espressif_tinyusb/src/device/usbd.c

904 lines
30 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED
#include "tusb.h"
#include "usbd.h"
#include "device/usbd_pvt.h"
#include "dcd.h"
#ifndef CFG_TUD_TASK_QUEUE_SZ
#define CFG_TUD_TASK_QUEUE_SZ 16
#endif
//--------------------------------------------------------------------+
// Device Data
//--------------------------------------------------------------------+
typedef struct {
struct TU_ATTR_PACKED
{
volatile uint8_t connected : 1;
volatile uint8_t configured : 1;
volatile uint8_t suspended : 1;
uint8_t remote_wakeup_en : 1; // enable/disable by host
uint8_t remote_wakeup_support : 1; // configuration descriptor's attribute
uint8_t self_powered : 1; // configuration descriptor's attribute
};
uint8_t ep_busy_map[2]; // bit mask for busy endpoint
uint8_t ep_stall_map[2]; // bit map for stalled endpoint
uint8_t itf2drv[16]; // map interface number to driver (0xff is invalid)
uint8_t ep2drv[8][2]; // map endpoint to driver ( 0xff is invalid )
}usbd_device_t;
static usbd_device_t _usbd_dev = { 0 };
// Invalid driver ID in itf2drv[] ep2drv[][] mapping
enum { DRVID_INVALID = 0xff };
//--------------------------------------------------------------------+
// Class Driver
//--------------------------------------------------------------------+
typedef struct {
uint8_t class_code;
void (* init ) (void);
void (* reset ) (uint8_t rhport);
bool (* open ) (uint8_t rhport, tusb_desc_interface_t const * desc_intf, uint16_t* p_length);
bool (* control_request ) (uint8_t rhport, tusb_control_request_t const * request);
bool (* control_complete ) (uint8_t rhport, tusb_control_request_t const * request);
bool (* xfer_cb ) (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void (* sof ) (uint8_t rhport);
} usbd_class_driver_t;
static usbd_class_driver_t const usbd_class_drivers[] =
{
#if CFG_TUD_CDC
{
.class_code = TUSB_CLASS_CDC,
.init = cdcd_init,
.reset = cdcd_reset,
.open = cdcd_open,
.control_request = cdcd_control_request,
.control_complete = cdcd_control_complete,
.xfer_cb = cdcd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_MSC
{
.class_code = TUSB_CLASS_MSC,
.init = mscd_init,
.reset = mscd_reset,
.open = mscd_open,
.control_request = mscd_control_request,
.control_complete = mscd_control_complete,
.xfer_cb = mscd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_HID
{
.class_code = TUSB_CLASS_HID,
.init = hidd_init,
.reset = hidd_reset,
.open = hidd_open,
.control_request = hidd_control_request,
.control_complete = hidd_control_complete,
.xfer_cb = hidd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_MIDI
{
.class_code = TUSB_CLASS_AUDIO,
.init = midid_init,
.open = midid_open,
.reset = midid_reset,
.control_request = midid_control_request,
.control_complete = midid_control_complete,
.xfer_cb = midid_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_VENDOR
{
.class_code = TUSB_CLASS_VENDOR_SPECIFIC,
.init = vendord_init,
.reset = vendord_reset,
.open = vendord_open,
.control_request = tud_vendor_control_request_cb,
.control_complete = tud_vendor_control_complete_cb,
.xfer_cb = vendord_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_USBTMC
// Presently USBTMC is the only defined class with the APP_SPECIFIC class code.
// We maybe need to add subclass codes here, or a callback to ask if a driver can
// handle a particular interface.
