espressif_tinyusb/src/class/usbtmc/usbtmc_device.c

887 lines
30 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Nathan Conrad
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
/*
* This library is not fully reentrant, though it is reentrant from the view
* of either the application layer or the USB stack. Due to its locking,
* it is not safe to call its functions from interrupts.
*
* The one exception is that its functions may not be called from the application
* until the USB stack is initialized. This should not be a problem since the
* device shouldn't be sending messages until it receives a request from the
* host.
*/
/*
* In the case of single-CPU "no OS", this task is never preempted other than by
* interrupts, and the USBTMC code isn't called by interrupts, so all is OK. For "no OS",
* the mutex structure's main effect is to disable the USB interrupts.
* With an OS, this class driver uses the OSAL to perform locking. The code uses a single lock
* and does not call outside of this class with a lock held, so deadlocks won't happen.
*/
//Limitations:
// "vendor-specific" commands are not handled.
// Dealing with "termchar" must be handled by the application layer,
// though additional error checking is does in this module.
// talkOnly and listenOnly are NOT supported. They're not permitted
// in USB488, anyway.
/* Supported:
*
* Notification pulse
* Trigger
* Read status byte (both by interrupt endpoint and control message)
*
*/
// TODO:
// USBTMC 3.2.2 error conditions not strictly followed
// No local lock-out, REN, or GTL.
// Clear message available status byte at the correct time? (488 4.3.1.3)
// Ability to defer status byte transmission
// Transmission of status byte in response to USB488 SRQ condition
#include "tusb_option.h"
#if (CFG_TUD_ENABLED && CFG_TUD_USBTMC)
#include "device/usbd.h"
#include "device/usbd_pvt.h"
#include "usbtmc_device.h"
#ifdef xDEBUG
#include "uart_util.h"
static char logMsg[150];
#endif
// Buffer size must be an exact multiple of the max packet size for both
// bulk (up to 64 bytes for FS, 512 bytes for HS). In addation, this driver
// imposes a minimum buffer size of 32 bytes.
#define USBTMCD_BUFFER_SIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
/*
* The state machine does not allow simultaneous reading and writing. This is
* consistent with USBTMC.
*/
typedef enum
{
STATE_CLOSED, // Endpoints have not yet been opened since USB reset
STATE_NAK, // Bulk-out endpoint is in NAK state.
STATE_IDLE, // Bulk-out endpoint is waiting for CMD.
STATE_RCV, // Bulk-out is receiving DEV_DEP message
STATE_TX_REQUESTED,
STATE_TX_INITIATED,
STATE_TX_SHORTED,
STATE_CLEARING,
STATE_ABORTING_BULK_IN,
STATE_ABORTING_BULK_IN_SHORTED, // aborting, and short packet has been queued for transmission
STATE_ABORTING_BULK_IN_ABORTED, // aborting, and short packet has been transmitted
STATE_ABORTING_BULK_OUT,
STATE_NUM_STATES
} usbtmcd_state_enum;
#if (CFG_TUD_USBTMC_ENABLE_488)
typedef usbtmc_response_capabilities_488_t usbtmc_capabilities_specific_t;
#else
typedef usbtmc_response_capabilities_t usbtmc_capabilities_specific_t;
#endif
typedef struct
{
volatile usbtmcd_state_enum state;
uint8_t itf_id;
uint8_t rhport;
uint8_t ep_bulk_in;
uint8_t ep_bulk_out;
uint8_t ep_int_in;
// IN buffer is only used for first packet, not the remainder
// in order to deal with prepending header
CFG_TUSB_MEM_ALIGN uint8_t ep_bulk_in_buf[USBTMCD_BUFFER_SIZE];
uint32_t ep_bulk_in_wMaxPacketSize;
// OUT buffer receives one packet at a time
CFG_TUSB_MEM_ALIGN uint8_t ep_bulk_out_buf[USBTMCD_BUFFER_SIZE];
uint32_t ep_bulk_out_wMaxPacketSize;
uint32_t transfer_size_remaining; // also used for requested length for bulk IN.
