stm32fsdev: dynamic allocation of PMA.

This commit is contained in:
Nathan Conrad 2020-04-14 10:22:37 -04:00
parent 16f65890eb
commit b0270f499b
1 changed files with 94 additions and 53 deletions

View File

@ -63,10 +63,7 @@
* Current driver limitations (i.e., a list of features for you to add): * Current driver limitations (i.e., a list of features for you to add):
* - STALL handled, but not tested. * - STALL handled, but not tested.
* - Does it work? No clue. * - Does it work? No clue.
* - All EP BTABLE buffers are created as fixed 64 bytes. * - All EP BTABLE buffers are created based on max packet size of first EP opened with that address.
* - Smaller can be requested:
* - Must be a multiple of 8 bytes
* - All EP must have identical buffer size.
* - No isochronous endpoints * - No isochronous endpoints
* - Endpoint index is the ID of the endpoint * - Endpoint index is the ID of the endpoint
* - This means that priority is given to endpoints with lower ID numbers * - This means that priority is given to endpoints with lower ID numbers
@ -76,7 +73,6 @@
* - DMA may be the best choice, but it could also be pushed to the USBD task. * - DMA may be the best choice, but it could also be pushed to the USBD task.
* - No double-buffering * - No double-buffering
* - No DMA * - No DMA
* - No provision to control the D+ pull-up using GPIO on devices without an internal pull-up.
* - Minimal error handling * - Minimal error handling
* - Perhaps error interrupts should be reported to the stack, or cause a device reset? * - Perhaps error interrupts should be reported to the stack, or cause a device reset?
* - Assumes a single USB peripheral; I think that no hardware has multiple so this is fine. * - Assumes a single USB peripheral; I think that no hardware has multiple so this is fine.
@ -135,11 +131,7 @@
// HW supports max of 8 bidirectional endpoints, but this can be reduced to save RAM // HW supports max of 8 bidirectional endpoints, but this can be reduced to save RAM
// (8u here would mean 8 IN and 8 OUT) // (8u here would mean 8 IN and 8 OUT)
#ifndef MAX_EP_COUNT #ifndef MAX_EP_COUNT
# if (PMA_LENGTH == 512U) # define MAX_EP_COUNT 8U
# define MAX_EP_COUNT 3U
# else
# define MAX_EP_COUNT 7U
# endif
#endif #endif
// If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it // If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it
@ -152,11 +144,6 @@
# define DCD_STM32_BTABLE_LENGTH (PMA_LENGTH - DCD_STM32_BTABLE_BASE) # define DCD_STM32_BTABLE_LENGTH (PMA_LENGTH - DCD_STM32_BTABLE_BASE)
#endif #endif
// Below is used by the static PMA allocator
#ifndef DCD_STM32_PMA_ALLOC_SIZE
# define DCD_STM32_PMA_ALLOC_SIZE 64U
#endif
/*************************************************** /***************************************************
* Checks, structs, defines, function definitions, etc. * Checks, structs, defines, function definitions, etc.
*/ */
@ -168,21 +155,15 @@ TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) + (DCD_STM32_BTABLE_LENGTH))<=(PMA_LEN
TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) % 8) == 0, "BTABLE base must be aligned to 8 bytes"); TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) % 8) == 0, "BTABLE base must be aligned to 8 bytes");
// With static allocation of 64 bytes per endpoint, ensure there is enough packet buffer space
// 8 bytes are required for control data for each EP.
TU_VERIFY_STATIC(((MAX_EP_COUNT*2u*DCD_STM32_PMA_ALLOC_SIZE + 8*MAX_EP_COUNT) <= DCD_STM32_BTABLE_LENGTH), "Packed buffer not long enough for count of endpoints");
TU_VERIFY_STATIC((DCD_STM32_PMA_ALLOC_SIZE % 8) == 0, "Packet buffer allocation must be a multiple of 8 bytes");
TU_VERIFY_STATIC(CFG_TUD_ENDPOINT0_SIZE <= DCD_STM32_PMA_ALLOC_SIZE,"EP0 size is more than PMA allocation size");
// One of these for every EP IN & OUT, uses a bit of RAM.... // One of these for every EP IN & OUT, uses a bit of RAM....
typedef struct typedef struct
{ {
uint8_t * buffer; uint8_t * buffer;
uint16_t total_len; uint16_t total_len;
uint16_t queued_len; uint16_t queued_len;
uint16_t max_packet_size; uint16_t pma_ptr;
uint8_t max_packet_size;
uint8_t pma_alloc_size;
} xfer_ctl_t; } xfer_ctl_t;
static xfer_ctl_t xfer_status[MAX_EP_COUNT][2]; static xfer_ctl_t xfer_status[MAX_EP_COUNT][2];
@ -196,14 +177,19 @@ static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];
static uint8_t remoteWakeCountdown; // When wake is requested static uint8_t remoteWakeCountdown; // When wake is requested
// EP Buffers assigned from end of memory location, to minimize their chance of crashing
// into the stack. // into the stack.