{
.class_code = TUSB_CLASS_APPLICATION_SPECIFIC,
.init = usbtmcd_init,
.reset = usbtmcd_reset,
.open = usbtmcd_open,
.control_request = usbtmcd_control_request,
.control_complete = usbtmcd_control_complete,
.xfer_cb = usbtmcd_xfer_cb,
.sof = NULL
},
#endif
};
enum { USBD_CLASS_DRIVER_COUNT = TU_ARRAY_SIZE(usbd_class_drivers) };
//--------------------------------------------------------------------+
// DCD Event
//--------------------------------------------------------------------+
// Event queue
// OPT_MODE_DEVICE is used by OS NONE for mutex (disable usb isr)
OSAL_QUEUE_DEF(OPT_MODE_DEVICE, _usbd_qdef, CFG_TUD_TASK_QUEUE_SZ, dcd_event_t);
static osal_queue_t _usbd_q;
//--------------------------------------------------------------------+
// Prototypes
//--------------------------------------------------------------------+
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id);
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request);
static bool process_set_config(uint8_t rhport, uint8_t cfg_num);
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request);
void usbd_control_reset (uint8_t rhport);
bool usbd_control_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void usbd_control_set_complete_callback( bool (*fp) (uint8_t, tusb_control_request_t const * ) );
//--------------------------------------------------------------------+
// Application API
//--------------------------------------------------------------------+
bool tud_mounted(void)
{
return _usbd_dev.configured;
}
bool tud_suspended(void)
{
return _usbd_dev.suspended;
}
bool tud_remote_wakeup(void)
{
// only wake up host if this feature is supported and enabled and we are suspended
TU_VERIFY (_usbd_dev.suspended && _usbd_dev.remote_wakeup_support && _usbd_dev.remote_wakeup_en );
dcd_remote_wakeup(TUD_OPT_RHPORT);
return true;
}
//--------------------------------------------------------------------+
// USBD Task
//--------------------------------------------------------------------+
bool usbd_init (void)
{
tu_varclr(&_usbd_dev);
// Init device queue & task
_usbd_q = osal_queue_create(&_usbd_qdef);
TU_ASSERT(_usbd_q != NULL);
// Init class drivers
for (uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++) usbd_class_drivers[i].init();
// Init device controller driver
dcd_init(TUD_OPT_RHPORT);
dcd_int_enable(TUD_OPT_RHPORT);
return true;
}
static void usbd_reset(uint8_t rhport)
{
tu_varclr(&_usbd_dev);
memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping
memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping
usbd_control_reset(rhport);
for (uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++)
{
if ( usbd_class_drivers[i].reset ) usbd_class_drivers[i].reset( rhport );
}
}
/* USB Device Driver task
* This top level thread manages all device controller event and delegates events to class-specific drivers.
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void)
{
application_init();
tusb_init();
while(1) // the mainloop
{
application_code();
tud_task(); // tinyusb device task
}
}
@endcode
*/
void tud_task (void)
{
// Skip if stack is not initialized
if ( !tusb_inited() ) return;
// Loop until there is no more events in the queue
while (1)
{
dcd_event_t event;
if ( !osal_queue_receive(_usbd_q, &event) ) return;
switch ( event.event_id )
{
case DCD_EVENT_BUS_RESET:
usbd_reset(event.rhport);
break;
case DCD_EVENT_UNPLUGGED:
usbd_reset(event.rhport);
// invoke callback
if (tud_umount_cb) tud_umount_cb();
break;
case DCD_EVENT_SETUP_RECEIVED:
// Mark as connected after receiving 1st setup packet.
