Get and set requests work

This commit is contained in:
Reinhard Panhuber 2020-07-25 11:18:50 +02:00
parent 141db1278a
commit d91843bcd2
3 changed files with 309 additions and 217 deletions

View File

@ -652,165 +652,172 @@ typedef enum
AUDIO_CHANNEL_CONFIG_RAW_DATA = 0x80000000,
} audio_channel_config_t;
/// AUDIO Channel Cluster Descriptor (4.1)
typedef struct TU_ATTR_PACKED {
uint8_t bNrChannels; ///< Number of channels currently connected.
audio_channel_config_t bmChannelConfig; ///< Bitmap according to 'audio_channel_config_t' with a 1 set if channel is connected and 0 else. In case channels are non-predefined ignore them here (see UAC2 specification 4.1 Audio Channel Cluster Descriptor.
uint8_t iChannelNames; ///< Index of a string descriptor, describing the name of the first inserted channel with a non-predefined spatial location.
} audio_desc_channel_cluster_t;
/// AUDIO Class-Specific AC Interface Header Descriptor (4.7.2)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor in bytes: 9.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_HEADER.
uint16_t bcdADC ; ///< Audio Device Class Specification Release Number in Binary-Coded Decimal. Value: U16_TO_U8S_LE(0x0200).
uint8_t bCategory ; ///< Constant, indicating the primary use of this audio function, as intended by the manufacturer. See: audio_function_t.
uint16_t wTotalLength ; ///< Total number of bytes returned for the class-specific AudioControl interface descriptor. Includes the combined length of this descriptor header and all Clock Source, Unit and Terminal descriptors.
uint8_t bmControls ; ///< See: audio_cs_ac_interface_control_pos_t.
uint8_t bLength ; ///< Size of this descriptor in bytes: 9.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_HEADER.
uint16_t bcdADC ; ///< Audio Device Class Specification Release Number in Binary-Coded Decimal. Value: U16_TO_U8S_LE(0x0200).
uint8_t bCategory ; ///< Constant, indicating the primary use of this audio function, as intended by the manufacturer. See: audio_function_t.
uint16_t wTotalLength ; ///< Total number of bytes returned for the class-specific AudioControl interface descriptor. Includes the combined length of this descriptor header and all Clock Source, Unit and Terminal descriptors.
uint8_t bmControls ; ///< See: audio_cs_ac_interface_control_pos_t.
} audio_desc_cs_ac_interface_t;
/// AUDIO Clock Source Descriptor (4.7.2.1)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor in bytes: 8.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_CLOCK_SOURCE.
uint8_t bClockID ; ///< Constant uniquely identifying the Clock Source Entity within the audio function. This value is used in all requests to address this Entity.
uint8_t bmAttributes ; ///< See: audio_clock_source_attribute_t.
uint8_t bmControls ; ///< See: audio_clock_source_control_pos_t.
uint8_t bAssocTerminal ; ///< Terminal ID of the Terminal that is associated with this Clock Source.
uint8_t iClockSource ; ///< Index of a string descriptor, describing the Clock Source Entity.
uint8_t bLength ; ///< Size of this descriptor in bytes: 8.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_CLOCK_SOURCE.
uint8_t bClockID ; ///< Constant uniquely identifying the Clock Source Entity within the audio function. This value is used in all requests to address this Entity.
uint8_t bmAttributes ; ///< See: audio_clock_source_attribute_t.
uint8_t bmControls ; ///< See: audio_clock_source_control_pos_t.
uint8_t bAssocTerminal ; ///< Terminal ID of the Terminal that is associated with this Clock Source.
uint8_t iClockSource ; ///< Index of a string descriptor, describing the Clock Source Entity.
} audio_desc_clock_source_t;
/// AUDIO Clock Selector Descriptor (4.7.2.2) for ONE pin
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 7+p.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_CLOCK_SELECTOR.
uint8_t bClockID ; ///< Constant uniquely identifying the Clock Selector Entity within the audio function. This value is used in all requests to address this Entity.
uint8_t bNrInPins ; ///< Number of Input Pins of this Unit: p = 1 thus bNrInPins = 1.
uint8_t baCSourceID ; ///< ID of the Clock Entity to which the first Clock Input Pin of this Clock Selector Entity is connected..
uint8_t bmControls ; ///< See: audio_clock_selector_control_pos_t.
uint8_t iClockSource ; ///< Index of a string descriptor, describing the Clock Selector Entity.
uint8_t bLength ; ///< Size of this descriptor, in bytes: 7+p.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_CLOCK_SELECTOR.
uint8_t bClockID ; ///< Constant uniquely identifying the Clock Selector Entity within the audio function. This value is used in all requests to address this Entity.
uint8_t bNrInPins ; ///< Number of Input Pins of this Unit: p = 1 thus bNrInPins = 1.
uint8_t baCSourceID ; ///< ID of the Clock Entity to which the first Clock Input Pin of this Clock Selector Entity is connected..
uint8_t bmControls ; ///< See: audio_clock_selector_control_pos_t.
uint8_t iClockSource ; ///< Index of a string descriptor, describing the Clock Selector Entity.
