updating lib *.c

This commit is contained in:
hathach 2013-09-12 14:26:20 +07:00
parent 239864c6cf
commit 8a8537d7e5
12 changed files with 1163 additions and 16 deletions

View File

@ -190,7 +190,7 @@ void data_out(unsigned char i, SSP_DATA_SETUP_Type *xferConfig) //Data Output Se
//CS = 0; //Chip Select = Active
GPIO_ClearValue(3,(1<<12));
//A0 = 1 = Data
GPIO_SetValue(4,(1<<10));
//GPIO_SetValue(4,(1<<10));
//delay(1);
Tx_Buf[0] = i;
@ -206,7 +206,7 @@ void comm_out(unsigned char j, SSP_DATA_SETUP_Type *xferConfig) //Command Output
{
//unsigned int n;
//CS = 0; //Chip Select = Active
GPIO_ClearValue(3,(1<<12));
//GPIO_ClearValue(3,(1<<12));
//A0 = 0;
GPIO_ClearValue(4,(1<<10));
//delay(1);

View File

@ -280,6 +280,13 @@ void debug_frmwrk_init_clk(uint32_t Clock_Speed)
*/
scu_pinmux(0xC ,13 , MD_PDN, FUNC2); // PC.13 : UART1_TXD
scu_pinmux(0xC ,14 , MD_PLN|MD_EZI|MD_ZI, FUNC2); // PC.14 : UART1_RXD
#elif (USED_UART_DEBUG_PORT==3)
/*
* Initialize UART3 pin connect
*/
scu_pinmux(0x2 ,3 , MD_PUP, FUNC2); // P2.3 : UART3_TXD
scu_pinmux(0x2 ,4 , MD_PLN|MD_EZI|MD_ZI, FUNC2); // P2.4 : UART3_RXD
#endif
/* Initialize UART Configuration parameter structure to default state:

View File

@ -107,6 +107,10 @@ void ADC_DeInit(LPC_ADCn_Type *ADCx)
{
CHECK_PARAM(PARAM_ADCx(ADCx));
if (ADCx->CR & ADC_CR_START_MASK) //need to stop START bits before DeInit
ADCx->CR &= ~ADC_CR_START_MASK;
// Clear SEL bits
ADCx->CR &= ~0xFF;
// Clear PDN bit
ADCx->CR &= ~ADC_CR_PDN;
// Turn on power and clock
@ -251,6 +255,8 @@ void ADC_ChannelCmd (LPC_ADCn_Type *ADCx, uint8_t Channel, FunctionalState NewSt
if (NewState == ENABLE) {
ADCx->CR |= ADC_CR_CH_SEL(Channel);
} else {
if (ADCx->CR & ADC_CR_START_MASK) //need to stop START bits before disable channel
ADCx->CR &= ~ADC_CR_START_MASK;
ADCx->CR &= ~ADC_CR_CH_SEL(Channel);
}
}

View File

@ -203,7 +203,6 @@ uint32_t CGU_Init(void){
CGU_EnableEntity(CGU_CLKSRC_PLL1, ENABLE);
CGU_EntityConnect(CGU_CLKSRC_PLL1, CGU_BASE_M4);
CGU_UpdateClock();
SystemCoreClock = 6*12000000;
return 0;
}
@ -401,7 +400,7 @@ void CGU_UpdateClock(void){
CGU_ClockSourceFrequency[CGU_CLKSRC_32KHZ_OSC] = 0;
/*PLL0*/
/* PLL1 */
if(ISBITCLR(LPC_CGU->PLL1_CTRL,0) /* Enabled */ /* EA ANDLI: Original code tested bit 1 which is BYPASS, not PD */
if(ISBITCLR(LPC_CGU->PLL1_CTRL,1) /* Enabled */
&& (LPC_CGU->PLL1_STAT&1)){ /* Locked? */
ClkSrc = (LPC_CGU->PLL1_CTRL & CGU_CTRL_SRC_MASK)>>24;
CGU_ClockSourceFrequency[CGU_CLKSRC_PLL1] = CGU_ClockSourceFrequency[ClkSrc] *

View File

@ -377,7 +377,7 @@ Status I2S_FreqConfig(LPC_I2Sn_Type *I2Sx, uint32_t Freq, uint8_t TRMode) {
divider = ((uint64_t)(Freq *( bitrate+1) * 2)<<16) / i2sPclk;
/* find N that make x/y <= 1 -> divider <= 2^16 */
for(N=64;N>=0;N--){
for(N=64;N>0;N--){
if((divider*N) < (1<<16)) break;
}
@ -407,11 +407,11 @@ Status I2S_FreqConfig(LPC_I2Sn_Type *I2Sx, uint32_t Freq, uint8_t TRMode) {
if(x_divide == 0) x_divide = 1;
if (TRMode == I2S_TX_MODE)// Transmitter
{
I2Sx->TXBITRATE = N;
I2Sx->TXBITRATE = N - 1;
I2Sx->TXRATE = y_divide | (x_divide << 8);
} else //Receiver
{
I2Sx->RXBITRATE = N;
I2Sx->RXBITRATE = N - 1;
I2Sx->RXRATE = y_divide | (x_divide << 8);
}
return SUCCESS;

