more rename

This commit is contained in:
hathach 2021-10-26 11:11:46 +07:00
parent 7369d2441d
commit 8df078dc9e
No known key found for this signature in database
GPG Key ID: 2FA891220FBFD581
5 changed files with 97 additions and 106 deletions

View File

@ -51,8 +51,7 @@
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
#define CORE_REG(_port) ((dwc2_core_t*) DWC2_REG_BASE)
#define DEVICE_REG(_port) CORE_REG(_port) //((dwc2_core_t*) (DWC2_REG_BASE + DWC2_DEVICE_BASE))
#define DWC2_REG(_port) ((dwc2_regs_t*) DWC2_REG_BASE)
#define EPIN_REG(_port) ((dwc2_epin_t*) (DWC2_REG_BASE + DWC2_IN_ENDPOINT_BASE))
#define EPOUT_REG(_port) ((dwc2_epout_t*) (DWC2_REG_BASE + DWC2_OUT_ENDPOINT_BASE))
#define FIFO_BASE(_port, _x) ((volatile uint32_t*) (DWC2_REG_BASE + DWC2_FIFO_BASE + (_x) * DWC2_FIFO_SIZE))
@ -98,7 +97,7 @@ static void update_grxfsiz(uint8_t rhport)
{
(void) rhport;
dwc2_core_t * core = CORE_REG(rhport);
dwc2_regs_t * core = DWC2_REG(rhport);
// Determine largest EP size for RX FIFO
uint16_t max_epsize = 0;
@ -116,8 +115,7 @@ static void bus_reset(uint8_t rhport)
{
(void) rhport;
dwc2_core_t * core = CORE_REG(rhport);
dwc2_core_t * dev = DEVICE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2_epout_t * out_ep = EPOUT_REG(rhport);
dwc2_epin_t * in_ep = EPIN_REG(rhport);
@ -125,7 +123,7 @@ static void bus_reset(uint8_t rhport)
_out_ep_closed = false;
// clear device address
dev->dcfg &= ~DCFG_DAD_Msk;
dwc2->dcfg &= ~DCFG_DAD_Msk;
// 1. NAK for all OUT endpoints
for(uint8_t n = 0; n < DWC2_EP_MAX; n++) {
@ -133,9 +131,9 @@ static void bus_reset(uint8_t rhport)
}
// 2. Un-mask interrupt bits
dev->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);
dev->doepmsk = DOEPMSK_STUPM | DOEPMSK_XFRCM;
dev->diepmsk = DIEPMSK_TOM | DIEPMSK_XFRCM;
dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);
dwc2->doepmsk = DOEPMSK_STUPM | DOEPMSK_XFRCM;
dwc2->diepmsk = DIEPMSK_TOM | DIEPMSK_XFRCM;
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
@ -187,12 +185,12 @@ static void bus_reset(uint8_t rhport)
// are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to
// overwrite this.
