double buffered work with host

This commit is contained in:
hathach 2021-06-11 17:05:49 +07:00
parent 43656dc0a7
commit a1a03c92f6
4 changed files with 233 additions and 162 deletions

View File

@ -198,10 +198,10 @@ static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t b
_hw_endpoint_init(ep, ep_addr, wMaxPacketSize, bmAttributes);
}
static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes, bool start)
static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_xfer(ep, buffer, total_bytes, start);
_hw_endpoint_xfer_start(ep, buffer, total_bytes);
}
static void hw_handle_buff_status(void)
@ -251,7 +251,7 @@ static void ep0_0len_status(void)
{
// Send 0len complete response on EP0 IN
reset_ep0();
hw_endpoint_xfer(0x80, NULL, 0, true);
hw_endpoint_xfer(0x80, NULL, 0);
}
static void _hw_endpoint_stall(struct hw_endpoint *ep)
@ -477,7 +477,7 @@ void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * re
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS)
{
pico_trace("Set HW address %d\n", assigned_address);
pico_trace("Set HW address %d\n", request->wValue);
usb_hw->dev_addr_ctrl = (uint8_t) request->wValue;
}
@ -496,7 +496,7 @@ bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t t
{
assert(rhport == 0);
// True means start new xfer
hw_endpoint_xfer(ep_addr, buffer, total_bytes, true);
hw_endpoint_xfer(ep_addr, buffer, total_bytes);
return true;
}

View File

@ -115,9 +115,9 @@ static void hw_xfer_complete(struct hw_endpoint *ep, xfer_result_t xfer_result)
// Mark transfer as done before we tell the tinyusb stack
uint8_t dev_addr = ep->dev_addr;
uint8_t ep_addr = ep->ep_addr;
uint total_len = ep->total_len;
uint xferred_len = ep->len;
hw_endpoint_reset_transfer(ep);
hcd_event_xfer_complete(dev_addr, ep_addr, total_len, xfer_result, true);
hcd_event_xfer_complete(dev_addr, ep_addr, xferred_len, xfer_result, true);
}
static void _handle_buff_status_bit(uint bit, struct hw_endpoint *ep)
@ -141,6 +141,20 @@ static void hw_handle_buff_status(void)
{
remaining_buffers &= ~bit;
struct hw_endpoint *ep = &epx;
uint32_t ep_ctrl = *ep->endpoint_control;
if (ep_ctrl & EP_CTRL_DOUBLE_BUFFERED_BITS)
{
TU_LOG(2, "Double Buffered ");
}else
{
TU_LOG(2, "Single Buffered ");
}
if (ep_ctrl & EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER) TU_LOG(2, "Interrupt per double ");
if (ep_ctrl & EP_CTRL_INTERRUPT_PER_BUFFER) TU_LOG(2, "Interrupt per single ");
TU_LOG_HEX(2, ep_ctrl);
_handle_buff_status_bit(bit, ep);
}
@ -277,11 +291,11 @@ static struct hw_endpoint *_hw_endpoint_allocate(uint8_t transfer_type)
assert(ep);
ep->buffer_control = &usbh_dpram->int_ep_buffer_ctrl[ep->interrupt_num].ctrl;
ep->endpoint_control = &usbh_dpram->int_ep_ctrl[ep->interrupt_num].ctrl;
// 0x180 for epx
// 0x1c0 for intep0
// 0x200 for intep1
// 0 for epx (double buffered): TODO increase to 1024 for ISO
// 2x64 for intep0
// 3x64 for intep1
// etc
ep->hw_data_buf = &usbh_dpram->epx_data[64 * (ep->interrupt_num + 1)];
ep->hw_data_buf = &usbh_dpram->epx_data[64 * (ep->interrupt_num + 2)];
}
else
{
@ -311,7 +325,7 @@ static void _hw_endpoint_init(struct hw_endpoint *ep, uint8_t dev_addr, uint8_t
ep->rx = (dir == TUSB_DIR_IN);
