QTD_NEXT_INVALID;
p_qtd->active = 1;
p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes;
p_qtd->int_on_complete = true;
if (data_ptr != NULL)
{
p_qtd->buffer[0] = (uint32_t) data_ptr;
uint32_t const bufend = p_qtd->buffer[0] + total_bytes;
for(uint8_t i=1; i<5; i++)
{
uint32_t const next_page = tu_align4k( p_qtd->buffer[i-1] ) + 4096;
if ( bufend <= next_page ) break;
p_qtd->buffer[i] = next_page;
// TODO page[1] FRAME_N for ISO transfer
}
}
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->ENDPTCTRL[epnum] |= ENDPTCTRL_STALL << (dir ? 16 : 0);
// flush to abort any primed buffer
dcd_reg->ENDPTFLUSH = TU_BIT(epnum + (dir ? 16 : 0));
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// data toggle also need to be reset
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->ENDPTCTRL[epnum] |= ENDPTCTRL_TOGGLE_RESET << ( dir ? 16 : 0 );
dcd_reg->ENDPTCTRL[epnum] &= ~(ENDPTCTRL_STALL << ( dir ? 16 : 0));
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
// Must not exceed max endpoint number
TU_ASSERT( epnum < _dcd_controller[rhport].ep_count );
//------------- Prepare Queue Head -------------//
dcd_qhd_t * p_qhd = &_dcd_data.qhd[epnum][dir];
tu_memclr(p_qhd, sizeof(dcd_qhd_t));
p_qhd->zero_length_termination = 1;
p_qhd->max_packet_size = tu_edpt_packet_size(p_endpoint_desc);
if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS)
{
p_qhd->iso_mult = 1;
}
p_qhd->qtd_overlay.next = QTD_NEXT_INVALID;
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
// Enable EP Control
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
uint32_t const epctrl = (p_endpoint_desc->bmAttributes.xfer << ENDPTCTRL_TYPE_POS) | ENDPTCTRL_ENABLE | ENDPTCTRL_TOGGLE_RESET;
if ( dir == TUSB_DIR_OUT )
{
dcd_reg->ENDPTCTRL[epnum] = (dcd_reg->ENDPTCTRL[epnum] & 0xFFFF0000u) | epctrl;
}else
{
dcd_reg->ENDPTCTRL[epnum] = (dcd_reg->ENDPTCTRL[epnum] & 0x0000FFFFu) | (epctrl << 16);
}
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
// Disable all non-control endpoints
for( uint8_t epnum=1; epnum < _dcd_controller[rhport].ep_count; epnum++)
{
_dcd_data.qhd[epnum][TUSB_DIR_OUT].qtd_overlay.halted = 1;
_dcd_data.qhd[epnum][TUSB_DIR_IN ].qtd_overlay.halted = 1;
dcd_reg->ENDPTFLUSH = TU_BIT(epnum) | TU_BIT(epnum+16);
dcd_reg->ENDPTCTRL[epnum] = (TUSB_XFER_BULK << ENDPTCTRL_TYPE_POS) | (TUSB_XFER_BULK << (16+ENDPTCTRL_TYPE_POS));
}
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
_dcd_data.qhd[epnum][dir].qtd_overlay.halted = 1;
// Flush EP
uint32_t const flush_mask = TU_BIT(epnum + (dir ? 16 : 0));
dcd_reg->ENDPTFLUSH = flush_mask;
while(dcd_reg->ENDPTFLUSH & flush_mask);
// Clear EP enable
dcd_reg->ENDPTCTRL[epnum] &=~(ENDPTCTRL_ENABLE << (dir ? 16 : 0));
}
static void qhd_start_xfer(uint8_t rhport, uint8_t epnum, uint8_t dir)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_qhd_t* p_qhd = &_dcd_data.qhd[epnum][dir];
dcd_qtd_t* p_qtd = &_dcd_data.qtd[epnum][dir];
p_qhd->qtd_overlay.halted = false; // clear any previous error
p_qhd->qtd_overlay.next = (uint32_t) p_qtd; // link qtd to qhd
// flush cache
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
if ( epnum == 0 )
{
// follows UM 24.10.8.1.1 Setup packet handling using setup lockout mechanism
// wait until ENDPTSETUPSTAT before priming data/status in response TODO add time out
while(dcd_reg->ENDPTSETUPSTAT & TU_BIT(0)) {}
}
// start transfer
dcd_reg->ENDPTPRIME = TU_BIT(epnum + (dir ? 16 : 0));
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_qhd_t* p_qhd = &_dcd_data.qhd[epnum][dir];
dcd_qtd_t* p_qtd = &_dcd_data.qtd[epnum][dir];
// Prepare qtd
qtd_init(p_qtd, buffer, total_bytes);
// Start qhd transfer
p_qhd->ff = NULL;
qhd_start_xfer(rhport, epnum, dir);
return true;
}
// fifo has to be aligned to 4k boundary
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_qhd_t * p_qhd = &_dcd_data.qhd[epnum][dir];
dcd_qtd_t * p_qtd = &_dcd_data.qtd[epnum][dir];
tu_fifo_buffer_info_t fifo_info;
if (dir)
{
tu_fifo_get_read_info(ff, &fifo_info);
} else
{
tu_fifo_get_write_info(ff, &fifo_info);
}
if ( fifo_info.len_lin >= total_bytes )
{
// Linear length is enough for this transfer
qtd_init(p_qtd, fifo_info.ptr_lin, total_bytes);
}
else
{
// linear part is not enough
// prepare TD up to linear length
qtd_init(p_qtd, fifo_info.ptr_lin, fifo_info.len_lin);