core->grxfsiz = calc_rx_ff_size(TUD_OPT_HIGH_SPEED ? 512 : 64);
dwc2->grxfsiz = calc_rx_ff_size(TUD_OPT_HIGH_SPEED ? 512 : 64);
_allocated_fifo_words_tx = 16;
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
core->dieptxf0 = (16 << TX0FD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
dwc2->dieptxf0 = (16 << TX0FD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
// Fixed control EP0 size to 64 bytes
in_ep[0].DIEPCTL &= ~(0x03 << DIEPCTL_MPSIZ_Pos);
@ -200,15 +198,15 @@ static void bus_reset(uint8_t rhport)
out_ep[0].DOEPTSIZ |= (3 << DOEPTSIZ_STUPCNT_Pos);
core->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT;
dwc2->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT;
}
static tusb_speed_t get_speed(uint8_t rhport)
{
(void) rhport;
dwc2_core_t * dev = DEVICE_REG(rhport);
uint32_t const enum_spd = (dev->dsts & DSTS_ENUMSPD_Msk) >> DSTS_ENUMSPD_Pos;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
uint32_t const enum_spd = (dwc2->dsts & DSTS_ENUMSPD_Msk) >> DSTS_ENUMSPD_Pos;
return (enum_spd == DCD_HIGH_SPEED) ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL;
}
@ -225,11 +223,11 @@ static void set_speed(uint8_t rhport, tusb_speed_t speed)
bitvalue = DCD_FULL_SPEED;
}
dwc2_core_t * dev = DEVICE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
// Clear and set speed bits
dev->dcfg &= ~(3 << DCFG_DSPD_Pos);
dev->dcfg |= (bitvalue << DCFG_DSPD_Pos);
dwc2->dcfg &= ~(3 << DCFG_DSPD_Pos);
dwc2->dcfg |= (bitvalue << DCFG_DSPD_Pos);
}
#if defined(USB_HS_PHYC)
@ -277,7 +275,7 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
{
(void) rhport;
dwc2_core_t * dev = DEVICE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2_epout_t * out_ep = EPOUT_REG(rhport);
dwc2_epin_t * in_ep = EPIN_REG(rhport);
@ -301,12 +299,12 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
if ((in_ep[epnum].DIEPCTL & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1)
{
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dev->dsts & (1u << DSTS_FNSOF_Pos));
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
in_ep[epnum].DIEPCTL |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
}
// Enable fifo empty interrupt only if there are something to put in the fifo.
if(total_bytes != 0) {
dev->diepempmsk |= (1 << epnum);
dwc2->diepempmsk |= (1 << epnum);
}
} else {
// A full OUT transfer (multiple packets, possibly) triggers XFRC.
@ -318,7 +316,7 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
if ((out_ep[epnum].DOEPCTL & DOEPCTL_EPTYP) == DOEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1)
{
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dev->dsts & (1u << DSTS_FNSOF_Pos));
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
out_ep[epnum].DOEPCTL |= (odd_frame_now ? DOEPCTL_SD0PID_SEVNFRM_Msk : DOEPCTL_SODDFRM_Msk);
}
}
@ -331,7 +329,7 @@ void dcd_init (uint8_t rhport)
{
// Programming model begins in the last section of the chapter on the USB
// peripheral in each Reference Manual.
dwc2_core_t * core = CORE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
// check GSNPSID
@ -341,23 +339,23 @@ void dcd_init (uint8_t rhport)
// On selected MCUs HS port1 can be used with external PHY via ULPI interface
#if CFG_TUSB_RHPORT1_MODE & OPT_MODE_HIGH_SPEED
// deactivate internal PHY
core->gccfg &= ~GCCFG_PWRDWN;
dwc2->gccfg &= ~GCCFG_PWRDWN;
// Init The UTMI Interface