// Response to a setup packet on EP0 starts with pid of 1
ep->next_pid = num == 0 ? 1u : 0u;
ep->next_pid = (num == 0 ? 1u : 0u);
ep->wMaxPacketSize = wMaxPacketSize;
ep->transfer_type = transfer_type;
@ -340,6 +354,7 @@ static void _hw_endpoint_init(struct hw_endpoint *ep, uint8_t dev_addr, uint8_t
// preamble
uint32_t reg = dev_addr | (num << USB_ADDR_ENDP1_ENDPOINT_LSB);
// Assert the interrupt endpoint is IN_TO_HOST
// TODO Interrupt can also be OUT
assert(dir == TUSB_DIR_IN);
if (need_pre(dev_addr))
@ -402,7 +417,6 @@ bool hcd_port_connect_status(uint8_t rhport)
tusb_speed_t hcd_port_speed_get(uint8_t rhport)
{
pico_trace("hcd_port_speed_get\n");
assert(rhport == 0);
// TODO: Should enumval this register
switch (dev_speed())
@ -445,6 +459,10 @@ void hcd_int_disable(uint8_t rhport)
irq_set_enabled(USBCTRL_IRQ, false);
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
@ -467,6 +485,65 @@ bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const
return true;
}
// return true if double buffered
static bool xfer_start(struct hw_endpoint *ep, uint8_t *buffer, uint16_t total_len)
{
// Fill in info now that we're kicking off the hw
ep->total_len = total_len;
ep->len = 0;
// Limit by packet size
ep->user_buf = buffer;
// Buffer 0
ep->transfer_size = tu_min16(total_len, ep->wMaxPacketSize);
total_len -= ep->transfer_size;
// Buffer 1
ep->buf_1_len = tu_min16(total_len, ep->wMaxPacketSize);
total_len -= ep->buf_1_len;
ep->active = true;
// Write buffer control
// Buffer 0
uint32_t bufctrl = ep->transfer_size | USB_BUF_CTRL_AVAIL;
// Copy data to DPB if tx
if (!ep->rx)
{
// Copy data from user buffer to hw buffer
memcpy(ep->hw_data_buf, ep->user_buf, ep->transfer_size + ep->buf_1_len);
// Mark as full
bufctrl |= USB_BUF_CTRL_FULL | (ep->buf_1_len ? (USB_BUF_CTRL_FULL << 16) : 0);
}
// PID
bufctrl |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID;
ep->next_pid ^= 1u;
if (ep->buf_1_len)
{
bufctrl |= (ep->buf_1_len | USB_BUF_CTRL_AVAIL) << 16;
bufctrl |= (ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID) << 16;
ep->next_pid ^= 1u;
}
// determine which buffer is last
if (total_len == 0)
{
bufctrl |= USB_BUF_CTRL_LAST << (ep->buf_1_len ? 16 : 0);
}
print_bufctrl32(bufctrl);
_hw_endpoint_buffer_control_set_value32(ep, bufctrl);
return ep->buf_1_len > 0;
}
bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen)
{
(void) rhport;
@ -486,13 +563,12 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *
_hw_endpoint_init(ep, dev_addr, ep_addr, ep->wMaxPacketSize, ep->transfer_type, 0);
}
// Start the transfer
_hw_endpoint_xfer_start(ep, buffer, buflen);
// If a normal transfer (non-interrupt) then initiate using
// sie ctrl registers. Otherwise interrupt ep registers should
// already be configured
if (ep == &epx) {
_hw_endpoint_xfer_start(ep, buffer, buflen);
// That has set up buffer control, endpoint control etc
// for host we have to initiate the transfer
usb_hw->dev_addr_ctrl = dev_addr | (ep_num << USB_ADDR_ENDP_ENDPOINT_LSB);
@ -503,6 +579,9 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *
flags |= need_pre(dev_addr) ? USB_SIE_CTRL_PREAMBLE_EN_BITS : 0;
usb_hw->sie_ctrl = flags;
}else
{
_hw_endpoint_xfer_start(ep, buffer, buflen);