} audio_desc_clock_selector_t;
/// AUDIO Clock Selector Descriptor (4.7.2.2) for multiple pins
#define audio_desc_clock_selector_n_t(source_num) \
struct TU_ATTR_PACKED { \
struct TU_ATTR_PACKED { \
uint8_t bLength ; \
uint8_t bDescriptorType ; \
uint8_t bDescriptorSubType ; \
uint8_t bClockID ; \
uint8_t bNrInPins ; \
struct TU_ATTR_PACKED { \
uint8_t baSourceID ; \
} sourceID[source_num] ; \
uint8_t bmControls ; \
uint8_t iClockSource ; \
}
struct TU_ATTR_PACKED { \
uint8_t baSourceID ; \
} sourceID[source_num] ; \
uint8_t bmControls ; \
uint8_t iClockSource ; \
}
/// AUDIO Clock Multiplier Descriptor (4.7.2.3)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 7.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_CLOCK_MULTIPLIER.
uint8_t bClockID ; ///< Constant uniquely identifying the Clock Multiplier Entity within the audio function. This value is used in all requests to address this Entity.
uint8_t bCSourceID ; ///< ID of the Clock Entity to which the last Clock Input Pin of this Clock Selector Entity is connected.
uint8_t bmControls ; ///< See: audio_clock_multiplier_control_pos_t.
uint8_t iClockSource ; ///< Index of a string descriptor, describing the Clock Multiplier Entity.
uint8_t bLength ; ///< Size of this descriptor, in bytes: 7.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_CLOCK_MULTIPLIER.
uint8_t bClockID ; ///< Constant uniquely identifying the Clock Multiplier Entity within the audio function. This value is used in all requests to address this Entity.
uint8_t bCSourceID ; ///< ID of the Clock Entity to which the last Clock Input Pin of this Clock Selector Entity is connected.
uint8_t bmControls ; ///< See: audio_clock_multiplier_control_pos_t.
uint8_t iClockSource ; ///< Index of a string descriptor, describing the Clock Multiplier Entity.
} audio_desc_clock_multiplier_t;
/// AUDIO Input Terminal Descriptor(4.7.2.4)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 17.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_INPUT_TERMINAL.
uint16_t wTerminalType ; ///< Constant characterizing the type of Terminal. See: audio_terminal_type_t for USB streaming and audio_terminal_input_type_t for other input types.
uint8_t bAssocTerminal ; ///< ID of the Output Terminal to which this Input Terminal is associated.
uint8_t bCSourceID ; ///< ID of the Clock Entity to which this Input Terminal is connected.
uint8_t bNrChannels ; ///< Number of logical output channels in the Terminals output audio channel cluster.
uint32_t bmChannelConfig ; ///< Describes the spatial location of the logical channels. See:audio_channel_config_t.
uint16_t bmControls ; ///< See: audio_terminal_input_control_pos_t.
uint8_t iTerminal ; ///< Index of a string descriptor, describing the Input Terminal.
uint8_t bLength ; ///< Size of this descriptor, in bytes: 17.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_INPUT_TERMINAL.
uint16_t wTerminalType ; ///< Constant characterizing the type of Terminal. See: audio_terminal_type_t for USB streaming and audio_terminal_input_type_t for other input types.
uint8_t bAssocTerminal ; ///< ID of the Output Terminal to which this Input Terminal is associated.
uint8_t bCSourceID ; ///< ID of the Clock Entity to which this Input Terminal is connected.
uint8_t bNrChannels ; ///< Number of logical output channels in the Terminals output audio channel cluster.
uint32_t bmChannelConfig ; ///< Describes the spatial location of the logical channels. See:audio_channel_config_t.
uint16_t bmControls ; ///< See: audio_terminal_input_control_pos_t.
uint8_t iTerminal ; ///< Index of a string descriptor, describing the Input Terminal.
} audio_desc_input_terminal_t;
/// AUDIO Output Terminal Descriptor(4.7.2.5)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 12.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_OUTPUT_TERMINAL.
uint8_t bTerminalID ; ///< Constant uniquely identifying the Terminal within the audio function. This value is used in all requests to address this Terminal.
uint16_t wTerminalType ; ///< Constant characterizing the type of Terminal. See: audio_terminal_type_t for USB streaming and audio_terminal_output_type_t for other output types.
uint8_t bAssocTerminal ; ///< Constant, identifying the Input Terminal to which this Output Terminal is associated.
uint8_t bSourceID ; ///< ID of the Unit or Terminal to which this Terminal is connected.
uint8_t bCSourceID ; ///< ID of the Clock Entity to which this Output Terminal is connected.
uint16_t bmControls ; ///< See: audio_terminal_output_type_t.
uint8_t iTerminal ; ///< Index of a string descriptor, describing the Output Terminal.