core->gusbcfg &= ~(GUSBCFG_TSDPS | GUSBCFG_ULPIFSLS | GUSBCFG_PHYSEL);
dwc2->gusbcfg &= ~(GUSBCFG_TSDPS | GUSBCFG_ULPIFSLS | GUSBCFG_PHYSEL);
// Select default internal VBUS Indicator and Drive for ULPI
core->gusbcfg &= ~(GUSBCFG_ULPIEVBUSD | GUSBCFG_ULPIEVBUSI);
dwc2->gusbcfg &= ~(GUSBCFG_ULPIEVBUSD | GUSBCFG_ULPIEVBUSI);
#else
core->gusbcfg |= GUSBCFG_PHYSEL;
dwc2->gusbcfg |= GUSBCFG_PHYSEL;
#endif
#if defined(USB_HS_PHYC)
// Highspeed with embedded UTMI PHYC
// Select UTMI Interface
core->gusbcfg &= ~GUSBCFG_ULPI_UTMI_SEL;
core->gccfg |= GCCFG_PHYHSEN;
dwc2->gusbcfg &= ~GUSBCFG_ULPI_UTMI_SEL;
dwc2->gccfg |= GCCFG_PHYHSEN;
// Enables control of a High Speed USB PHY
USB_HS_PHYCInit();
@ -365,42 +363,40 @@ void dcd_init (uint8_t rhport)
} else
{
// Enable internal PHY
core->gusbcfg |= GUSBCFG_PHYSEL;
dwc2->gusbcfg |= GUSBCFG_PHYSEL;
}
// Reset core after selecting PHYst
// Wait AHB IDLE, reset then wait until it is cleared
while ((core->grstctl & GRSTCTL_AHBIDL) == 0U) {}
core->grstctl |= GRSTCTL_CSRST;
while ((core->grstctl & GRSTCTL_CSRST) == GRSTCTL_CSRST) {}
while ((dwc2->grstctl & GRSTCTL_AHBIDL) == 0U) {}
dwc2->grstctl |= GRSTCTL_CSRST;
while ((dwc2->grstctl & GRSTCTL_CSRST) == GRSTCTL_CSRST) {}
// Restart PHY clock
*((volatile uint32_t *)(DWC2_REG_BASE + DWC2_PCGCCTL_BASE)) = 0;
// Clear all interrupts
core->gintsts |= core->gintsts;
dwc2->gintsts |= dwc2->gintsts;
// Required as part of core initialization.
// TODO: How should mode mismatch be handled? It will cause
// the core to stop working/require reset.
core->gintmsk |= GINTMSK_OTGINT | GINTMSK_MMISM;
dwc2_core_t * dev = DEVICE_REG(rhport);
dwc2->gintmsk |= GINTMSK_OTGINT | GINTMSK_MMISM;
// If USB host misbehaves during status portion of control xfer
// (non zero-length packet), send STALL back and discard.
dev->dcfg |= DCFG_NZLSOHSK;
dwc2->dcfg |= DCFG_NZLSOHSK;
set_speed(rhport, TUD_OPT_HIGH_SPEED ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL);
// Enable internal USB transceiver, unless using HS core (port 1) with external PHY.
if (!(rhport == 1 && (CFG_TUSB_RHPORT1_MODE & OPT_MODE_HIGH_SPEED))) core->gccfg |= GCCFG_PWRDWN;
if (!(rhport == 1 && (CFG_TUSB_RHPORT1_MODE & OPT_MODE_HIGH_SPEED))) dwc2->gccfg |= GCCFG_PWRDWN;
core->gintmsk |= GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_USBSUSPM |
dwc2->gintmsk |= GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_USBSUSPM |
GINTMSK_WUIM | GINTMSK_RXFLVLM;
// Enable global interrupt
core->gahbcfg |= GAHBCFG_GINT;
dwc2->gahbcfg |= GAHBCFG_GINT;
dcd_connect(rhport);
}
@ -417,8 +413,8 @@ void dcd_int_disable (uint8_t rhport)
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
dwc2_core_t * dev = DEVICE_REG(rhport);
dev->dcfg = (dev->dcfg & ~DCFG_DAD_Msk) | (dev_addr << DCFG_DAD_Pos);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2->dcfg = (dwc2->dcfg & ~DCFG_DAD_Msk) | (dev_addr << DCFG_DAD_Pos);
// Response with status after changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
@ -428,34 +424,33 @@ void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
dwc2_core_t * core = CORE_REG(rhport);
dwc2_core_t * dev = DEVICE_REG(rhport);
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
// set remote wakeup
dev->dctl |= DCTL_RWUSIG;
dwc2->dctl |= DCTL_RWUSIG;
// enable SOF to detect bus resume
core->gintsts = GINTSTS_SOF;
core->gintmsk |= GINTMSK_SOFM;