}
return true;
@ -556,8 +635,8 @@ bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
(void) rhport;
(void) dev_addr;
(void) ep_addr;
panic("hcd_clear_stall");
return true;

View File

@ -61,11 +61,11 @@ void rp2040_usb_init(void)
memset(usb_dpram, 0, sizeof(*usb_dpram));
// Mux the controller to the onboard usb phy
usb_hw->muxing = USB_USB_MUXING_TO_PHY_BITS | USB_USB_MUXING_SOFTCON_BITS;
usb_hw->muxing = USB_USB_MUXING_TO_PHY_BITS | USB_USB_MUXING_SOFTCON_BITS;
// Force VBUS detect so the device thinks it is plugged into a host
// TODO support VBUs detect
usb_hw->pwr = USB_USB_PWR_VBUS_DETECT_BITS | USB_USB_PWR_VBUS_DETECT_OVERRIDE_EN_BITS;
usb_hw->pwr = USB_USB_PWR_VBUS_DETECT_BITS | USB_USB_PWR_VBUS_DETECT_OVERRIDE_EN_BITS;
}
void hw_endpoint_reset_transfer(struct hw_endpoint *ep)
@ -111,150 +111,157 @@ void _hw_endpoint_buffer_control_update32(struct hw_endpoint *ep, uint32_t and_m
*ep->buffer_control = value;
}
// Prepare buffer control register value
void _hw_endpoint_start_next_buffer(struct hw_endpoint *ep)
{
// Prepare buffer control register value
uint32_t val = ep->transfer_size | USB_BUF_CTRL_AVAIL;
uint16_t remaining = ep->total_len - ep->len;
uint32_t ep_ctrl = *ep->endpoint_control;
uint32_t buf_ctrl;
if (!ep->rx)
{
// Copy data from user buffer to hw buffer
memcpy(ep->hw_data_buf, &ep->user_buf[ep->len], ep->transfer_size);
// Mark as full
val |= USB_BUF_CTRL_FULL;
}
// Buffer 0
ep->transfer_size = tu_min16(remaining, ep->wMaxPacketSize);
remaining -= ep->transfer_size;
// PID
val |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID;
buf_ctrl = ep->transfer_size | USB_BUF_CTRL_AVAIL;
if ( !ep->rx )
{
// Copy data from user buffer to hw buffer
memcpy(ep->hw_data_buf, ep->user_buf+ep->len, ep->transfer_size);
#if TUSB_OPT_DEVICE_ENABLED
// Mark as full
buf_ctrl |= USB_BUF_CTRL_FULL;
}
// PID
buf_ctrl |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID;
ep->next_pid ^= 1u;
// Buffer 1
ep->buf_1_len = tu_min16(remaining, ep->wMaxPacketSize);
remaining -= ep->buf_1_len;
if (ep->buf_1_len)
{
buf_ctrl |= (ep->buf_1_len | USB_BUF_CTRL_AVAIL) << 16;
buf_ctrl |= (ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID) << 16;
ep->next_pid ^= 1u;
#else
// For Host (also device but since we dictate the endpoint size, following scenario does not occur)
// Next PID depends on the number of packet in case wMaxPacketSize < 64 (e.g Interrupt Endpoint 8, or 12)
// Special case with control status stage where PID is always DATA1
if ( ep->transfer_size == 0 )
if ( !ep->rx )
{
// ZLP also toggle data
ep->next_pid ^= 1u;
}else
{
uint32_t packet_count = 1 + ((ep->transfer_size - 1) / ep->wMaxPacketSize);
if ( packet_count & 0x01 )
{
ep->next_pid ^= 1u;
}
// Copy data from user buffer to hw buffer
memcpy(ep->hw_data_buf+64, ep->user_buf+ep->len+ep->transfer_size, ep->buf_1_len);
}
#endif
// Set endpoint control double buffered bit if needed
ep_ctrl &= ~EP_CTRL_INTERRUPT_PER_BUFFER;
ep_ctrl |= EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER;
}else
{
ep_ctrl &= ~(EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER);
ep_ctrl |= EP_CTRL_INTERRUPT_PER_BUFFER;
}
*ep->endpoint_control = ep_ctrl;