static void dcd_handle_bus_reset(void); static void dcd_handle_bus_reset(void);
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes);
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes);
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix); static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix);
static void dcd_ep_ctr_handler(void); static void dcd_ep_ctr_handler(void);
// PMA allocation/access
static uint8_t open_ep_count;
static uint16_t ep_buf_ptr; ///< Points to first free memory location
static void dcd_pma_alloc_reset(void);
static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length);
static void dcd_pma_free(uint8_t ep_addr);
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes);
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes);
// Using a function due to better type checks // Using a function due to better type checks
// This seems better than having to do type casts everywhere else // This seems better than having to do type casts everywhere else
@ -249,12 +235,6 @@ void dcd_init (uint8_t rhport)
pcd_set_endpoint(USB,i,0u); pcd_set_endpoint(USB,i,0u);
} }
// Initialize the BTABLE for EP0 at this point (though setting up the EP0R is unneeded)
// This is actually not necessary, but helps debugging to start with a blank RAM area
for(uint32_t i=0;i<(DCD_STM32_BTABLE_LENGTH>>1); i++)
{
pma[PMA_STRIDE*(DCD_STM32_BTABLE_BASE + i)] = 0u;
}
USB->CNTR |= USB_CNTR_RESETM | USB_CNTR_SOFM | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM; USB->CNTR |= USB_CNTR_RESETM | USB_CNTR_SOFM | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
dcd_handle_bus_reset(); dcd_handle_bus_reset();
@ -386,6 +366,7 @@ static void dcd_handle_bus_reset(void)
pcd_set_endpoint(USB,i,0u); pcd_set_endpoint(USB,i,0u);
} }
dcd_pma_alloc_reset();
dcd_edpt_open (0, &ep0OUT_desc); dcd_edpt_open (0, &ep0OUT_desc);
dcd_edpt_open (0, &ep0IN_desc); dcd_edpt_open (0, &ep0IN_desc);
@ -609,28 +590,85 @@ void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * re
} }
} }
static void dcd_pma_alloc_reset(void)
{
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
//TU_LOG2("dcd_pma_alloc_reset()\r\n");
for(uint32_t i=0; i<MAX_EP_COUNT; i++)
{
xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_alloc_size = 0U;
xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_alloc_size = 0U;
xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_ptr = 0U;
xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_ptr = 0U;
}
}
/*** /***
* Allocate a section of PMA * Allocate a section of PMA
* Currently statitically allocates 64 bytes for each EP.
* *
* stm32fsdev have 512 or 1024 bytes of packet RAM, and support 16 EP (8 in and 8 out), * If the EP number has already been allocated, and the new allocation
* Static checks above have verified that there is enough packet memory space, so * is larger than the old allocation, then this will fail with a TU_ASSERT.
* this should NEVER fail. * (This is done to simplify the code. More complicated algorithms could be used)
*
* During failure, TU_ASSERT is used. If this happens, rework/reallocate memory manually.
*/ */
static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length) static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length)
{ {
uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t* epXferCtl = xfer_ctl_ptr(epnum,dir);
(void)length; if(epXferCtl->pma_alloc_size != 0U)
{
//TU_LOG2("dcd_pma_alloc(%x,%x)=%x (cached)\r\n",ep_addr,length,epXferCtl->pma_ptr);
// Previously allocated
TU_ASSERT(length <= epXferCtl->pma_alloc_size, 0xFFFF); // Verify no larger than previous alloc
return epXferCtl->pma_ptr;
}
TU_ASSERT(length <= DCD_STM32_PMA_ALLOC_SIZE); uint16_t addr = ep_buf_ptr;
ep_buf_ptr = (uint16_t)(ep_buf_ptr + length); // increment buffer pointer
// Verify no overflow
TU_ASSERT(ep_buf_ptr <= PMA_LENGTH, 0xFFFF);
epXferCtl->pma_ptr = addr;
epXferCtl->pma_alloc_size = length;
//TU_LOG2("dcd_pma_alloc(%x,%x)=%x\r\n",ep_addr,length,addr);
uint16_t addr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // Each EP needs 8 bytes to store control data
addr += ((2*epnum + dir) * DCD_STM32_PMA_ALLOC_SIZE);
return addr; return addr;
} }
/***
* Free a block of PMA space
*/
static void dcd_pma_free(uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// Presently, this should never be called for EP0 IN/OUT
TU_ASSERT(open_ep_count > 2, /**/);
TU_ASSERT(xfer_ctl_ptr(epnum,dir)->max_packet_size != 0, /**/);
open_ep_count--;
// If count is 2, only EP0 should be open, so allocations can be mostly reset.
if(open_ep_count == 2)
{
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT + 2*CFG_TUD_ENDPOINT0_SIZE; // 8 bytes per endpoint (two TX and two RX words, each), and EP0
// Skip EP0
for(uint32_t i=1; i<MAX_EP_COUNT; i++)
{
xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_alloc_size = 0U;
xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_alloc_size = 0U;
xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_ptr = 0U;
xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_ptr = 0U;
}
}
}
// The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers, // The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers,
// so I'm using the #define from HAL here, instead. // so I'm using the #define from HAL here, instead.