dwc2->gintsts = GINTSTS_SOF;
dwc2->gintmsk |= GINTMSK_SOFM;
// Per specs: remote wakeup signal bit must be clear within 1-15ms
dwc2_remote_wakeup_delay();
dev->dctl &= ~DCTL_RWUSIG;
dwc2->dctl &= ~DCTL_RWUSIG;
}
void dcd_connect(uint8_t rhport)
{
(void) rhport;
dwc2_core_t * dev = DEVICE_REG(rhport);
dev->dctl &= ~DCTL_SDIS;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2->dctl &= ~DCTL_SDIS;
}
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
dwc2_core_t * dev = DEVICE_REG(rhport);
dev->dctl |= DCTL_SDIS;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2->dctl |= DCTL_SDIS;
}
@ -467,8 +462,7 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
dwc2_core_t * core = CORE_REG(rhport);
dwc2_core_t * dev = DEVICE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2_epout_t * out_ep = EPOUT_REG(rhport);
dwc2_epin_t * in_ep = EPIN_REG(rhport);
@ -489,12 +483,12 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
uint16_t const sz = calc_rx_ff_size(4*fifo_size);
// If size_rx needs to be extended check if possible and if so enlarge it
if (core->grxfsiz < sz)
if (dwc2->grxfsiz < sz)
{
TU_ASSERT(sz + _allocated_fifo_words_tx <= DWC2_EP_FIFO_SIZE/4);
// Enlarge RX FIFO
core->grxfsiz = sz;
dwc2->grxfsiz = sz;
}
out_ep[epnum].DOEPCTL |= (1 << DOEPCTL_USBAEP_Pos) |
@ -502,7 +496,7 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DOEPCTL_SD0PID_SEVNFRM : 0) |
(xfer->max_size << DOEPCTL_MPSIZ_Pos);
dev->daintmsk |= (1 << (DAINTMSK_OEPM_Pos + epnum));
dwc2->daintmsk |= (1 << (DAINTMSK_OEPM_Pos + epnum));
}
else
{
@ -528,7 +522,7 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
// Check if free space is available
TU_ASSERT(_allocated_fifo_words_tx + fifo_size + core->grxfsiz <= DWC2_EP_FIFO_SIZE/4);
TU_ASSERT(_allocated_fifo_words_tx + fifo_size + dwc2->grxfsiz <= DWC2_EP_FIFO_SIZE/4);
_allocated_fifo_words_tx += fifo_size;
@ -536,7 +530,7 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
// DIEPTXF starts at FIFO #1.
// Both TXFD and TXSA are in unit of 32-bit words.
core->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
in_ep[epnum].DIEPCTL |= (1 << DIEPCTL_USBAEP_Pos) |
(epnum << DIEPCTL_TXFNUM_Pos) |
@ -544,7 +538,7 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DIEPCTL_SD0PID_SEVNFRM : 0) |
(xfer->max_size << DIEPCTL_MPSIZ_Pos);
dev->daintmsk |= (1 << (DAINTMSK_IEPM_Pos + epnum));
dwc2->daintmsk |= (1 << (DAINTMSK_IEPM_Pos + epnum));
}
return true;
@ -555,13 +549,12 @@ void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// dwc2_core_t * core = CORE_REG(rhport);
dwc2_core_t * dev = DEVICE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2_epout_t * out_ep = EPOUT_REG(rhport);
dwc2_epin_t * in_ep = EPIN_REG(rhport);
// Disable non-control interrupt
dev->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);
dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);
for(uint8_t n = 1; n < DWC2_EP_MAX; n++)
{
@ -642,8 +635,7 @@ static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
{
(void) rhport;
dwc2_core_t * core = CORE_REG(rhport);
dwc2_core_t * dev = DEVICE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2_epout_t * out_ep = EPOUT_REG(rhport);
dwc2_epin_t * in_ep = EPIN_REG(rhport);
@ -671,9 +663,9 @@ static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
}
// Flush the FIFO, and wait until we have confirmed it cleared.