// But it is easier to set it every time instead of wasting time to check then set
_usbd_dev.connected = 1;
// Process control request
if ( !process_control_request(event.rhport, &event.setup_received) )
{
// Failed -> stall both control endpoint IN and OUT
dcd_edpt_stall(event.rhport, 0);
dcd_edpt_stall(event.rhport, 0 | TUSB_DIR_IN_MASK);
}
break;
case DCD_EVENT_XFER_COMPLETE:
// Only handle xfer callback in ready state
// if (_usbd_dev.connected && !_usbd_dev.suspended)
{
// Invoke the class callback associated with the endpoint address
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
_usbd_dev.ep_busy_map[ep_dir] = (uint8_t) tu_bit_clear(_usbd_dev.ep_busy_map[ep_dir], epnum);
if ( 0 == epnum )
{
// control transfer DATA stage callback
usbd_control_xfer_cb(event.rhport, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
else
{
uint8_t const drv_id = _usbd_dev.ep2drv[epnum][ep_dir];
TU_ASSERT(drv_id < USBD_CLASS_DRIVER_COUNT,);
usbd_class_drivers[drv_id].xfer_cb(event.rhport, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
}
break;
case DCD_EVENT_SUSPEND:
if (tud_suspend_cb) tud_suspend_cb(_usbd_dev.remote_wakeup_en);
break;
case DCD_EVENT_RESUME:
if (tud_resume_cb) tud_resume_cb();
break;
case DCD_EVENT_SOF:
for ( uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++ )
{
if ( usbd_class_drivers[i].sof )
{
usbd_class_drivers[i].sof(event.rhport);
}
}
break;
case USBD_EVENT_FUNC_CALL:
if ( event.func_call.func ) event.func_call.func(event.func_call.param);
break;
default:
TU_BREAKPOINT();
break;
}
}
}
//--------------------------------------------------------------------+
// Control Request Parser & Handling
//--------------------------------------------------------------------+
// This handles the actual request and its response.
// return false will cause its caller to stall control endpoint
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request)
{
usbd_control_set_complete_callback(NULL);
// Vendor request
if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR )
{
TU_VERIFY(tud_vendor_control_request_cb);
if (tud_vendor_control_complete_cb) usbd_control_set_complete_callback(tud_vendor_control_complete_cb);
return tud_vendor_control_request_cb(rhport, p_request);
}
switch ( p_request->bmRequestType_bit.recipient )
{
//------------- Device Requests e.g in enumeration -------------//
case TUSB_REQ_RCPT_DEVICE:
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
// Non standard request is not supported
TU_BREAKPOINT();
return false;
}
switch ( p_request->bRequest )
{
case TUSB_REQ_SET_ADDRESS:
// Depending on mcu, status phase could be sent either before or after changing device address
// Therefore DCD must include zero-length status response
dcd_set_address(rhport, (uint8_t) p_request->wValue);
return true; // skip status
break;
case TUSB_REQ_GET_CONFIGURATION:
{
uint8_t cfgnum = _usbd_dev.configured ? 1 : 0;
tud_control_xfer(rhport, p_request, &cfgnum, 1);
}
break;
case TUSB_REQ_SET_CONFIGURATION:
{
uint8_t const cfg_num = (uint8_t) p_request->wValue;
dcd_set_config(rhport, cfg_num);
_usbd_dev.configured = cfg_num ? 1 : 0;
if ( cfg_num ) TU_ASSERT( process_set_config(rhport, cfg_num) );
tud_control_status(rhport, p_request);
}
break;
case TUSB_REQ_GET_DESCRIPTOR:
TU_VERIFY( process_get_descriptor(rhport, p_request) );
break;
case TUSB_REQ_SET_FEATURE:
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
// Host may enable remote wake up before suspending especially HID device
_usbd_dev.remote_wakeup_en = true;
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_CLEAR_FEATURE:
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
// Host may disable remote wake up after resuming
_usbd_dev.remote_wakeup_en = false;
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_GET_STATUS:
{
// Device status bit mask
// - Bit 0: Self Powered
// - Bit 1: Remote Wakeup enabled
uint16_t status = (_usbd_dev.self_powered ? 1 : 0) | (_usbd_dev.remote_wakeup_en ? 2 : 0);
tud_control_xfer(rhport, p_request, &status, 2);
}
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
}
break;