#if TUSB_OPT_HOST_ENABLED
// Is this the last buffer? Only really matters for host mode. Will trigger
// the trans complete irq but also stop it polling. We only really care about
// trans complete for setup packets being sent
if (ep->last_buf)
{
pico_trace("Last buf (%d bytes left)\n", ep->transfer_size);
val |= USB_BUF_CTRL_LAST;
}
// Is this the last buffer? Only really matters for host mode. Will trigger
// the trans complete irq but also stop it polling. We only really care about
// trans complete for setup packets being sent
if (remaining == 0)
{
buf_ctrl |= USB_BUF_CTRL_LAST << (ep->buf_1_len ? 16 : 0);
}
#endif
// Finally, write to buffer_control which will trigger the transfer
// the next time the controller polls this dpram address
_hw_endpoint_buffer_control_set_value32(ep, val);
pico_trace("buffer control (0x%p) <- 0x%x\n", ep->buffer_control, val);
//print_bufctrl16(val);
print_bufctrl32(buf_ctrl);
// Finally, write to buffer_control which will trigger the transfer
// the next time the controller polls this dpram address
_hw_endpoint_buffer_control_set_value32(ep, buf_ctrl);
}
void _hw_endpoint_xfer_start(struct hw_endpoint *ep, uint8_t *buffer, uint16_t total_len)
{
_hw_endpoint_lock_update(ep, 1);
pico_trace("Start transfer of total len %d on ep %d %s\n", total_len, tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
if (ep->active)
{
// TODO: Is this acceptable for interrupt packets?
pico_warn("WARN: starting new transfer on already active ep %d %s\n", tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
_hw_endpoint_lock_update(ep, 1);
pico_trace("Start transfer of total len %d on ep %d %s\n", total_len, tu_edpt_number(ep->ep_addr),
ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
if ( ep->active )
{
// TODO: Is this acceptable for interrupt packets?
pico_warn("WARN: starting new transfer on already active ep %d %s\n", tu_edpt_number(ep->ep_addr),
ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
hw_endpoint_reset_transfer(ep);
}
hw_endpoint_reset_transfer(ep);
}
// Fill in info now that we're kicking off the hw
ep->total_len = total_len;
ep->len = 0;
// Fill in info now that we're kicking off the hw
ep->total_len = total_len;
ep->len = 0;
ep->active = true;
ep->user_buf = buffer;
// Limit by packet size but not less 64 (i.e low speed 8 bytes EP0)
ep->transfer_size = tu_min16(total_len, tu_max16(64, ep->wMaxPacketSize));
ep->active = true;
ep->user_buf = buffer;
#if TUSB_OPT_HOST_ENABLED
// Recalculate if this is the last buffer
_hw_endpoint_update_last_buf(ep);
ep->buf_sel = 0;
#endif
_hw_endpoint_start_next_buffer(ep);
_hw_endpoint_lock_update(ep, -1);
_hw_endpoint_start_next_buffer(ep);
_hw_endpoint_lock_update(ep, -1);
}
void _hw_endpoint_xfer_sync(struct hw_endpoint *ep)
void _hw_endpoint_xfer_sync (struct hw_endpoint *ep)
{
// Update hw endpoint struct with info from hardware
// after a buff status interrupt
// Update hw endpoint struct with info from hardware
// after a buff status interrupt
uint32_t buf_ctrl = _hw_endpoint_buffer_control_get_value32(ep);
uint32_t const buf_ctrl = _hw_endpoint_buffer_control_get_value32(ep);
print_bufctrl32(buf_ctrl);
#if TUSB_OPT_HOST_ENABLED
// RP2040-E4