uint32_t transfer_size_sent; // To keep track of data bytes that have been queued in FIFO (not header bytes)
uint8_t lastBulkOutTag; // used for aborts (mostly)
uint8_t lastBulkInTag; // used for aborts (mostly)
uint8_t const * devInBuffer; // pointer to application-layer used for transmissions
usbtmc_capabilities_specific_t const * capabilities;
} usbtmc_interface_state_t;
CFG_TUSB_MEM_SECTION static usbtmc_interface_state_t usbtmc_state =
{
.itf_id = 0xFF,
};
// We need all headers to fit in a single packet in this implementation, 32 bytes will fit all standard USBTMC headers
TU_VERIFY_STATIC(USBTMCD_BUFFER_SIZE >= 32u,"USBTMC dev buffer size too small");
static bool handle_devMsgOutStart(uint8_t rhport, void *data, size_t len);
static bool handle_devMsgOut(uint8_t rhport, void *data, size_t len, size_t packetLen);
static uint8_t termChar;
static uint8_t termCharRequested = false;
osal_mutex_def_t usbtmcLockBuffer;
static osal_mutex_t usbtmcLock;
// Our own private lock, mostly for the state variable.
#define criticalEnter() do {osal_mutex_lock(usbtmcLock,OSAL_TIMEOUT_WAIT_FOREVER); } while (0)
#define criticalLeave() do {osal_mutex_unlock(usbtmcLock); } while (0)
bool atomicChangeState(usbtmcd_state_enum expectedState, usbtmcd_state_enum newState)
{
bool ret = true;
criticalEnter();
usbtmcd_state_enum oldState = usbtmc_state.state;
if (oldState == expectedState)
{
usbtmc_state.state = newState;
}
else
{
ret = false;
}
criticalLeave();
return ret;
}
// called from app
// We keep a reference to the buffer, so it MUST not change until the app is
// notified that the transfer is complete.
// length of data is specified in the hdr.
// We can't just send the whole thing at once because we need to concatanate the
// header with the data.
bool tud_usbtmc_transmit_dev_msg_data(
const void * data, size_t len,
bool endOfMessage,
bool usingTermChar)
{
const unsigned int txBufLen = sizeof(usbtmc_state.ep_bulk_in_buf);
#ifndef NDEBUG
TU_ASSERT(len > 0u);
TU_ASSERT(len <= usbtmc_state.transfer_size_remaining);
TU_ASSERT(usbtmc_state.transfer_size_sent == 0u);
if(usingTermChar)
{
TU_ASSERT(usbtmc_state.capabilities->bmDevCapabilities.canEndBulkInOnTermChar);
TU_ASSERT(termCharRequested);
TU_ASSERT(((uint8_t const*)data)[len-1u] == termChar);
}
#endif
TU_VERIFY(usbtmc_state.state == STATE_TX_REQUESTED);
usbtmc_msg_dev_dep_msg_in_header_t *hdr = (usbtmc_msg_dev_dep_msg_in_header_t*)usbtmc_state.ep_bulk_in_buf;
tu_varclr(hdr);
hdr->header.MsgID = USBTMC_MSGID_DEV_DEP_MSG_IN;
hdr->header.bTag = usbtmc_state.lastBulkInTag;
hdr->header.bTagInverse = (uint8_t)~(usbtmc_state.lastBulkInTag);
hdr->TransferSize = len;
hdr->bmTransferAttributes.EOM = endOfMessage;
hdr->bmTransferAttributes.UsingTermChar = usingTermChar;
// Copy in the header
const size_t headerLen = sizeof(*hdr);
const size_t dataLen = ((headerLen + hdr->TransferSize) <= txBufLen) ?
len : (txBufLen - headerLen);
const size_t packetLen = headerLen + dataLen;
memcpy((uint8_t*)(usbtmc_state.ep_bulk_in_buf) + headerLen, data, dataLen);
usbtmc_state.transfer_size_remaining = len - dataLen;
usbtmc_state.transfer_size_sent = dataLen;
usbtmc_state.devInBuffer = (uint8_t const*) data + (dataLen);
bool stateChanged =
atomicChangeState(STATE_TX_REQUESTED, (packetLen >= txBufLen) ? STATE_TX_INITIATED : STATE_TX_SHORTED);
TU_VERIFY(stateChanged);
TU_VERIFY(usbd_edpt_xfer(usbtmc_state.rhport, usbtmc_state.ep_bulk_in, usbtmc_state.ep_bulk_in_buf, (uint16_t)packetLen));
return true;
}
void usbtmcd_init_cb(void)
{
usbtmc_state.capabilities = tud_usbtmc_get_capabilities_cb();
#ifndef NDEBUG
# if CFG_TUD_USBTMC_ENABLE_488
if (usbtmc_state.capabilities->bmIntfcCapabilities488.supportsTrigger) {
TU_ASSERT(&tud_usbtmc_msg_trigger_cb != NULL,);
}
// Per USB488 spec: table 8
TU_ASSERT(!usbtmc_state.capabilities->bmIntfcCapabilities.listenOnly,);
TU_ASSERT(!usbtmc_state.capabilities->bmIntfcCapabilities.talkOnly,);
# endif
if (usbtmc_state.capabilities->bmIntfcCapabilities.supportsIndicatorPulse) {
TU_ASSERT(&tud_usbtmc_indicator_pulse_cb != NULL,);
}
#endif
usbtmcLock = osal_mutex_create(&usbtmcLockBuffer);
}
uint16_t usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
(void)rhport;
uint16_t drv_len;
uint8_t const * p_desc;
uint8_t found_endpoints = 0;
TU_VERIFY(itf_desc->bInterfaceClass == TUD_USBTMC_APP_CLASS , 0);
TU_VERIFY(itf_desc->bInterfaceSubClass == TUD_USBTMC_APP_SUBCLASS, 0);
#ifndef NDEBUG
// Only 2 or 3 endpoints are allowed for USBTMC.