uint8_t bLength ; ///< Size of this descriptor, in bytes: 12.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_OUTPUT_TERMINAL.
uint8_t bTerminalID ; ///< Constant uniquely identifying the Terminal within the audio function. This value is used in all requests to address this Terminal.
uint16_t wTerminalType ; ///< Constant characterizing the type of Terminal. See: audio_terminal_type_t for USB streaming and audio_terminal_output_type_t for other output types.
uint8_t bAssocTerminal ; ///< Constant, identifying the Input Terminal to which this Output Terminal is associated.
uint8_t bSourceID ; ///< ID of the Unit or Terminal to which this Terminal is connected.
uint8_t bCSourceID ; ///< ID of the Clock Entity to which this Output Terminal is connected.
uint16_t bmControls ; ///< See: audio_terminal_output_type_t.
uint8_t iTerminal ; ///< Index of a string descriptor, describing the Output Terminal.
} audio_desc_output_terminal_t;
/// AUDIO Feature Unit Descriptor(4.7.2.8) for ONE channel
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 14.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_FEATURE_UNIT.
uint8_t bUnitID ; ///< Constant uniquely identifying the Unit within the audio function. This value is used in all requests to address this Unit.
uint8_t bSourceID ; ///< ID of the Unit or Terminal to which this Feature Unit is connected.
struct TU_ATTR_PACKED {
uint32_t bmaControls ; ///< See: audio_feature_unit_control_pos_t. Controls0 is master channel 0 (always present) and Controls1 is logical channel 1.
} controls[2] ;
uint8_t iTerminal ; ///< Index of a string descriptor, describing this Feature Unit.
uint8_t bLength ; ///< Size of this descriptor, in bytes: 14.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_FEATURE_UNIT.
uint8_t bUnitID ; ///< Constant uniquely identifying the Unit within the audio function. This value is used in all requests to address this Unit.
uint8_t bSourceID ; ///< ID of the Unit or Terminal to which this Feature Unit is connected.
struct TU_ATTR_PACKED {
uint32_t bmaControls ; ///< See: audio_feature_unit_control_pos_t. Controls0 is master channel 0 (always present) and Controls1 is logical channel 1.
} controls[2] ;
uint8_t iTerminal ; ///< Index of a string descriptor, describing this Feature Unit.
} audio_desc_feature_unit_t;
/// AUDIO Feature Unit Descriptor(4.7.2.8) for multiple channels
#define audio_desc_feature_unit_n_t(ch_num) \
struct TU_ATTR_PACKED { \
struct TU_ATTR_PACKED { \
uint8_t bLength ; /* 6+(ch_num+1)*4 */\
uint8_t bDescriptorType ; \
uint8_t bDescriptorSubType ; \
uint8_t bUnitID ; \
uint8_t bSourceID ; \
struct TU_ATTR_PACKED { \
uint32_t bmaControls ; \
} controls[ch_num+1] ; \
uint8_t iTerminal ; \
}
uint8_t bDescriptorType ; \
uint8_t bDescriptorSubType ; \
uint8_t bUnitID ; \
uint8_t bSourceID ; \
struct TU_ATTR_PACKED { \
uint32_t bmaControls ; \
} controls[ch_num+1] ; \
uint8_t iTerminal ; \
}
/// AUDIO Class-Specific AS Interface Descriptor(4.9.2)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 16.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AS_INTERFACE_AS_GENERAL.
uint8_t bTerminalLink ; ///< The Terminal ID of the Terminal to which this interface is connected.
uint8_t bmControls ; ///< See: audio_cs_as_interface_control_pos_t.
uint8_t bFormatType ; ///< Constant identifying the Format Type the AudioStreaming interface is using. See: audio_format_type_t.
uint32_t bmFormats ; ///< The Audio Data Format(s) that can be used to communicate with this interface.See: audio_data_format_type_I_t.
uint8_t bNrChannels ; ///< Number of physical channels in the AS Interface audio channel cluster.
uint32_t bmChannelConfig ; ///< Describes the spatial location of the physical channels. See: audio_channel_config_t.
uint8_t iChannelNames ; ///< Index of a string descriptor, describing the name of the first physical channel.
uint8_t bLength ; ///< Size of this descriptor, in bytes: 16.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AS_INTERFACE_AS_GENERAL.
uint8_t bTerminalLink ; ///< The Terminal ID of the Terminal to which this interface is connected.
uint8_t bmControls ; ///< See: audio_cs_as_interface_control_pos_t.
uint8_t bFormatType ; ///< Constant identifying the Format Type the AudioStreaming interface is using. See: audio_format_type_t.
uint32_t bmFormats ; ///< The Audio Data Format(s) that can be used to communicate with this interface.See: audio_data_format_type_I_t.
uint8_t bNrChannels ; ///< Number of physical channels in the AS Interface audio channel cluster.
uint32_t bmChannelConfig ; ///< Describes the spatial location of the physical channels. See: audio_channel_config_t.
uint8_t iChannelNames ; ///< Index of a string descriptor, describing the name of the first physical channel.