if ( !tu_offset4k((uint32_t) fifo_info.ptr_wrap) && !tu_offset4k(tu_fifo_depth(ff)) )
{
// If buffer is aligned to 4K & buffer size is multiple of 4K
// We can make use of buffer page array to also combine the linear + wrapped length
p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes;
for(uint8_t i = 1, page = 0; i < 5; i++)
{
// pick up buffer array where linear ends
if (p_qtd->buffer[i] == 0)
{
p_qtd->buffer[i] = (uint32_t) fifo_info.ptr_wrap + 4096 * page;
page++;
}
}
CleanInvalidateDCache_by_Addr((uint32_t*) tu_align((uint32_t) fifo_info.ptr_wrap, 4), total_bytes - fifo_info.len_wrap + 31);
}
else
{
// TODO we may need to carry the wrapped length after the linear part complete
// for now only transfer up to linear part
}
}
// Start qhd transfer
p_qhd->ff = ff;
qhd_start_xfer(rhport, epnum, dir);
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
static void process_edpt_complete_isr(uint8_t rhport, uint8_t epnum, uint8_t dir)
{
dcd_qhd_t * p_qhd = &_dcd_data.qhd[epnum][dir];
dcd_qtd_t * p_qtd = &_dcd_data.qtd[epnum][dir];
uint8_t result = p_qtd->halted ? XFER_RESULT_STALLED :
( p_qtd->xact_err || p_qtd->buffer_err ) ? XFER_RESULT_FAILED : XFER_RESULT_SUCCESS;
if ( result != XFER_RESULT_SUCCESS )
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
// flush to abort error buffer
dcd_reg->ENDPTFLUSH = TU_BIT(epnum + (dir ? 16 : 0));
}
uint16_t const xferred_bytes = p_qtd->expected_bytes - p_qtd->total_bytes;
if (p_qhd->ff)
{
if (dir == TUSB_DIR_IN)
{
tu_fifo_advance_read_pointer(p_qhd->ff, xferred_bytes);
} else
{
tu_fifo_advance_write_pointer(p_qhd->ff, xferred_bytes);
}
}
// only number of bytes in the IOC qtd
dcd_event_xfer_complete(rhport, tu_edpt_addr(epnum, dir), xferred_bytes, result, true);
}
void dcd_int_handler(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
uint32_t const int_enable = dcd_reg->USBINTR;
uint32_t const int_status = dcd_reg->USBSTS & int_enable;
dcd_reg->USBSTS = int_status; // Acknowledge handled interrupt
// disabled interrupt sources
if (int_status == 0) return;
// Set if the port controller enters the full or high-speed operational state.
// either from Bus Reset or Suspended state
if (int_status & INTR_PORT_CHANGE)
{
// TU_LOG2("PortChange %08lx\r\n", dcd_reg->PORTSC1);
// Reset interrupt is not enabled, we manually check if Port Change is due
// to connection / disconnection
if ( dcd_reg->USBSTS & INTR_RESET )
{
dcd_reg->USBSTS = INTR_RESET;
if (dcd_reg->PORTSC1 & PORTSC1_CURRENT_CONNECT_STATUS)
{
uint32_t const speed = (dcd_reg->PORTSC1 & PORTSC1_PORT_SPEED) >> PORTSC1_PORT_SPEED_POS;
bus_reset(rhport);
dcd_event_bus_reset(rhport, (tusb_speed_t) speed, true);
}else
{
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
}
else
{
// Triggered by resuming from suspended state
if ( !(dcd_reg->PORTSC1 & PORTSC1_SUSPEND) )
{
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
}
}
if (int_status & INTR_SUSPEND)
{
// TU_LOG2("Suspend %08lx\r\n", dcd_reg->PORTSC1);
if (dcd_reg->PORTSC1 & PORTSC1_SUSPEND)
{
// Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration.
// Skip suspend event if we are not addressed
if ((dcd_reg->DEVICEADDR >> 25) & 0x0f)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
}
}
if (int_status & INTR_USB)
{
// Make sure we read the latest version of _dcd_data.
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
uint32_t const edpt_complete = dcd_reg->ENDPTCOMPLETE;
dcd_reg->ENDPTCOMPLETE = edpt_complete; // acknowledge
if (dcd_reg->ENDPTSETUPSTAT)
{
//------------- Set up Received -------------//
// 23.10.10.2 Operational model for setup transfers
dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT;
dcd_event_setup_received(rhport, (uint8_t*)(uintptr_t) &_dcd_data.qhd[0][0].setup_request, true);
}
// 23.10.12.3 Failed QTD also get ENDPTCOMPLETE set
// nothing to do, we will submit xfer as error to usbd
// if (int_status & INTR_ERROR) { }
if ( edpt_complete )
{
for(uint8_t epnum = 0; epnum < DCD_ATTR_ENDPOINT_MAX; epnum++)
{
if ( tu_bit_test(edpt_complete, epnum) ) process_edpt_complete_isr(rhport, epnum, TUSB_DIR_OUT);
if ( tu_bit_test(edpt_complete, epnum+16) ) process_edpt_complete_isr(rhport, epnum, TUSB_DIR_IN);
}
}
}
if (int_status & INTR_SOF)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
}
#endif