TU_ASSERT((itf_desc->bNumEndpoints == 2) || (itf_desc->bNumEndpoints ==3), 0);
#endif
TU_ASSERT(usbtmc_state.state == STATE_CLOSED, 0);
// Interface
drv_len = 0u;
p_desc = (uint8_t const *) itf_desc;
usbtmc_state.itf_id = itf_desc->bInterfaceNumber;
usbtmc_state.rhport = rhport;
while (found_endpoints < itf_desc->bNumEndpoints && drv_len <= max_len)
{
if ( TUSB_DESC_ENDPOINT == p_desc[DESC_OFFSET_TYPE])
{
tusb_desc_endpoint_t const *ep_desc = (tusb_desc_endpoint_t const *)p_desc;
switch(ep_desc->bmAttributes.xfer) {
case TUSB_XFER_BULK:
// Ensure buffer is an exact multiple of the maxPacketSize
TU_ASSERT((USBTMCD_BUFFER_SIZE % tu_edpt_packet_size(ep_desc)) == 0, 0);
if (tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN)
{
usbtmc_state.ep_bulk_in = ep_desc->bEndpointAddress;
usbtmc_state.ep_bulk_in_wMaxPacketSize = tu_edpt_packet_size(ep_desc);
} else {
usbtmc_state.ep_bulk_out = ep_desc->bEndpointAddress;
usbtmc_state.ep_bulk_out_wMaxPacketSize = tu_edpt_packet_size(ep_desc);
}
break;
case TUSB_XFER_INTERRUPT:
#ifndef NDEBUG
TU_ASSERT(tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN, 0);
TU_ASSERT(usbtmc_state.ep_int_in == 0, 0);
#endif
usbtmc_state.ep_int_in = ep_desc->bEndpointAddress;
break;
default:
TU_ASSERT(false, 0);
}
TU_ASSERT( usbd_edpt_open(rhport, ep_desc), 0);
found_endpoints++;
}
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
// bulk endpoints are required, but interrupt IN is optional
#ifndef NDEBUG
TU_ASSERT(usbtmc_state.ep_bulk_in != 0, 0);
TU_ASSERT(usbtmc_state.ep_bulk_out != 0, 0);
if (itf_desc->bNumEndpoints == 2)
{
TU_ASSERT(usbtmc_state.ep_int_in == 0, 0);
}
else if (itf_desc->bNumEndpoints == 3)
{
TU_ASSERT(usbtmc_state.ep_int_in != 0, 0);
}
#if (CFG_TUD_USBTMC_ENABLE_488)
if(usbtmc_state.capabilities->bmIntfcCapabilities488.is488_2 ||
usbtmc_state.capabilities->bmDevCapabilities488.SR1)
{
TU_ASSERT(usbtmc_state.ep_int_in != 0, 0);
}
#endif
#endif
atomicChangeState(STATE_CLOSED, STATE_NAK);
tud_usbtmc_open_cb(itf_desc->iInterface);
return drv_len;
}
// Tell USBTMC class to set its bulk-in EP to ACK so that it can
// receive USBTMC commands.