} audio_desc_cs_as_interface_t;
/// AUDIO Type I Format Type Descriptor(2.3.1.6 - Audio Formats)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 6.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AS_INTERFACE_FORMAT_TYPE.
uint8_t bFormatType ; ///< Constant identifying the Format Type the AudioStreaming interface is using. Value: AUDIO_FORMAT_TYPE_I.
uint8_t bSubslotSize ; ///< The number of bytes occupied by one audio subslot. Can be 1, 2, 3 or 4.
uint8_t bBitResolution ; ///< The number of effectively used bits from the available bits in an audio subslot.
uint8_t bLength ; ///< Size of this descriptor, in bytes: 6.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AS_INTERFACE_FORMAT_TYPE.
uint8_t bFormatType ; ///< Constant identifying the Format Type the AudioStreaming interface is using. Value: AUDIO_FORMAT_TYPE_I.
uint8_t bSubslotSize ; ///< The number of bytes occupied by one audio subslot. Can be 1, 2, 3 or 4.
uint8_t bBitResolution ; ///< The number of effectively used bits from the available bits in an audio subslot.
} audio_desc_type_I_format_t;
/// AUDIO Class-Specific AS Isochronous Audio Data Endpoint Descriptor(4.10.1.2)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 8.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_ENDPOINT.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_EP_SUBTYPE_GENERAL.
uint8_t bmAttributes ; ///< See: audio_cs_as_iso_data_ep_attribute_t.
uint8_t bmControls ; ///< See: audio_cs_as_iso_data_ep_control_pos_t.
uint8_t bLockDelayUnits ; ///< Indicates the units used for the wLockDelay field. See: audio_cs_as_iso_data_ep_lock_delay_unit_t.
uint16_t wLockDelay ; ///< Indicates the time it takes this endpoint to reliably lock its internal clock recovery circuitry. Units used depend on the value of the bLockDelayUnits field.
uint8_t bLength ; ///< Size of this descriptor, in bytes: 8.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_ENDPOINT.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_EP_SUBTYPE_GENERAL.
uint8_t bmAttributes ; ///< See: audio_cs_as_iso_data_ep_attribute_t.
uint8_t bmControls ; ///< See: audio_cs_as_iso_data_ep_control_pos_t.
uint8_t bLockDelayUnits ; ///< Indicates the units used for the wLockDelay field. See: audio_cs_as_iso_data_ep_lock_delay_unit_t.
uint16_t wLockDelay ; ///< Indicates the time it takes this endpoint to reliably lock its internal clock recovery circuitry. Units used depend on the value of the bLockDelayUnits field.
} audio_desc_cs_as_iso_data_ep_t;
//// 5.2.3 Control Request Parameter Block Layout
@ -818,87 +825,91 @@ typedef struct TU_ATTR_PACKED
// 5.2.3.1 1-byte Control CUR Parameter Block
typedef struct TU_ATTR_PACKED
{
int8_t bCur ; ///< The setting for the CUR attribute of the addressed Control
int8_t bCur ; ///< The setting for the CUR attribute of the addressed Control
} audio_control_cur_1_t;
// 5.2.3.2 2-byte Control CUR Parameter Block
typedef struct TU_ATTR_PACKED
{
int16_t bCur ; ///< The setting for the CUR attribute of the addressed Control
int16_t bCur ; ///< The setting for the CUR attribute of the addressed Control
} audio_control_cur_2_t;
// 5.2.3.3 4-byte Control CUR Parameter Block
typedef struct TU_ATTR_PACKED
{
int32_t bCur ; ///< The setting for the CUR attribute of the addressed Control
int32_t bCur ; ///< The setting for the CUR attribute of the addressed Control
} audio_control_cur_4_t;
// Use the following ONLY for RECEIVED data - compiler does not know how many subranges are defined! Use the one below for predefined lengths - or if you know what you are doing do what you like
// 5.2.3.1 1-byte Control RANGE Parameter Block
//#define audio_control_range_1_n_t(numSubRanges) \
// struct TU_ATTR_PACKED { \
// uint16_t wNumSubRanges = numSubRanges; \
// struct TU_ATTR_PACKED { \
// int8_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/\
// int8_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/\
// uint8_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/\
// } setting[numSubRanges] ; \
// }
typedef struct TU_ATTR_PACKED {
uint16_t wNumSubRanges;
struct TU_ATTR_PACKED {
int8_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/
int8_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/
uint8_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/
} setting[] ;
struct TU_ATTR_PACKED {
int8_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/
int8_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/
uint8_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/
} subrange[] ;
} audio_control_range_1_t;
// 5.2.3.2 2-byte Control RANGE Parameter Block
//#define audio_control_range_2_n_t(numSubRanges) \
// struct TU_ATTR_PACKED { \
// uint16_t wNumSubRanges = numSubRanges; \
// struct TU_ATTR_PACKED { \
// int16_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/\
// int16_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/\