//------------- Class/Interface Specific Request -------------//
case TUSB_REQ_RCPT_INTERFACE:
{
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
uint8_t const drvid = _usbd_dev.itf2drv[itf];
TU_VERIFY(drvid < USBD_CLASS_DRIVER_COUNT);
if (p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD)
{
switch ( p_request->bRequest )
{
case TUSB_REQ_GET_INTERFACE:
{
// TODO not support alternate interface yet
uint8_t alternate = 0;
tud_control_xfer(rhport, p_request, &alternate, 1);
}
break;
case TUSB_REQ_SET_INTERFACE:
{
uint8_t const alternate = (uint8_t) p_request->wValue;
// TODO not support alternate interface yet
TU_ASSERT(alternate == 0);
tud_control_status(rhport, p_request);
}
break;
default:
// forward to class driver: "STD request to Interface"
// GET HID REPORT DESCRIPTOR falls into this case
// stall control endpoint if driver return false
usbd_control_set_complete_callback(usbd_class_drivers[drvid].control_complete);
TU_ASSERT(usbd_class_drivers[drvid].control_request(rhport, p_request));
break;
}
}else
{
// forward to class driver: "non-STD request to Interface"
// stall control endpoint if driver return false
usbd_control_set_complete_callback(usbd_class_drivers[drvid].control_complete);
TU_ASSERT(usbd_class_drivers[drvid].control_request(rhport, p_request));
}
}
break;
//------------- Endpoint Request -------------//
case TUSB_REQ_RCPT_ENDPOINT:
{
uint8_t const ep_addr = tu_u16_low(p_request->wIndex);
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_ASSERT(ep_num < TU_ARRAY_SIZE(_usbd_dev.ep2drv) );
uint8_t const drv_id = _usbd_dev.ep2drv[ep_num][ep_dir];
TU_ASSERT(drv_id < USBD_CLASS_DRIVER_COUNT);
// Some classes such as TMC needs to clear/re-init its buffer when receiving CLEAR_FEATURE request
// We will forward all request targeted endpoint to its class driver
// - For non-standard request: driver can ACK or Stall the request by return true/false
// - For standard request: usbd decide the ACK stage regardless of driver return value
bool ret;
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
// complete callback is also capable of stalling/acking the request
usbd_control_set_complete_callback(usbd_class_drivers[drv_id].control_complete);
}
// Invoke class driver first
ret = usbd_class_drivers[drv_id].control_request(rhport, p_request);
// Then handle if it is standard request
if ( TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type )
{
// force return true for standard request
ret = true;
switch ( p_request->bRequest )
{
case TUSB_REQ_GET_STATUS:
{
uint16_t status = usbd_edpt_stalled(rhport, ep_addr) ? 0x0001 : 0x0000;
tud_control_xfer(rhport, p_request, &status, 2);
}
break;
case TUSB_REQ_CLEAR_FEATURE:
if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue )
{
usbd_edpt_clear_stall(rhport, ep_addr);
}
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_SET_FEATURE:
if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue )
{
usbd_edpt_stall(rhport, ep_addr);
}
tud_control_status(rhport, p_request);
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
}
}
return ret;
}
break;
// Unknown recipient
default: TU_BREAKPOINT(); return false;
}
return true;
}
// Process Set Configure Request
// This function parse configuration descriptor & open drivers accordingly
static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
{
tusb_desc_configuration_t const * desc_cfg = (tusb_desc_configuration_t const *) tud_descriptor_configuration_cb(cfg_num-1); // index is cfg_num-1
TU_ASSERT(desc_cfg != NULL && desc_cfg->bDescriptorType == TUSB_DESC_CONFIGURATION);
// Parse configuration descriptor
_usbd_dev.remote_wakeup_support = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP) ? 1 : 0;
_usbd_dev.self_powered = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_SELF_POWERED) ? 1 : 0;
// Parse interface descriptor
uint8_t const * p_desc = ((uint8_t const*) desc_cfg) + sizeof(tusb_desc_configuration_t);
uint8_t const * desc_end = ((uint8_t const*) desc_cfg) + desc_cfg->wTotalLength;
while( p_desc < desc_end )
{
// Each interface always starts with Interface or Association descriptor