View File

@ -109,11 +109,11 @@ void LCD_Init(LPC_LCD_Type *LCDx, LCD_CFG_Type *LCD_ConfigStruct){
break;
case LCD_TFT:
default:
regValue |= 1<<26 | (((LCD_ConfigStruct->screen_width-1) & 0x3FF) << 16);
regValue |= /* 1<<26 |*/ (((LCD_ConfigStruct->screen_width-1) & 0x3FF) << 16);
}
/* panel clock divisor */
pcd = 0; // TODO: should be calculated from LCDDCLK
pcd = 6; // TODO: should be calculated from LCDDCLK
pcd &= 0x3FF;
regValue |= ((pcd>>5)<<27) | ((pcd)&0x1F);

View File

@ -292,6 +292,7 @@ void QEI_SetTimerReload(uint8_t qeiId, QEI_RELOADCFG_Type *QEIReloadStruct)
#if 1
// pclk = CGU_GetPCLKFrequency(CGU_PERIPHERAL_M3CORE);
pclk = CGU_GetPCLKFrequency(CGU_PERIPHERAL_M4CORE);
pclk = (pclk /(1000000/QEIReloadStruct->ReloadValue)) - 1;
pQei->LOAD = (uint32_t)pclk;

View File

@ -209,7 +209,7 @@ void RTC_CntIncrIntConfig (LPC_RTC_Type *RTCx, uint32_t CntIncrIntType, \
{
RTCx->CIIR |= tem;
}
//while((RTCx->CIIR & tem)== 0);
while((RTCx->CIIR & tem)== 0);
}
else
{
@ -217,7 +217,7 @@ void RTC_CntIncrIntConfig (LPC_RTC_Type *RTCx, uint32_t CntIncrIntType, \
{
RTCx->CIIR &= (~tem) & RTC_CIIR_BITMASK;
}
//while(RTCx->CIIR & tem);
while(RTCx->CIIR & tem);
}
}
@ -284,7 +284,7 @@ void RTC_AlarmIntConfig (LPC_RTC_Type *RTCx, uint32_t AlarmTimeType, \
{
RTCx->AMR &= (~tem) & RTC_AMR_BITMASK;
}
//while(RTCx->AMR & tem);
while(RTCx->AMR & tem);
}
else
{
@ -292,7 +292,7 @@ void RTC_AlarmIntConfig (LPC_RTC_Type *RTCx, uint32_t AlarmTimeType, \
{
RTCx->AMR |= (tem);
}
//while((RTCx->AMR & tem)== 0);
while((RTCx->AMR & tem)== 0);
}
}
@ -699,7 +699,7 @@ void RTC_CalibConfig(LPC_RTC_Type *RTCx, uint32_t CalibValue, uint8_t CalibDir)
CHECK_PARAM(PARAM_RTC_CALIB_DIR(CalibDir));
CHECK_PARAM(CalibValue < RTC_CALIBRATION_MAX);
RTCx->CALIBRATION = ((CalibValue - 1) & RTC_CALIBRATION_CALVAL_MASK) \
RTCx->CALIBRATION = (CalibValue & RTC_CALIBRATION_CALVAL_MASK) \
| ((CalibDir == RTC_CALIB_DIR_BACKWARD) ? RTC_CALIBRATION_LIBDIR : 0);
}

View File

@ -39,21 +39,60 @@
#include "lpc_types.h"
#include "lpc43xx_scu.h"
/* Pin modes
* =========
* The EPUN and EPD bits in the SFS registers allow the selection of weak on-chip
* pull-up or pull-down resistors with a typical value of 50 kOhm for each pin or the
* selection of the repeater mode.
* The possible on-chip resistor configurations are pull-up enabled, pull-down enabled, or no
* pull-up/pull-down. The default value is pull-up enabled.
*
* The repeater mode enables the pull-up resistor if the pin is at a logic HIGH and enables
* the pull-down resistor if the pin is at a logic LOW. This causes the pin to retain its last
* known state if it is configured as an input and is not driven externally. Repeater mode may
* typically be used to prevent a pin from floating (and potentially using significant power if it
* floats to an indeterminate state) if it is temporarily not driven.
* Repeater mode is enabled when both pull-up and pull-down are enabled.
*
* To be able to receive a digital signal, the input buffer must be enabled through bit EZI in
* the pin configuration registers. By default, the input buffer is disabled.
* For pads that support both a digital and an analog function, the input buffer must be
* disabled before enabling the analog function.
*
* All digital pins support a programmable glitch filter (bit ZIF), which can be switched on or
* off. By default, the glitch filter is on. The glitch filter should be disabled for
* clocking signals with frequencies higher than 30 MHz.
*
* Normal-drive and high-speed pins support a programmable slew rate (bit EHS) to select
* between lower noise and low speed or higher noise and high speed . The typical
* frequencies supported are 50 MHz/80 MHz for normal-drive pins and 75 MHz/180 MHz for
* high-speed pins.
*/
/*********************************************************************//**
* @brief Configure pin function
* @param[in] port Port number, should be: 0..15
* @param[in] pin Pin number, should be: 0..31
* @param[in] pin Pin number, should be: 0..31
* @param[in] mode Pin mode, should be:
* - MD_PUP :Pull-up enabled
* - MD_BUK :Plain input
* - MD_PLN :Repeater mode
* - MD_PDN :Pull-down enabled
* - MD_EHS :Slew rate
* - MD_EZI :Input buffer enable
* - MD_ZI :Glitch filter enabled
* - MD_EHD0 :High drive 8 mA
* - MD_EHD1 :High drive 14 mA
* - MD_EHD2 :High drive 20 mA
* @param[in] func Function mode, should be:
* - FUNC0 :Function 0
* - FUNC1 :Function 1
* - FUNC2 :Function 2
* - FUNC3 :Function 3
* - FUNC4 :Function 4
* - FUNC5 :Function 5
* - FUNC6 :Function 6
* - FUNC7 :Function 7
* @return None
**********************************************************************/
void scu_pinmux(uint8_t port, uint8_t pin, uint8_t mode, uint8_t func)