// Returns false if it was already in an ACK state or is busy
// processing a command (such as a clear). Returns true if it was
// in the NAK state and successfully transitioned to the ACK wait
// state.
bool tud_usbtmc_start_bus_read()
{
usbtmcd_state_enum oldState = usbtmc_state.state;
switch(oldState)
{
// These may transition to IDLE
case STATE_NAK:
case STATE_ABORTING_BULK_IN_ABORTED:
TU_VERIFY(atomicChangeState(oldState, STATE_IDLE));
break;
// When receiving, let it remain receiving
case STATE_RCV:
break;
default:
TU_VERIFY(false);
}
TU_VERIFY(usbd_edpt_xfer(usbtmc_state.rhport, usbtmc_state.ep_bulk_out, usbtmc_state.ep_bulk_out_buf, 64));
return true;
}
void usbtmcd_reset_cb(uint8_t rhport)
{
(void)rhport;
usbtmc_capabilities_specific_t const * capabilities = tud_usbtmc_get_capabilities_cb();
criticalEnter();
tu_varclr(&usbtmc_state);
usbtmc_state.capabilities = capabilities;
usbtmc_state.itf_id = 0xFFu;
criticalLeave();
}
static bool handle_devMsgOutStart(uint8_t rhport, void *data, size_t len)
{
(void)rhport;
// return true upon failure, as we can assume error is being handled elsewhere.
TU_VERIFY(atomicChangeState(STATE_IDLE, STATE_RCV), true);
usbtmc_state.transfer_size_sent = 0u;
// must be a header, should have been confirmed before calling here.
usbtmc_msg_request_dev_dep_out *msg = (usbtmc_msg_request_dev_dep_out*)data;
usbtmc_state.transfer_size_remaining = msg->TransferSize;
TU_VERIFY(tud_usbtmc_msgBulkOut_start_cb(msg));
TU_VERIFY(handle_devMsgOut(rhport, (uint8_t*)data + sizeof(*msg), len - sizeof(*msg), len));
usbtmc_state.lastBulkOutTag = msg->header.bTag;
return true;
}
static bool handle_devMsgOut(uint8_t rhport, void *data, size_t len, size_t packetLen)
{
(void)rhport;
// return true upon failure, as we can assume error is being handled elsewhere.
TU_VERIFY(usbtmc_state.state == STATE_RCV,true);
bool shortPacket = (packetLen < usbtmc_state.ep_bulk_out_wMaxPacketSize);
// Packet is to be considered complete when we get enough data or at a short packet.
bool atEnd = false;
if(len >= usbtmc_state.transfer_size_remaining || shortPacket)
{
atEnd = true;
TU_VERIFY(atomicChangeState(STATE_RCV, STATE_NAK));
}
len = tu_min32(len, usbtmc_state.transfer_size_remaining);
usbtmc_state.transfer_size_remaining -= len;
usbtmc_state.transfer_size_sent += len;
// App may (should?) call the wait_for_bus() command at this point
if(!tud_usbtmc_msg_data_cb(data, len, atEnd))
{
// TODO: Go to an error state upon failure other than just stalling the EP?
return false;
}
return true;
}
static bool handle_devMsgIn(void *data, size_t len)
{
TU_VERIFY(len == sizeof(usbtmc_msg_request_dev_dep_in));
usbtmc_msg_request_dev_dep_in *msg = (usbtmc_msg_request_dev_dep_in*)data;
bool stateChanged = atomicChangeState(STATE_IDLE, STATE_TX_REQUESTED);
TU_VERIFY(stateChanged);
usbtmc_state.lastBulkInTag = msg->header.bTag;
usbtmc_state.transfer_size_remaining = msg->TransferSize;
usbtmc_state.transfer_size_sent = 0u;
termCharRequested = msg->bmTransferAttributes.TermCharEnabled;
termChar = msg->TermChar;
if(termCharRequested)
TU_VERIFY(usbtmc_state.capabilities->bmDevCapabilities.canEndBulkInOnTermChar);
TU_VERIFY(tud_usbtmc_msgBulkIn_request_cb(msg));
return true;
}
bool usbtmcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
TU_VERIFY(result == XFER_RESULT_SUCCESS);
//uart_tx_str_sync("TMC XFER CB\r\n");
if(usbtmc_state.state == STATE_CLEARING) {
return true; /* I think we can ignore everything here */
}
if(ep_addr == usbtmc_state.ep_bulk_out)
{
usbtmc_msg_generic_t *msg = NULL;
switch(usbtmc_state.state)
{
case STATE_IDLE:
TU_VERIFY(xferred_bytes >= sizeof(usbtmc_msg_generic_t));
msg = (usbtmc_msg_generic_t*)(usbtmc_state.ep_bulk_out_buf);
uint8_t invInvTag = (uint8_t)~(msg->header.bTagInverse);
TU_VERIFY(msg->header.bTag == invInvTag);
TU_VERIFY(msg->header.bTag != 0x00);
switch(msg->header.MsgID) {
case USBTMC_MSGID_DEV_DEP_MSG_OUT:
if(!handle_devMsgOutStart(rhport, msg, xferred_bytes))
{
usbd_edpt_stall(rhport, usbtmc_state.ep_bulk_out);
TU_VERIFY(false);
}
break;
case USBTMC_MSGID_DEV_DEP_MSG_IN:
TU_VERIFY(handle_devMsgIn(msg, xferred_bytes));
break;
#if (CFG_TUD_USBTMC_ENABLE_488)
case USBTMC_MSGID_USB488_TRIGGER:
// Spec says we halt the EP if we didn't declare we support it.