if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) )
{
p_desc = tu_desc_next(p_desc); // ignore Interface Association
}else
{
TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) );
tusb_desc_interface_t* desc_itf = (tusb_desc_interface_t*) p_desc;
// Check if class is supported
uint8_t drv_id;
for (drv_id = 0; drv_id < USBD_CLASS_DRIVER_COUNT; drv_id++)
{
if ( usbd_class_drivers[drv_id].class_code == desc_itf->bInterfaceClass ) break;
}
TU_ASSERT( drv_id < USBD_CLASS_DRIVER_COUNT );
// Interface number must not be used already TODO alternate interface
TU_ASSERT( DRVID_INVALID == _usbd_dev.itf2drv[desc_itf->bInterfaceNumber] );
_usbd_dev.itf2drv[desc_itf->bInterfaceNumber] = drv_id;
uint16_t itf_len=0;
TU_ASSERT( usbd_class_drivers[drv_id].open(rhport, desc_itf, &itf_len) );
TU_ASSERT( itf_len >= sizeof(tusb_desc_interface_t) );
mark_interface_endpoint(_usbd_dev.ep2drv, p_desc, itf_len, drv_id);
p_desc += itf_len; // next interface
}
}
// invoke callback
if (tud_mount_cb) tud_mount_cb();
return true;
}
// Helper marking endpoint of interface belongs to class driver
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id)
{
uint16_t len = 0;
while( len < desc_len )
{
if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) )
{
uint8_t const ep_addr = ((tusb_desc_endpoint_t const*) p_desc)->bEndpointAddress;
ep2drv[tu_edpt_number(ep_addr)][tu_edpt_dir(ep_addr)] = driver_id;
}
len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
}
// return descriptor's buffer and update desc_len
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request)
{
tusb_desc_type_t const desc_type = (tusb_desc_type_t) tu_u16_high(p_request->wValue);
uint8_t const desc_index = tu_u16_low( p_request->wValue );
switch(desc_type)
{
case TUSB_DESC_DEVICE:
return tud_control_xfer(rhport, p_request, (void*) tud_descriptor_device_cb(), sizeof(tusb_desc_device_t));
break;
case TUSB_DESC_BOS:
{
// requested by host if USB > 2.0 ( i.e 2.1 or 3.x )
if (!tud_descriptor_bos_cb) return false;
tusb_desc_bos_t const* desc_bos = (tusb_desc_bos_t const*) tud_descriptor_bos_cb();
uint16_t total_len;
memcpy(&total_len, &desc_bos->wTotalLength, 2); // possibly mis-aligned memory
return tud_control_xfer(rhport, p_request, (void*) desc_bos, total_len);
}
break;
case TUSB_DESC_CONFIGURATION:
{
tusb_desc_configuration_t const* desc_config = (tusb_desc_configuration_t const*) tud_descriptor_configuration_cb(desc_index);
uint16_t total_len;
memcpy(&total_len, &desc_config->wTotalLength, 2); // possibly mis-aligned memory
return tud_control_xfer(rhport, p_request, (void*) desc_config, total_len);
}
break;
case TUSB_DESC_STRING:
// String Descriptor always uses the desc set from user
if ( desc_index == 0xEE )
{
// The 0xEE index string is a Microsoft OS Descriptors.
// https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/microsoft-defined-usb-descriptors
return false;
}else
{
uint8_t const* desc_str = (uint8_t const*) tud_descriptor_string_cb(desc_index);
TU_ASSERT(desc_str);
// first byte of descriptor is its size
return tud_control_xfer(rhport, p_request, (void*) desc_str, desc_str[0]);
}
break;
case TUSB_DESC_DEVICE_QUALIFIER:
// TODO If not highspeed capable stall this request otherwise
// return the descriptor that could work in highspeed
return false;
break;
default: return false;
}
return true;
}
//--------------------------------------------------------------------+
// DCD Event Handler
//--------------------------------------------------------------------+
void dcd_event_handler(dcd_event_t const * event, bool in_isr)
{
switch (event->event_id)
{
case DCD_EVENT_BUS_RESET:
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_UNPLUGGED:
_usbd_dev.connected = 0;
_usbd_dev.configured = 0;
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_SOF:
// nothing to do now
break;
case DCD_EVENT_SUSPEND:
// NOTE: When plugging/unplugging device, the D+/D- state are unstable and can accidentally meet the
// SUSPEND condition ( Idle for 3ms ). Some MCUs such as SAMD doesn't distinguish suspend vs disconnect as well.