// uint16_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/\
// } setting[numSubRanges] ; \
// }
typedef struct TU_ATTR_PACKED {
uint16_t wNumSubRanges;
struct TU_ATTR_PACKED {
int16_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/
int16_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/
uint16_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/
} setting[] ;
struct TU_ATTR_PACKED {
int16_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/
int16_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/
uint16_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/
} subrange[] ;
} audio_control_range_2_t;
// 5.2.3.3 4-byte Control RANGE Parameter Block
//#define audio_control_range_4_n_t(numSubRanges) \
// struct TU_ATTR_PACKED { \
// uint16_t wNumSubRanges = numSubRanges; \
// struct TU_ATTR_PACKED { \
// int32_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/\
// int32_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/\
// uint32_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/\
// } setting[numSubRanges] ; \
// }
typedef struct TU_ATTR_PACKED {
uint16_t wNumSubRanges;
struct TU_ATTR_PACKED {
int32_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/
int32_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/
uint32_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/
} setting[] ;
struct TU_ATTR_PACKED {
int32_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/
int32_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/
uint32_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/
} subrange[] ;
} audio_control_range_4_t;
/** @} */
// 5.2.3.1 1-byte Control RANGE Parameter Block
#define audio_control_range_1_n_t(numSubRanges) \
struct TU_ATTR_PACKED { \
uint16_t wNumSubRanges = numSubRanges; \
struct TU_ATTR_PACKED { \
int8_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/\
int8_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/\
uint8_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/\
} subrange[numSubRanges] ; \
}
// 5.2.3.2 2-byte Control RANGE Parameter Block
#define audio_control_range_2_n_t(numSubRanges) \
struct TU_ATTR_PACKED { \
uint16_t wNumSubRanges = numSubRanges; \
struct TU_ATTR_PACKED { \
int16_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/\
int16_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/\
uint16_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/\
} subrange[numSubRanges] ; \
}
// 5.2.3.3 4-byte Control RANGE Parameter Block
#define audio_control_range_4_n_t(numSubRanges) \
struct TU_ATTR_PACKED { \
uint16_t wNumSubRanges = numSubRanges; \
struct TU_ATTR_PACKED { \
int32_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/\
int32_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/\
uint32_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/\
} subrange[numSubRanges] ; \
}
/** @} */
#ifdef __cplusplus
}
}
#endif
#endif
/** @} */
/** @} */

View File

@ -157,10 +157,10 @@ static bool audio_tx_done_type_I_pcm_ff_cb(uint8_t rhport, audiod_interface_t* a
static bool audiod_get_interface(uint8_t rhport, tusb_control_request_t const * p_request);
static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const * p_request);
static bool audiod_get_interface_index(uint8_t itf, uint8_t *idxDriver, uint8_t *idxItf, uint8_t const **pp_desc_int);
static bool audiod_verify_entity_exists(uint8_t itf, uint8_t entityID);
static bool audiod_verify_itf_exists(uint8_t itf);
static bool audiod_verify_ep_exists(uint8_t ep);
static bool audiod_get_AS_interface_index(uint8_t itf, uint8_t *idxDriver, uint8_t *idxItf, uint8_t const **pp_desc_int);
static bool audiod_verify_entity_exists(uint8_t itf, uint8_t entityID, uint8_t *idxDriver);
static bool audiod_verify_itf_exists(uint8_t itf, uint8_t *idxDriver);
static bool audiod_verify_ep_exists(uint8_t ep, uint8_t *idxDriver);
bool tud_audio_n_mounted(uint8_t itf)
{
@ -691,7 +691,7 @@ static bool audiod_get_interface(uint8_t rhport, tusb_control_request_t const *
uint8_t idxDriver, idxItf;
uint8_t const *dummy;
TU_VERIFY(audiod_get_interface_index(itf, &idxDriver, &idxItf, &dummy));
TU_VERIFY(audiod_get_AS_interface_index(itf, &idxDriver, &idxItf, &dummy));
TU_VERIFY(tud_control_xfer(rhport, p_request, &_audiod_itf[idxDriver].altSetting[idxItf], 1));
return true;
@ -724,7 +724,7 @@ static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const *
// Find index of audio streaming interface and index of interface
uint8_t idxDriver, idxItf;
uint8_t const *p_desc;
TU_VERIFY(audiod_get_interface_index(itf, &idxDriver, &idxItf, &p_desc));
TU_VERIFY(audiod_get_AS_interface_index(itf, &idxDriver, &idxItf, &p_desc));
// Look if there is an EP to be closed - for this driver, there are only 3 possible EPs which may be closed (only AS related EPs can be closed, AC EP (if present) is always open)