TU_VERIFY(usbtmc_state.capabilities->bmIntfcCapabilities488.supportsTrigger);
TU_VERIFY(tud_usbtmc_msg_trigger_cb(msg));
break;
#endif
case USBTMC_MSGID_VENDOR_SPECIFIC_MSG_OUT:
case USBTMC_MSGID_VENDOR_SPECIFIC_IN:
default:
usbd_edpt_stall(rhport, usbtmc_state.ep_bulk_out);
TU_VERIFY(false);
return false;
}
return true;
case STATE_RCV:
if(!handle_devMsgOut(rhport, usbtmc_state.ep_bulk_out_buf, xferred_bytes, xferred_bytes))
{
usbd_edpt_stall(rhport, usbtmc_state.ep_bulk_out);
TU_VERIFY(false);
}
return true;
case STATE_ABORTING_BULK_OUT:
TU_VERIFY(false);
return false; // Should be stalled by now, shouldn't have received a packet.
case STATE_TX_REQUESTED:
case STATE_TX_INITIATED:
case STATE_ABORTING_BULK_IN:
case STATE_ABORTING_BULK_IN_SHORTED:
case STATE_ABORTING_BULK_IN_ABORTED:
default:
TU_VERIFY(false);
}
}
else if(ep_addr == usbtmc_state.ep_bulk_in)
{
switch(usbtmc_state.state) {
case STATE_TX_SHORTED:
TU_VERIFY(atomicChangeState(STATE_TX_SHORTED, STATE_NAK));
TU_VERIFY(tud_usbtmc_msgBulkIn_complete_cb());
break;
case STATE_TX_INITIATED:
if(usbtmc_state.transfer_size_remaining >= sizeof(usbtmc_state.ep_bulk_in_buf))
{
// FIXME! This removes const below!
TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_in,
(void*)(uintptr_t) usbtmc_state.devInBuffer, sizeof(usbtmc_state.ep_bulk_in_buf)));
usbtmc_state.devInBuffer += sizeof(usbtmc_state.ep_bulk_in_buf);
usbtmc_state.transfer_size_remaining -= sizeof(usbtmc_state.ep_bulk_in_buf);
usbtmc_state.transfer_size_sent += sizeof(usbtmc_state.ep_bulk_in_buf);
}
else // last packet
{
size_t packetLen = usbtmc_state.transfer_size_remaining;
memcpy(usbtmc_state.ep_bulk_in_buf, usbtmc_state.devInBuffer, usbtmc_state.transfer_size_remaining);
usbtmc_state.transfer_size_sent += sizeof(usbtmc_state.transfer_size_remaining);
usbtmc_state.transfer_size_remaining = 0;
usbtmc_state.devInBuffer = NULL;
TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_in, usbtmc_state.ep_bulk_in_buf, (uint16_t)packetLen) );
if(((packetLen % usbtmc_state.ep_bulk_in_wMaxPacketSize) != 0) || (packetLen == 0 ))
{
usbtmc_state.state = STATE_TX_SHORTED;
}
}
return true;
case STATE_ABORTING_BULK_IN:
// need to send short packet (ZLP?)
TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_in, usbtmc_state.ep_bulk_in_buf,(uint16_t)0u));
usbtmc_state.state = STATE_ABORTING_BULK_IN_SHORTED;
return true;
case STATE_ABORTING_BULK_IN_SHORTED:
/* Done. :)*/
usbtmc_state.state = STATE_ABORTING_BULK_IN_ABORTED;
return true;
default:
TU_ASSERT(false);
return false;
}
}
else if (ep_addr == usbtmc_state.ep_int_in) {
// Good?
return true;
}
return false;
}
// Invoked when a control transfer occurred on an interface of this class
// Driver response accordingly to the request and the transfer stage (setup/data/ack)
// return false to stall control endpoint (e.g unsupported request)
bool usbtmcd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request)
{
// nothing to do with DATA and ACK stage
if ( stage != CONTROL_STAGE_SETUP ) return true;
uint8_t tmcStatusCode = USBTMC_STATUS_FAILED;
#if (CFG_TUD_USBTMC_ENABLE_488)
uint8_t bTag;
#endif
if((request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD) &&
(request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_ENDPOINT) &&
(request->bRequest == TUSB_REQ_CLEAR_FEATURE) &&
(request->wValue == TUSB_REQ_FEATURE_EDPT_HALT))
{
uint32_t ep_addr = (request->wIndex);
// At this point, a transfer MAY be in progress. Based on USB spec, when clearing bulk EP HALT,
// the EP transfer buffer needs to be cleared and DTOG needs to be reset, even if
// the EP is not halted. The only USBD API interface to do this is to stall and then un-stall the EP.
if(ep_addr == usbtmc_state.ep_bulk_out)
{
criticalEnter();
usbd_edpt_stall(rhport, (uint8_t)ep_addr);
usbd_edpt_clear_stall(rhport, (uint8_t)ep_addr);
usbtmc_state.state = STATE_NAK; // USBD core has placed EP in NAK state for us
criticalLeave();
tud_usbtmc_bulkOut_clearFeature_cb();
}
else if (ep_addr == usbtmc_state.ep_bulk_in)
{
usbd_edpt_stall(rhport, (uint8_t)ep_addr);
usbd_edpt_clear_stall(rhport, (uint8_t)ep_addr);
tud_usbtmc_bulkIn_clearFeature_cb();
}
else if ((usbtmc_state.ep_int_in != 0) && (ep_addr == usbtmc_state.ep_int_in))
{
// Clearing interrupt in EP
usbd_edpt_stall(rhport, (uint8_t)ep_addr);
usbd_edpt_clear_stall(rhport, (uint8_t)ep_addr);
}
else
{
return false;
}
return true;
}
// Otherwise, we only handle class requests.
if(request->bmRequestType_bit.type != TUSB_REQ_TYPE_CLASS)
{
return false;
}
// Verification that we own the interface is unneeded since it's been routed to us specifically.
switch(request->bRequest)
{
// USBTMC required requests
case USBTMC_bREQUEST_INITIATE_ABORT_BULK_OUT:
{
usbtmc_initiate_abort_rsp_t rsp = {
.bTag = usbtmc_state.lastBulkOutTag,
};
TU_VERIFY(request->bmRequestType == 0xA2); // in,class,interface
TU_VERIFY(request->wLength == sizeof(rsp));
TU_VERIFY(request->wIndex == usbtmc_state.ep_bulk_out);
// wValue is the requested bTag to abort
if(usbtmc_state.state != STATE_RCV)
{
rsp.USBTMC_status = USBTMC_STATUS_FAILED;
}
else if(usbtmc_state.lastBulkOutTag == (request->wValue & 0x7Fu))
{
rsp.USBTMC_status = USBTMC_STATUS_TRANSFER_NOT_IN_PROGRESS;
}
else
{
rsp.USBTMC_status = USBTMC_STATUS_SUCCESS;
// Check if we've queued a short packet
criticalEnter();
usbtmc_state.state = STATE_ABORTING_BULK_OUT;
criticalLeave();
TU_VERIFY(tud_usbtmc_initiate_abort_bulk_out_cb(&(rsp.USBTMC_status)));
usbd_edpt_stall(rhport, usbtmc_state.ep_bulk_out);
}
TU_VERIFY(tud_control_xfer(rhport, request, (void*)&rsp,sizeof(rsp)));
return true;
}
case USBTMC_bREQUEST_CHECK_ABORT_BULK_OUT_STATUS:
{
usbtmc_check_abort_bulk_rsp_t rsp = {
.USBTMC_status = USBTMC_STATUS_SUCCESS,
.NBYTES_RXD_TXD = usbtmc_state.transfer_size_sent
};
TU_VERIFY(request->bmRequestType == 0xA2); // in,class,EP
TU_VERIFY(request->wLength == sizeof(rsp));
TU_VERIFY(request->wIndex == usbtmc_state.ep_bulk_out);
TU_VERIFY(tud_usbtmc_check_abort_bulk_out_cb(&rsp));
TU_VERIFY(tud_control_xfer(rhport, request, (void*)&rsp,sizeof(rsp)));
return true;
}
case USBTMC_bREQUEST_INITIATE_ABORT_BULK_IN:
{
usbtmc_initiate_abort_rsp_t rsp = {
.bTag = usbtmc_state.lastBulkInTag,
};
TU_VERIFY(request->bmRequestType == 0xA2); // in,class,interface
TU_VERIFY(request->wLength == sizeof(rsp));
TU_VERIFY(request->wIndex == usbtmc_state.ep_bulk_in);
// wValue is the requested bTag to abort
if((usbtmc_state.state == STATE_TX_REQUESTED || usbtmc_state.state == STATE_TX_INITIATED) &&
usbtmc_state.lastBulkInTag == (request->wValue & 0x7Fu))
{
rsp.USBTMC_status = USBTMC_STATUS_SUCCESS;
usbtmc_state.transfer_size_remaining = 0u;
// Check if we've queued a short packet
criticalEnter();
usbtmc_state.state = ((usbtmc_state.transfer_size_sent % usbtmc_state.ep_bulk_in_wMaxPacketSize) == 0) ?