@ -640,28 +678,30 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress); uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress); uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
const uint16_t epMaxPktSize = p_endpoint_desc->wMaxPacketSize.size; const uint16_t epMaxPktSize = p_endpoint_desc->wMaxPacketSize.size;
// Isochronous not supported (yet), and some other driver assumptions. uint16_t pma_addr;
uint32_t wType;
// Isochronous not supported (yet), and some other driver assumptions.
TU_ASSERT(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS); TU_ASSERT(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
TU_ASSERT(epnum < MAX_EP_COUNT); TU_ASSERT(epnum < MAX_EP_COUNT);
// Set type // Set type
switch(p_endpoint_desc->bmAttributes.xfer) { switch(p_endpoint_desc->bmAttributes.xfer) {
case TUSB_XFER_CONTROL: case TUSB_XFER_CONTROL:
pcd_set_eptype(USB, epnum, USB_EP_CONTROL); wType = USB_EP_CONTROL;
break; break;
#if (0) #if (0)
case TUSB_XFER_ISOCHRONOUS: // FIXME: Not yet supported case TUSB_XFER_ISOCHRONOUS: // FIXME: Not yet supported
pcd_set_eptype(USB, epnum, USB_EP_ISOCHRONOUS); break; wType = USB_EP_ISOCHRONOUS;
break; break;
#endif #endif
case TUSB_XFER_BULK: case TUSB_XFER_BULK:
pcd_set_eptype(USB, epnum, USB_EP_BULK); wType = USB_EP_CONTROL;
break; break;
case TUSB_XFER_INTERRUPT: case TUSB_XFER_INTERRUPT:
pcd_set_eptype(USB, epnum, USB_EP_INTERRUPT); wType = USB_EP_INTERRUPT;
break; break;
default: default:
@ -669,21 +709,24 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc
return false; return false;
} }
pcd_set_eptype(USB, epnum, wType);
pcd_set_ep_address(USB, epnum, epnum); pcd_set_ep_address(USB, epnum, epnum);
// Be normal, for now, instead of only accepting zero-byte packets (on control endpoint) // Be normal, for now, instead of only accepting zero-byte packets (on control endpoint)
// or being double-buffered (bulk endpoints) // or being double-buffered (bulk endpoints)
pcd_clear_ep_kind(USB,0); pcd_clear_ep_kind(USB,0);
pma_addr = dcd_pma_alloc(p_endpoint_desc->bEndpointAddress, p_endpoint_desc->wMaxPacketSize.size);
if(dir == TUSB_DIR_IN) if(dir == TUSB_DIR_IN)
{ {
*pcd_ep_tx_address_ptr(USB, epnum) = dcd_pma_alloc(p_endpoint_desc->bEndpointAddress, p_endpoint_desc->wMaxPacketSize.size); *pcd_ep_tx_address_ptr(USB, epnum) = pma_addr;
pcd_set_ep_tx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size); pcd_set_ep_tx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
pcd_clear_tx_dtog(USB, epnum); pcd_clear_tx_dtog(USB, epnum);
pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_NAK); pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_NAK);
} }
else else
{ {
*pcd_ep_rx_address_ptr(USB, epnum) = dcd_pma_alloc(p_endpoint_desc->bEndpointAddress, p_endpoint_desc->wMaxPacketSize.size); *pcd_ep_rx_address_ptr(USB, epnum) = pma_addr;
pcd_set_ep_rx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size); pcd_set_ep_rx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
pcd_clear_rx_dtog(USB, epnum); pcd_clear_rx_dtog(USB, epnum);
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_NAK); pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_NAK);
@ -707,10 +750,6 @@ void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
uint32_t const epnum = tu_edpt_number(ep_addr); uint32_t const epnum = tu_edpt_number(ep_addr);
uint32_t const dir = tu_edpt_dir(ep_addr); uint32_t const dir = tu_edpt_dir(ep_addr);
#ifndef NDEBUG
TU_ASSERT(epnum < MAX_EP_COUNT, /**/);
#endif
if(dir == TUSB_DIR_IN) if(dir == TUSB_DIR_IN)
{ {
pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_DIS); pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_DIS);
@ -719,6 +758,8 @@ void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{ {
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_DIS); pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_DIS);
} }
dcd_pma_free(ep_addr);
} }
// Currently, single-buffered, and only 64 bytes at a time (max) // Currently, single-buffered, and only 64 bytes at a time (max)