// We will skip handling SUSPEND/RESUME event if not currently connected
if ( _usbd_dev.connected )
{
_usbd_dev.suspended = 1;
osal_queue_send(_usbd_q, event, in_isr);
}
break;
case DCD_EVENT_RESUME:
if ( _usbd_dev.connected )
{
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
}
break;
case DCD_EVENT_SETUP_RECEIVED:
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_XFER_COMPLETE:
// skip zero-length control status complete event, should DCD notify us.
// TODO could cause issue with actual zero length data used by class such as DFU
if ( (0 == tu_edpt_number(event->xfer_complete.ep_addr)) && (event->xfer_complete.len == 0) ) break;
osal_queue_send(_usbd_q, event, in_isr);
TU_ASSERT(event->xfer_complete.result == XFER_RESULT_SUCCESS,);
break;
// Not an DCD event, just a convenient way to defer ISR function should we need to
case USBD_EVENT_FUNC_CALL:
osal_queue_send(_usbd_q, event, in_isr);
break;
default: break;
}
}
// helper to send bus signal event
void dcd_event_bus_signal (uint8_t rhport, dcd_eventid_t eid, bool in_isr)
{
dcd_event_t event = { .rhport = rhport, .event_id = eid, };
dcd_event_handler(&event, in_isr);
}
// helper to send setup received
void dcd_event_setup_received(uint8_t rhport, uint8_t const * setup, bool in_isr)
{
dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_SETUP_RECEIVED };
memcpy(&event.setup_received, setup, 8);
dcd_event_handler(&event, in_isr);
}
// helper to send transfer complete event
void dcd_event_xfer_complete (uint8_t rhport, uint8_t ep_addr, uint32_t xferred_bytes, uint8_t result, bool in_isr)
{
dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_XFER_COMPLETE };
event.xfer_complete.ep_addr = ep_addr;
event.xfer_complete.len = xferred_bytes;
event.xfer_complete.result = result;
dcd_event_handler(&event, in_isr);
}
//--------------------------------------------------------------------+
// Helper
//--------------------------------------------------------------------+
// Parse consecutive endpoint descriptors (IN & OUT)
bool usbd_open_edpt_pair(uint8_t rhport, uint8_t const* p_desc, uint8_t ep_count, uint8_t xfer_type, uint8_t* ep_out, uint8_t* ep_in)
{
for(int i=0; i<ep_count; i++)
{
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) p_desc;
TU_VERIFY(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType && xfer_type == desc_ep->bmAttributes.xfer);
TU_ASSERT(dcd_edpt_open(rhport, desc_ep));
if ( tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN )
{
(*ep_in) = desc_ep->bEndpointAddress;
}else
{
(*ep_out) = desc_ep->bEndpointAddress;
}
p_desc = tu_desc_next(p_desc);
}
return true;
}
// Helper to defer an isr function
void usbd_defer_func(osal_task_func_t func, void* param, bool in_isr)
{
dcd_event_t event =
{
.rhport = 0,
.event_id = USBD_EVENT_FUNC_CALL,
};
event.func_call.func = func;
event.func_call.param = param;
dcd_event_handler(&event, in_isr);
}
//--------------------------------------------------------------------+
// USBD Endpoint API
//--------------------------------------------------------------------+
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_VERIFY( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) );
_usbd_dev.ep_busy_map[dir] = (uint8_t) tu_bit_set(_usbd_dev.ep_busy_map[dir], epnum);
return true;
}
bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return tu_bit_test(_usbd_dev.ep_busy_map[dir], epnum);
}
void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_stall(rhport, ep_addr);
_usbd_dev.ep_stall_map[dir] = (uint8_t) tu_bit_set(_usbd_dev.ep_stall_map[dir], epnum);
}
void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_clear_stall(rhport, ep_addr);
_usbd_dev.ep_stall_map[dir] = (uint8_t) tu_bit_clear(_usbd_dev.ep_stall_map[dir], epnum);
}
bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return tu_bit_test(_usbd_dev.ep_stall_map[dir], epnum);
}
#endif