core->grstctl |= (epnum << GRSTCTL_TXFNUM_Pos);
core->grstctl |= GRSTCTL_TXFFLSH;
while ( (core->grstctl & GRSTCTL_TXFFLSH_Msk) != 0 ) {}
dwc2->grstctl |= (epnum << GRSTCTL_TXFNUM_Pos);
dwc2->grstctl |= GRSTCTL_TXFFLSH;
while ( (dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) != 0 ) {}
}
else
{
@ -688,8 +680,8 @@ static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
// Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
// anyway, and it can't be cleared by user code. If this while loop never
// finishes, we have bigger problems than just the stack.
dev->dctl |= DCTL_SGONAK;
while ( (core->gintsts & GINTSTS_BOUTNAKEFF_Msk) == 0 ) {}
dwc2->dctl |= DCTL_SGONAK;
while ( (dwc2->gintsts & GINTSTS_BOUTNAKEFF_Msk) == 0 ) {}
// Ditto here- disable the endpoint.
out_ep[epnum].DOEPCTL |= DOEPCTL_EPDIS | (stall ? DOEPCTL_STALL : 0);
@ -698,7 +690,7 @@ static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
out_ep[epnum].DOEPINT = DOEPINT_EPDISD;
// Allow other OUT endpoints to keep receiving.
dev->dctl |= DCTL_CGONAK;
dwc2->dctl |= DCTL_CGONAK;
}
}
}
@ -708,7 +700,7 @@ static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
*/
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
dwc2_core_t * core = CORE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
@ -720,8 +712,8 @@ void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
if (dir == TUSB_DIR_IN)
{
uint16_t const fifo_size = (core->dieptxf[epnum - 1] & DIEPTXF_INEPTXFD_Msk) >> DIEPTXF_INEPTXFD_Pos;
uint16_t const fifo_start = (core->dieptxf[epnum - 1] & DIEPTXF_INEPTXSA_Msk) >> DIEPTXF_INEPTXSA_Pos;
uint16_t const fifo_size = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXFD_Msk) >> DIEPTXF_INEPTXFD_Pos;
uint16_t const fifo_start = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXSA_Msk) >> DIEPTXF_INEPTXSA_Pos;
// For now only the last opened endpoint can be closed without fuss.
TU_ASSERT(fifo_start == DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx,);
_allocated_fifo_words_tx -= fifo_size;
@ -832,11 +824,11 @@ static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t * src, u
}
static void handle_rxflvl_ints(uint8_t rhport, dwc2_epout_t * out_ep) {
dwc2_core_t * core = CORE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
volatile uint32_t * rx_fifo = FIFO_BASE(rhport, 0);
// Pop control word off FIFO
uint32_t ctl_word = core->grxstsp;
uint32_t ctl_word = dwc2->grxstsp;
uint8_t pktsts = (ctl_word & GRXSTSP_PKTSTS_Msk) >> GRXSTSP_PKTSTS_Pos;
uint8_t epnum = (ctl_word & GRXSTSP_EPNUM_Msk) >> GRXSTSP_EPNUM_Pos;
uint16_t bcnt = (ctl_word & GRXSTSP_BCNT_Msk) >> GRXSTSP_BCNT_Pos;
@ -896,7 +888,7 @@ static void handle_rxflvl_ints(uint8_t rhport, dwc2_epout_t * out_ep) {
}
}
static void handle_epout_ints (uint8_t rhport, dwc2_core_t *dev, dwc2_epout_t *out_ep)
static void handle_epout_ints (uint8_t rhport, dwc2_regs_t *dwc2, dwc2_epout_t *out_ep)
{
// DAINT for a given EP clears when DOEPINTx is cleared.
// OEPINT will be cleared when DAINT's out bits are cleared.
@ -904,7 +896,7 @@ static void handle_epout_ints (uint8_t rhport, dwc2_core_t *dev, dwc2_epout_t *o
{
xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);
if ( dev->daint & (1 << (DAINT_OEPINT_Pos + n)) )
if ( dwc2->daint & (1 << (DAINT_OEPINT_Pos + n)) )
{
// SETUP packet Setup Phase done.
if ( out_ep[n].DOEPINT & DOEPINT_STUP )
@ -933,14 +925,14 @@ static void handle_epout_ints (uint8_t rhport, dwc2_core_t *dev, dwc2_epout_t *o
}
}
static void handle_epin_ints(uint8_t rhport, dwc2_core_t * dev, dwc2_epin_t * in_ep) {
static void handle_epin_ints(uint8_t rhport, dwc2_regs_t * dwc2, dwc2_epin_t * in_ep) {
// DAINT for a given EP clears when DIEPINTx is cleared.