#if CFG_TUD_AUDIO_EPSIZE_IN > 0
@ -837,6 +837,8 @@ bool audiod_control_complete(uint8_t rhport, tusb_control_request_t const * p_re
// Handle audio class specific set requests
if(p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS && p_request->bmRequestType_bit.direction == TUSB_DIR_OUT)
{
uint8_t idxDriver;
switch (p_request->bmRequestType_bit.recipient)
{
case TUSB_REQ_RCPT_INTERFACE: ; // The semicolon is there to enable a declaration right after the label
@ -844,28 +846,35 @@ bool audiod_control_complete(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t itf = TU_U16_LOW(p_request->wIndex);
uint8_t entityID = TU_U16_HIGH(p_request->wIndex);
// Verify if entity is present - This check may be omitted if we trust the host not to send rubbish
if (entityID != 0)
{
// Invoke callback
if (tud_audio_set_req_entity_cb && tud_audio_set_req_entity_cb(rhport, p_request))
if (tud_audio_set_req_entity_cb)
{
tud_control_status(rhport, p_request);
// Check if entity is present and get corresponding driver index
TU_VERIFY(audiod_verify_entity_exists(itf, entityID, &idxDriver));
// Invoke callback
return tud_audio_set_req_entity_cb(rhport, p_request, _audiod_itf[idxDriver].ctrl_buf);
}
else
{
TU_LOG2(" No entity set request callback available!\r\n");
return false; // In case no callback function is present or request can not be conducted we stall it
}
}
else
{
// Invoke callback
if (tud_audio_set_req_itf_cb && tud_audio_set_req_itf_cb(rhport, p_request))
if (tud_audio_set_req_itf_cb)
{
tud_control_status(rhport, p_request);
// Find index of audio driver structure and verify interface really exists
TU_VERIFY(audiod_verify_itf_exists(itf, &idxDriver));
// Invoke callback
return tud_audio_set_req_itf_cb(rhport, p_request, _audiod_itf[idxDriver].ctrl_buf);
}
else
{
TU_LOG2(" No interface set request callback available!\r\n");
return false; // In case no callback function is present or request can not be conducted we stall it
}
}
@ -876,18 +885,20 @@ bool audiod_control_complete(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ep = TU_U16_LOW(p_request->wIndex);
// Invoke callback
if (tud_audio_set_req_ep_cb && tud_audio_set_req_ep_cb(rhport, p_request))
if (tud_audio_set_req_ep_cb)
{
tud_control_status(rhport, p_request);
// Check if entity is present and get corresponding driver index
TU_VERIFY(audiod_verify_ep_exists(ep, &idxDriver));
// Invoke callback
return tud_audio_set_req_ep_cb(rhport, p_request, _audiod_itf[idxDriver].ctrl_buf);
}
else
{
TU_LOG2(" No EP set request callback available!\r\n");
return false; // In case no callback function is present or request can not be conducted we stall it
}
break;
// Unknown/Unsupported recipient
default: TU_BREAKPOINT(); return false;
}
@ -920,82 +931,89 @@ bool audiod_control_request(uint8_t rhport, tusb_control_request_t const * p_req
// Handle class requests
if (p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS)
{
uint8_t itf = TU_U16_LOW(p_request->wIndex);
uint8_t idxDriver;
// Conduct checks which depend on the recipient
switch (p_request->bmRequestType_bit.recipient)
{
case TUSB_REQ_RCPT_INTERFACE: ; // The semicolon is there to enable a declaration right after the label
uint8_t itf = TU_U16_LOW(p_request->wIndex);
uint8_t entityID = TU_U16_HIGH(p_request->wIndex);
// Verify if entity is present - This check may be omitted if we trust the host not to send rubbish
// Verify if entity is present
if (entityID != 0)
{
TU_VERIFY(audiod_verify_entity_exists(itf, entityID));
// Find index of audio driver structure and verify entity really exists
TU_VERIFY(audiod_verify_entity_exists(itf, entityID, &idxDriver));
// If request is a set request we return true here and handle the rest later in audiod_control_complete() once the data stage was finished
if (p_request->bmRequestType_bit.direction == TUSB_DIR_OUT) return true;
// Invoke callback - callback needs to answer as defined in UAC2 specification page 89 - 5. Requests
if (tud_audio_get_req_entity_cb)
// In case we got a get request invoke callback - callback needs to answer as defined in UAC2 specification page 89 - 5. Requests
if (p_request->bmRequestType_bit.direction == TUSB_DIR_IN)
{
return tud_audio_get_req_entity_cb(rhport, p_request);
}
else
{
TU_LOG2(" No entity get request callback available!\r\n");
if (tud_audio_get_req_entity_cb)
{
return tud_audio_get_req_entity_cb(rhport, p_request);
}
else
{
TU_LOG2(" No entity get request callback available!\r\n");
return false; // Stall
}
}
}
else
{
TU_VERIFY(audiod_verify_itf_exists(itf));
// Find index of audio driver structure and verify interface really exists
TU_VERIFY(audiod_verify_itf_exists(itf, &idxDriver));
// If request is a set request we return true here and handle the rest later in audiod_control_complete() once the data stage was finished
if (p_request->bmRequestType_bit.direction == TUSB_DIR_OUT) return true;