// tag::host_buf_sel_fix[]
// TODO need changes to support double buffering
if (ep->buf_sel == 1)
// Transferred bytes for each buffer
uint16_t xferred_bytes[2];
xferred_bytes[0] = buf_ctrl & USB_BUF_CTRL_LEN_MASK;
// double buffered: take buffer1 into account as well
if ( (*ep->endpoint_control) & EP_CTRL_DOUBLE_BUFFERED_BITS )
{
xferred_bytes[1] = (buf_ctrl >> 16) & USB_BUF_CTRL_LEN_MASK;
}else
{
xferred_bytes[1] = 0;
}
TU_LOG_INT(2, xferred_bytes[0]);
TU_LOG_INT(2, xferred_bytes[1]);
// We are continuing a transfer here. If we are TX, we have successfully
// sent some data can increase the length we have sent
if ( !ep->rx )
{
assert(!(buf_ctrl & USB_BUF_CTRL_FULL));
ep->len += xferred_bytes[0] + xferred_bytes[1];
}
else
{
// If we are OUT we have recieved some data, so can increase the length
// we have recieved AFTER we have copied it to the user buffer at the appropriate offset
assert(buf_ctrl & USB_BUF_CTRL_FULL);
memcpy(&ep->user_buf[ep->len], ep->hw_data_buf, xferred_bytes[0]);
ep->len += xferred_bytes[0];
if (xferred_bytes[1])
{
// Host can erroneously write status to top half of buf_ctrl register
buf_ctrl = buf_ctrl >> 16;
// update buf1 -> buf0 to prevent panic with "already available"
*ep->buffer_control = buf_ctrl;
memcpy(&ep->user_buf[ep->len], ep->hw_data_buf+64, xferred_bytes[1]);
ep->len += xferred_bytes[1];
}
// Flip buf sel for host
ep->buf_sel ^= 1u;
// end::host_buf_sel_fix[]
#endif
}
// Get tranferred bytes after adjusted buf sel
uint16_t const transferred_bytes = buf_ctrl & USB_BUF_CTRL_LEN_MASK;
// We are continuing a transfer here. If we are TX, we have successfullly
// sent some data can increase the length we have sent
if (!ep->rx)
{
assert(!(buf_ctrl & USB_BUF_CTRL_FULL));
pico_trace("tx %d bytes (buf_ctrl 0x%08x)\n", transferred_bytes, buf_ctrl);
ep->len += transferred_bytes;
}
else
{
// If we are OUT we have recieved some data, so can increase the length
// we have recieved AFTER we have copied it to the user buffer at the appropriate
// offset
pico_trace("rx %d bytes (buf_ctrl 0x%08x)\n", transferred_bytes, buf_ctrl);
assert(buf_ctrl & USB_BUF_CTRL_FULL);
memcpy(&ep->user_buf[ep->len], ep->hw_data_buf, transferred_bytes);
ep->len += transferred_bytes;
}
// Sometimes the host will send less data than we expect...
// If this is a short out transfer update the total length of the transfer
// to be the current length
if ((ep->rx) && (transferred_bytes < ep->wMaxPacketSize))
{
pico_trace("Short rx transfer\n");
// Reduce total length as this is last packet
ep->total_len = ep->len;
}
// Sometimes the host will send less data than we expect...
// If this is a short out transfer update the total length of the transfer
// to be the current length
if ( (ep->rx) && ((xferred_bytes[0] < ep->wMaxPacketSize) || (xferred_bytes[1] && (xferred_bytes[1] < ep->wMaxPacketSize))) )
{
pico_trace("Short rx transfer\n");
// Reduce total length as this is last packet
ep->total_len = ep->len;
}
}
// Returns true if transfer is complete
@ -271,12 +278,11 @@ bool _hw_endpoint_xfer_continue(struct hw_endpoint *ep)
_hw_endpoint_xfer_sync(ep);
// Now we have synced our state with the hardware. Is there more data to transfer?