// IEPINT will be cleared when DAINT's out bits are cleared.
for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ )
{
xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_IN);
if ( dev->daint & (1 << (DAINT_IEPINT_Pos + n)) )
if ( dwc2->daint & (1 << (DAINT_IEPINT_Pos + n)) )
{
// IN XFER complete (entire xfer).
if ( in_ep[n].DIEPINT & DIEPINT_XFRC )
@ -957,7 +949,7 @@ static void handle_epin_ints(uint8_t rhport, dwc2_core_t * dev, dwc2_epin_t * in
}
// XFER FIFO empty
if ( (in_ep[n].DIEPINT & DIEPINT_TXFE) && (dev->diepempmsk & (1 << n)) )
if ( (in_ep[n].DIEPINT & DIEPINT_TXFE) && (dwc2->diepempmsk & (1 << n)) )
{
// DIEPINT's TXFE bit is read-only, software cannot clear it.
// It will only be cleared by hardware when written bytes is more than
@ -996,7 +988,7 @@ static void handle_epin_ints(uint8_t rhport, dwc2_core_t * dev, dwc2_epin_t * in
// Turn off TXFE if all bytes are written.
if (((in_ep[n].DIEPTSIZ & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos) == 0)
{
dev->diepempmsk &= ~(1 << n);
dwc2->diepempmsk &= ~(1 << n);
}
}
}
@ -1005,17 +997,16 @@ static void handle_epin_ints(uint8_t rhport, dwc2_core_t * dev, dwc2_epin_t * in
void dcd_int_handler(uint8_t rhport)
{
dwc2_core_t * core = CORE_REG(rhport);
dwc2_core_t * dev = DEVICE_REG(rhport);
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2_epout_t * out_ep = EPOUT_REG(rhport);
dwc2_epin_t * in_ep = EPIN_REG(rhport);
uint32_t const int_status = core->gintsts & core->gintmsk;
uint32_t const int_status = dwc2->gintsts & dwc2->gintmsk;
if(int_status & GINTSTS_USBRST)
{
// USBRST is start of reset.
core->gintsts = GINTSTS_USBRST;
dwc2->gintsts = GINTSTS_USBRST;
bus_reset(rhport);
}
@ -1023,23 +1014,23 @@ void dcd_int_handler(uint8_t rhport)
{
// ENUMDNE is the end of reset where speed of the link is detected
core->gintsts = GINTSTS_ENUMDNE;
dwc2->gintsts = GINTSTS_ENUMDNE;
tusb_speed_t const speed = get_speed(rhport);
dwc2_set_turnaround(core, speed);
dwc2_set_turnaround(dwc2, speed);
dcd_event_bus_reset(rhport, speed, true);
}
if(int_status & GINTSTS_USBSUSP)
{
core->gintsts = GINTSTS_USBSUSP;
dwc2->gintsts = GINTSTS_USBSUSP;
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
if(int_status & GINTSTS_WKUINT)
{
core->gintsts = GINTSTS_WKUINT;
dwc2->gintsts = GINTSTS_WKUINT;
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
@ -1049,22 +1040,22 @@ void dcd_int_handler(uint8_t rhport)
if(int_status & GINTSTS_OTGINT)
{
// OTG INT bit is read-only
uint32_t const otg_int = core->gotgint;
uint32_t const otg_int = dwc2->gotgint;
if (otg_int & GOTGINT_SEDET)
{
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
core->gotgint = otg_int;
dwc2->gotgint = otg_int;
}
if(int_status & GINTSTS_SOF)
{
core->gotgint = GINTSTS_SOF;