// Invoke callback - callback needs to answer as defined in UAC2 specification page 89 - 5. Requests
if (tud_audio_get_req_itf_cb)
// In case we got a get request invoke callback - callback needs to answer as defined in UAC2 specification page 89 - 5. Requests
if (p_request->bmRequestType_bit.direction == TUSB_DIR_IN)
{
return tud_audio_get_req_itf_cb(rhport, p_request);
}
else
{
TU_LOG2(" No interface get request callback available!\r\n");
if (tud_audio_get_req_itf_cb)
{
return tud_audio_get_req_itf_cb(rhport, p_request);
}
else
{
TU_LOG2(" No interface get request callback available!\r\n");
return false; // Stall
}
}
}
break;
case TUSB_REQ_RCPT_ENDPOINT: ; // The semicolon is there to enable a declaration right after the label
uint8_t ep = TU_U16_LOW(p_request->wIndex);
// Verify if EP is present - This check may be omitted if we trust the host not to send rubbish
TU_VERIFY(audiod_verify_ep_exists(ep));
// Find index of audio driver structure and verify EP really exists
TU_VERIFY(audiod_verify_ep_exists(ep, &idxDriver));
// If request is a set request we return true here and handle the rest later in audiod_control_complete() once the data stage was finished
if (p_request->bmRequestType_bit.direction == TUSB_DIR_OUT) return true;
if (tud_audio_get_req_ep_cb)
// In case we got a get request invoke callback - callback needs to answer as defined in UAC2 specification page 89 - 5. Requests
if (p_request->bmRequestType_bit.direction == TUSB_DIR_IN)
{
return tud_audio_get_req_ep_cb(rhport, p_request);
if (tud_audio_get_req_ep_cb)
{
return tud_audio_get_req_ep_cb(rhport, p_request);
}
else
{
TU_LOG2(" No EP get request callback available!\r\n");
return false; // Stall
}
}
else
{
TU_LOG2(" No EP get request callback available!\r\n");
}
break;
// Unknown/Unsupported recipient
default: TU_LOG2(" Unsupported recipient: %d\r\n", p_request->bmRequestType_bit.recipient); TU_BREAKPOINT(); return false;
}
// Host expects an answer - in case no callback function is present we stall the request
return false;
// If we end here, the received request is a set request - we schedule a receive for the data stage and return true here. We handle the rest later in audiod_control_complete() once the data stage was finished
TU_VERIFY(tud_control_xfer(rhport, p_request, _audiod_itf[idxDriver].ctrl_buf, CFG_TUD_AUDIO_CTRL_BUF_SIZE));
return true;
}
// There went something wrong
// There went something wrong - unsupported control request type
TU_BREAKPOINT();
return false;
}
@ -1094,10 +1112,61 @@ bool audiod_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint3
}
// This helper function finds for a given interface number the index of the attached driver interface, the index of the interface in the audio function
bool tud_audio_buffer_and_schedule_control_xfer(uint8_t rhport, tusb_control_request_t const * p_request, void* data, uint16_t len)
{
// Handles only sending of data not receiving
if (p_request->bmRequestType_bit.direction == TUSB_DIR_OUT) return false;
// Get corresponding driver index
uint8_t idxDriver;
uint8_t itf = TU_U16_LOW(p_request->wIndex);
// Conduct checks which depend on the recipient
switch (p_request->bmRequestType_bit.recipient)
{
case TUSB_REQ_RCPT_INTERFACE: ; // The semicolon is there to enable a declaration right after the label
uint8_t entityID = TU_U16_HIGH(p_request->wIndex);
// Verify if entity is present
if (entityID != 0)
{
// Find index of audio driver structure and verify entity really exists
TU_VERIFY(audiod_verify_entity_exists(itf, entityID, &idxDriver));
}
else
{
// Find index of audio driver structure and verify interface really exists
TU_VERIFY(audiod_verify_itf_exists(itf, &idxDriver));
}
break;
case TUSB_REQ_RCPT_ENDPOINT: ; // The semicolon is there to enable a declaration right after the label
uint8_t ep = TU_U16_LOW(p_request->wIndex);
// Find index of audio driver structure and verify EP really exists
TU_VERIFY(audiod_verify_ep_exists(ep, &idxDriver));
break;
// Unknown/Unsupported recipient
default: TU_LOG2(" Unsupported recipient: %d\r\n", p_request->bmRequestType_bit.recipient); TU_BREAKPOINT(); return false;
}
// Crop length
if (len > CFG_TUD_AUDIO_CTRL_BUF_SIZE) len = CFG_TUD_AUDIO_CTRL_BUF_SIZE;
// Copy into buffer
memcpy((void *)_audiod_itf[idxDriver].ctrl_buf, data, (size_t)len);
// Schedule transmit
return tud_control_xfer(rhport, p_request, (void*)_audiod_itf[idxDriver].ctrl_buf, len);
}
// This helper function finds for a given AS interface number the index of the attached driver structure, the index of the interface in the audio function
// (e.g. the std. AS interface with interface number 15 is the first AS interface for the given audio function and thus gets index zero), and
// finally a pointer to the std. AS interface, where the pointer always points to the start i.e. alternate interface zero.