// Limit by packet size but not less 64 (i.e low speed 8 bytes EP0)
// Limit by packet size
uint16_t remaining_bytes = ep->total_len - ep->len;
ep->transfer_size = tu_min16(remaining_bytes, tu_max16(64, ep->wMaxPacketSize));
#if TUSB_OPT_HOST_ENABLED
_hw_endpoint_update_last_buf(ep);
#endif
ep->transfer_size = tu_min16(remaining_bytes, ep->wMaxPacketSize);
TU_LOG_INT(2, ep->transfer_size);
// Can happen because of programmer error so check for it
if (ep->len > ep->total_len)
@ -303,23 +309,4 @@ bool _hw_endpoint_xfer_continue(struct hw_endpoint *ep)
return false;
}
void _hw_endpoint_xfer(struct hw_endpoint *ep, uint8_t *buffer, uint16_t total_len, bool start)
{
// Trace
pico_trace("hw_endpoint_xfer ep %d %s", tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
pico_trace(" total_len %d, start=%d\n", total_len, start);
assert(ep->configured);
if (start)
{
_hw_endpoint_xfer_start(ep, buffer, total_len);
}
else
{
_hw_endpoint_xfer_continue(ep);
}
}
#endif

View File

@ -17,7 +17,7 @@
#endif
#if false && !defined(NDEBUG)
#if true || false && !defined(NDEBUG)
#define pico_trace(format,args...) printf(format, ## args)
#else
#define pico_trace(format,...) ((void)0)
@ -50,6 +50,7 @@ struct hw_endpoint
// Endpoint control register
io_rw_32 *endpoint_control;
// Buffer control register
io_rw_32 *buffer_control;
@ -63,8 +64,11 @@ struct hw_endpoint
bool active;
uint16_t total_len;
uint16_t len;
// Amount of data with the hardware
uint16_t transfer_size;
uint16_t transfer_size; // buf0_len;
uint16_t buf_1_len;
// User buffer in main memory
uint8_t *user_buf;
@ -76,6 +80,7 @@ struct hw_endpoint
#if TUSB_OPT_HOST_ENABLED
// Only needed for host mode
bool last_buf;
// RP2040-E4: HOST BUG. Host will incorrect write status to top half of buffer
// control register when doing transfers > 1 packet
uint8_t buf_sel;
@ -90,11 +95,11 @@ struct hw_endpoint
void rp2040_usb_init(void);
void hw_endpoint_reset_transfer(struct hw_endpoint *ep);
void _hw_endpoint_xfer(struct hw_endpoint *ep, uint8_t *buffer, uint16_t total_len, bool start);
void _hw_endpoint_start_next_buffer(struct hw_endpoint *ep);
void _hw_endpoint_xfer_start(struct hw_endpoint *ep, uint8_t *buffer, uint16_t total_len);
void _hw_endpoint_xfer_sync(struct hw_endpoint *ep);
bool _hw_endpoint_xfer_continue(struct hw_endpoint *ep);
void _hw_endpoint_buffer_control_update32(struct hw_endpoint *ep, uint32_t and_mask, uint32_t or_mask);
static inline uint32_t _hw_endpoint_buffer_control_get_value32(struct hw_endpoint *ep) {
return *ep->buffer_control;
@ -149,11 +154,11 @@ static inline void print_bufctrl32(uint32_t u32)
uint16_t u16;
u16 = u32 >> 16;
TU_LOG(2, "Buffer Control 1 0x%x: ", u16);
TU_LOG(2, " Buffer Control 1 0x%x: ", u16);
print_bufctrl16(u16);
u16 = u32 & 0x0000ffff;
TU_LOG(2, "Buffer Control 0 0x%x: ", u16);
TU_LOG(2, " Buffer Control 0 0x%x: ", u16);
print_bufctrl16(u16);
}