STATE_ABORTING_BULK_IN : STATE_ABORTING_BULK_IN_SHORTED;
criticalLeave();
if(usbtmc_state.transfer_size_sent == 0)
{
// Send short packet, nothing is in the buffer yet
TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_in, usbtmc_state.ep_bulk_in_buf,(uint16_t)0u));
usbtmc_state.state = STATE_ABORTING_BULK_IN_SHORTED;
}
TU_VERIFY(tud_usbtmc_initiate_abort_bulk_in_cb(&(rsp.USBTMC_status)));
}
else if((usbtmc_state.state == STATE_TX_REQUESTED || usbtmc_state.state == STATE_TX_INITIATED))
{ // FIXME: Unsure how to check if the OUT endpoint fifo is non-empty....
rsp.USBTMC_status = USBTMC_STATUS_TRANSFER_NOT_IN_PROGRESS;
}
else
{
rsp.USBTMC_status = USBTMC_STATUS_FAILED;
}
TU_VERIFY(tud_control_xfer(rhport, request, (void*)&rsp,sizeof(rsp)));
return true;
}
case USBTMC_bREQUEST_CHECK_ABORT_BULK_IN_STATUS:
{
TU_VERIFY(request->bmRequestType == 0xA2); // in,class,EP
TU_VERIFY(request->wLength == 8u);
usbtmc_check_abort_bulk_rsp_t rsp =
{
.USBTMC_status = USBTMC_STATUS_FAILED,
.bmAbortBulkIn =
{
.BulkInFifoBytes = (usbtmc_state.state != STATE_ABORTING_BULK_IN_ABORTED)
},
.NBYTES_RXD_TXD = usbtmc_state.transfer_size_sent,
};
TU_VERIFY(tud_usbtmc_check_abort_bulk_in_cb(&rsp));
criticalEnter();
switch(usbtmc_state.state)
{
case STATE_ABORTING_BULK_IN_ABORTED:
rsp.USBTMC_status = USBTMC_STATUS_SUCCESS;
usbtmc_state.state = STATE_IDLE;
break;
case STATE_ABORTING_BULK_IN:
case STATE_ABORTING_BULK_OUT:
rsp.USBTMC_status = USBTMC_STATUS_PENDING;
break;
default:
break;
}
criticalLeave();
TU_VERIFY(tud_control_xfer(rhport, request, (void*)&rsp,sizeof(rsp)));
return true;
}
case USBTMC_bREQUEST_INITIATE_CLEAR:
{
TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface
TU_VERIFY(request->wLength == sizeof(tmcStatusCode));
// After receiving an INITIATE_CLEAR request, the device must Halt the Bulk-OUT endpoint, queue the
// control endpoint response shown in Table 31, and clear all input buffers and output buffers.