dwc2->gotgint = GINTSTS_SOF;
// Disable SOF interrupt since currently only used for remote wakeup detection
core->gintmsk &= ~GINTMSK_SOFM;
dwc2->gintmsk &= ~GINTMSK_SOFM;
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
@ -1075,13 +1066,13 @@ void dcd_int_handler(uint8_t rhport)
// RXFLVL bit is read-only
// Mask out RXFLVL while reading data from FIFO
core->gintmsk &= ~GINTMSK_RXFLVLM;
dwc2->gintmsk &= ~GINTMSK_RXFLVLM;
// Loop until all available packets were handled
do
{
handle_rxflvl_ints(rhport, out_ep);
} while(core->gotgint & GINTSTS_RXFLVL);
} while(dwc2->gotgint & GINTSTS_RXFLVL);
// Manage RX FIFO size
if (_out_ep_closed)
@ -1092,21 +1083,21 @@ void dcd_int_handler(uint8_t rhport)
_out_ep_closed = false;
}
core->gintmsk |= GINTMSK_RXFLVLM;
dwc2->gintmsk |= GINTMSK_RXFLVLM;
}
// OUT endpoint interrupt handling.
if(int_status & GINTSTS_OEPINT)
{
// OEPINT is read-only
handle_epout_ints(rhport, dev, out_ep);
handle_epout_ints(rhport, dwc2, out_ep);
}
// IN endpoint interrupt handling.
if(int_status & GINTSTS_IEPINT)
{
// IEPINT bit read-only
handle_epin_ints(rhport, dev, in_ep);
handle_epin_ints(rhport, dwc2, in_ep);
}
// // Check for Incomplete isochronous IN transfer

View File

@ -67,7 +67,7 @@ static inline void dwc2_remote_wakeup_delay(void)
vTaskDelay(pdMS_TO_TICKS(1));
}
static inline void dwc2_set_turnaround(dwc2_core_t * core, tusb_speed_t speed)
static inline void dwc2_set_turnaround(dwc2_regs_t * core, tusb_speed_t speed)
{
(void) core;
(void) speed;

View File

@ -76,7 +76,7 @@ static inline void dwc2_remote_wakeup_delay(void)
while ( count-- ) __asm volatile ("nop");
}
static inline void dwc2_set_turnaround(dwc2_core_t * core, tusb_speed_t speed)
static inline void dwc2_set_turnaround(dwc2_regs_t * core, tusb_speed_t speed)
{
(void) core;
(void) speed;

View File

@ -113,7 +113,7 @@ static inline void dwc2_remote_wakeup_delay(void)
}
// Set turn-around timeout according to link speed
static inline void dwc2_set_turnaround(dwc2_core_t * core, tusb_speed_t speed)
static inline void dwc2_set_turnaround(dwc2_regs_t * core, tusb_speed_t speed)
{
core->gusbcfg &= ~GUSBCFG_TRDT;

View File

@ -134,11 +134,11 @@ union {
//------------- Device OUT Endpoint -------------//
} dwc2_core_t;
} dwc2_regs_t;
TU_VERIFY_STATIC(offsetof(dwc2_core_t, hcfg ) == 0x0400, "incorrect size");
TU_VERIFY_STATIC(offsetof(dwc2_core_t, channel) == 0x0500, "incorrect size");
TU_VERIFY_STATIC(offsetof(dwc2_core_t, dcfg ) == 0x0800, "incorrect size");
TU_VERIFY_STATIC(offsetof(dwc2_regs_t, hcfg ) == 0x0400, "incorrect size");
TU_VERIFY_STATIC(offsetof(dwc2_regs_t, channel) == 0x0500, "incorrect size");
TU_VERIFY_STATIC(offsetof(dwc2_regs_t, dcfg ) == 0x0800, "incorrect size");
// Endpoint IN
typedef struct