static bool audiod_get_interface_index(uint8_t itf, uint8_t *idxDriver, uint8_t *idxItf, uint8_t const **pp_desc_int)
// finally a pointer to the std. AS interface, where the pointer always points to the first alternate setting i.e. alternate interface zero.
static bool audiod_get_AS_interface_index(uint8_t itf, uint8_t *idxDriver, uint8_t *idxItf, uint8_t const **pp_desc_int)
{
// Loop over audio driver interfaces
uint8_t i;
@ -1134,7 +1203,8 @@ static bool audiod_get_interface_index(uint8_t itf, uint8_t *idxDriver, uint8_t
return false;
}
static bool audiod_verify_entity_exists(uint8_t itf, uint8_t entityID)
// Verify an entity with the given ID exists and returns also the corresponding driver index
static bool audiod_verify_entity_exists(uint8_t itf, uint8_t entityID, uint8_t *idxDriver)
{
uint8_t i;
for (i = 0; i < CFG_TUD_AUDIO; i++)
@ -1151,6 +1221,7 @@ static bool audiod_verify_entity_exists(uint8_t itf, uint8_t entityID)
{
if (p_desc[3] == entityID) // Entity IDs are always at offset 3
{
*idxDriver = i;
return true;
}
p_desc = tu_desc_next(p_desc);
@ -1160,7 +1231,7 @@ static bool audiod_verify_entity_exists(uint8_t itf, uint8_t entityID)
return false;
}
static bool audiod_verify_itf_exists(uint8_t itf)
static bool audiod_verify_itf_exists(uint8_t itf, uint8_t *idxDriver)
{
uint8_t i;
for (i = 0; i < CFG_TUD_AUDIO; i++)
@ -1175,6 +1246,7 @@ static bool audiod_verify_itf_exists(uint8_t itf)
{
if (tu_desc_type(p_desc) == TUSB_DESC_INTERFACE && ((tusb_desc_interface_t const *)_audiod_itf[i].p_desc)->bInterfaceNumber == itf)
{
*idxDriver = i;
return true;
}
p_desc = tu_desc_next(p_desc);
@ -1184,7 +1256,7 @@ static bool audiod_verify_itf_exists(uint8_t itf)
return false;
}
static bool audiod_verify_ep_exists(uint8_t ep)
static bool audiod_verify_ep_exists(uint8_t ep, uint8_t *idxDriver)
{
uint8_t i;
for (i = 0; i < CFG_TUD_AUDIO; i++)
@ -1202,6 +1274,7 @@ static bool audiod_verify_ep_exists(uint8_t ep)
{
if (tu_desc_type(p_desc) == TUSB_DESC_ENDPOINT && ((tusb_desc_endpoint_t const * )p_desc)->bEndpointAddress == ep)
{
*idxDriver = i;
return true;
}
p_desc = tu_desc_next(p_desc);

View File

@ -204,6 +204,14 @@ inline void tud_audio_int_ctr_read_flush (void);
inline uint32_t tud_audio_int_ctr_write (uint8_t const* buffer, uint32_t bufsize);
#endif
// Buffer control EP data and schedule a transmit
// This function is intended to be used if you do not have a persistent buffer or memory location available (e.g. non-local variables) and need to answer onto a
// get request. This function buffers your answer request frame into the control buffer of the corresponding audio driver and schedules a transmit for sending it.
// Since transmission is triggered via interrupts, a persistent memory location is required onto which the buffer pointer in pointing. If you already have such
// available you may directly use 'tud_control_xfer(...)'. In this case data does not need to be copied into an additional buffer and you save some time.
// If the request's wLength is zero, a status packet is sent instead.
bool tud_audio_buffer_and_schedule_control_xfer(uint8_t rhport, tusb_control_request_t const * p_request, void* data, uint16_t len);
//--------------------------------------------------------------------+
// Application Callback API (weak is optional)
//--------------------------------------------------------------------+
@ -228,13 +236,13 @@ TU_ATTR_WEAK bool tud_audio_int_ctr_done_cb(uint8_t rhport, uint16_t * n_bytes_c
TU_ATTR_WEAK bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request);
// Invoked when audio class specific set request received for an EP
TU_ATTR_WEAK bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request);
TU_ATTR_WEAK bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);
// Invoked when audio class specific set request received for an interface
TU_ATTR_WEAK bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request);
TU_ATTR_WEAK bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);
// Invoked when audio class specific set request received for an entity
TU_ATTR_WEAK bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request);
TU_ATTR_WEAK bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);
// Invoked when audio class specific get request received for an EP
TU_ATTR_WEAK bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request);