usbd_edpt_stall(rhport, usbtmc_state.ep_bulk_out);
usbtmc_state.transfer_size_remaining = 0;
criticalEnter();
usbtmc_state.state = STATE_CLEARING;
criticalLeave();
TU_VERIFY(tud_usbtmc_initiate_clear_cb(&tmcStatusCode));
TU_VERIFY(tud_control_xfer(rhport, request, (void*)&tmcStatusCode,sizeof(tmcStatusCode)));
return true;
}
case USBTMC_bREQUEST_CHECK_CLEAR_STATUS:
{
TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface
usbtmc_get_clear_status_rsp_t clearStatusRsp = {0};
TU_VERIFY(request->wLength == sizeof(clearStatusRsp));
if(usbd_edpt_busy(rhport, usbtmc_state.ep_bulk_in))
{
// Stuff stuck in TX buffer?
clearStatusRsp.bmClear.BulkInFifoBytes = 1;
clearStatusRsp.USBTMC_status = USBTMC_STATUS_PENDING;
}
else
{
// Let app check if it's clear
TU_VERIFY(tud_usbtmc_check_clear_cb(&clearStatusRsp));
}
if(clearStatusRsp.USBTMC_status == USBTMC_STATUS_SUCCESS)
{
criticalEnter();
usbtmc_state.state = STATE_IDLE;
criticalLeave();
}
TU_VERIFY(tud_control_xfer(rhport, request, (void*)&clearStatusRsp,sizeof(clearStatusRsp)));
return true;
}
case USBTMC_bREQUEST_GET_CAPABILITIES:
{
TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface
TU_VERIFY(request->wLength == sizeof(*(usbtmc_state.capabilities)));
TU_VERIFY(tud_control_xfer(rhport, request, (void*)(uintptr_t) usbtmc_state.capabilities, sizeof(*usbtmc_state.capabilities)));
return true;
}
// USBTMC Optional Requests
case USBTMC_bREQUEST_INDICATOR_PULSE: // Optional
{
TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface
TU_VERIFY(request->wLength == sizeof(tmcStatusCode));
TU_VERIFY(usbtmc_state.capabilities->bmIntfcCapabilities.supportsIndicatorPulse);
TU_VERIFY(tud_usbtmc_indicator_pulse_cb(request, &tmcStatusCode));
TU_VERIFY(tud_control_xfer(rhport, request, (void*)&tmcStatusCode, sizeof(tmcStatusCode)));
return true;
}
#if (CFG_TUD_USBTMC_ENABLE_488)
// USB488 required requests
case USB488_bREQUEST_READ_STATUS_BYTE:
{
usbtmc_read_stb_rsp_488_t rsp;
TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface
TU_VERIFY(request->wLength == sizeof(rsp)); // in,class,interface
bTag = request->wValue & 0x7F;
TU_VERIFY(request->bmRequestType == 0xA1);
TU_VERIFY((request->wValue & (~0x7F)) == 0u); // Other bits are required to be zero (USB488v1.0 Table 11)
TU_VERIFY(bTag >= 0x02 && bTag <= 127);
TU_VERIFY(request->wIndex == usbtmc_state.itf_id);
TU_VERIFY(request->wLength == 0x0003);
rsp.bTag = (uint8_t)bTag;
if(usbtmc_state.ep_int_in != 0)
{
rsp.statusByte = 0x00; // Use interrupt endpoint, instead. Must be 0x00 (USB488v1.0 4.3.1.2)
if(usbd_edpt_busy(rhport, usbtmc_state.ep_int_in))
{
rsp.USBTMC_status = USB488_STATUS_INTERRUPT_IN_BUSY;
}
else
{
rsp.USBTMC_status = USBTMC_STATUS_SUCCESS;
usbtmc_read_stb_interrupt_488_t intMsg =
{
.bNotify1 = {
.one = 1,
.bTag = bTag & 0x7Fu,
},
.StatusByte = tud_usbtmc_get_stb_cb(&(rsp.USBTMC_status))
};
// Must be queued before control request response sent (USB488v1.0 4.3.1.2)
usbd_edpt_xfer(rhport, usbtmc_state.ep_int_in, (void*)&intMsg, sizeof(intMsg));
}
}
else
{
rsp.statusByte = tud_usbtmc_get_stb_cb(&(rsp.USBTMC_status));
}
TU_VERIFY(tud_control_xfer(rhport, request, (void*)&rsp, sizeof(rsp)));
return true;
}
// USB488 optional requests
case USB488_bREQUEST_REN_CONTROL:
case USB488_bREQUEST_GO_TO_LOCAL:
case USB488_bREQUEST_LOCAL_LOCKOUT:
{
TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface
TU_VERIFY(false);
return false;
}
#endif
default:
TU_VERIFY(false);
return false;
}
TU_VERIFY(false);
}
#endif /* CFG_TUD_TSMC */