View File

@ -0,0 +1,401 @@
/**********************************************************************
* $Id$ lpc43xx_sdif.c 2012-Aug-15
*//**
* @file lpc43xx_sdif.c
* @brief LPC43xx SD interface driver
* @version 1.0
* @date 15. Aug. 2012
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup SDIF
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "LPC43xx.h" /* LPC43xx definitions */
#include "system_LPC43xx.h"
#include "lpc_sdmmc.h"
#include "lpc43xx_sdif.h"
#include "lpc43xx_cgu.h"
/* If this source file built with example, the lpc43xx FW library configuration
* file in each example directory ("lpc43xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc43xx_libcfg.h"
#else
#include "lpc43xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _SDIF
/* Local data structure for the SDIF driver */
struct _sdif_device {
MCI_IRQ_CB_FUNC_T irq_cb;
LPC_SDMMC_DMA_Type mci_dma_dd[1 + (0x10000 / MCI_DMADES1_MAXTR)];
uint32_t sdio_clk_rate;
uint32_t sdif_slot_clk_rate;
int32_t clock_enabled;
};
static struct _sdif_device sdif_dev;
/*********************************************************************//**
* @brief Enables the SDIO controller clock
* @param[in] None
* @return None
**********************************************************************/
static void sdif_enable_clock(void)
{
if (!sdif_dev.clock_enabled)
{
/* Enable SD MMC clock */
CGU_ConfigPWR(CGU_PERIPHERAL_SDIO, ENABLE);
sdif_dev.clock_enabled = 1;
}
}
/*********************************************************************//**
* @brief Disables the SDIO controller clock
* @param[in] None
* @return None
**********************************************************************/
static void sdif_disable_clock(void)
{
if (!sdif_dev.clock_enabled)
{
/* Disable SD MMC clock */
CGU_ConfigPWR(CGU_PERIPHERAL_SDIO, (FunctionalState)FALSE);
sdif_dev.clock_enabled = 0;
}
}
/* Public Functions ----------------------------------------------------------- */
/** @defgroup SDIF_Public_Functions
* @ingroup SDIF
* @{
*/
/*********************************************************************//**
* @brief Setup DMA descriptors
* @param[in] addr Address of buffer (source or destination)
* @param[in] size size of buffer in bytes (64K max)
* @return None
**********************************************************************/
void sdif_dma_setup(uint32_t addr, uint32_t size)
{
int i = 0;
uint32_t ctrl, maxs;
/* Reset DMA */
LPC_SDMMC->CTRL |= MCI_CTRL_DMA_RESET | MCI_CTRL_FIFO_RESET;
while (LPC_SDMMC->CTRL & MCI_CTRL_DMA_RESET);
/* Build a descriptor list using the chained DMA method */
while (size > 0)
{
/* Limit size of the transfer to maximum buffer size */
maxs = size;
if (maxs > MCI_DMADES1_MAXTR)
maxs = MCI_DMADES1_MAXTR;
size -= maxs;
/* Set buffer size */
sdif_dev.mci_dma_dd[i].des1 = MCI_DMADES1_BS1(maxs);
/* Setup buffer address (chained) */
sdif_dev.mci_dma_dd[i].des2 = addr + (i * MCI_DMADES1_MAXTR);
/* Setup basic control */
ctrl = MCI_DMADES0_OWN | MCI_DMADES0_CH;
if (i == 0)
ctrl |= MCI_DMADES0_FS; /* First DMA buffer */
/* No more data? Then this is the last descriptor */
if (!size)
ctrl |= MCI_DMADES0_LD;
else
ctrl |= MCI_DMADES0_DIC;
/* Another descriptor is needed */
sdif_dev.mci_dma_dd[i].des3 = (uint32_t) &sdif_dev.mci_dma_dd[i + 1];
sdif_dev.mci_dma_dd[i].des0 = ctrl;
i++;
}
/* Set DMA derscriptor base address */
LPC_SDMMC->DBADDR = (uint32_t) &sdif_dev.mci_dma_dd[0];
}
/*********************************************************************//**
* @brief Function to send command to Card interface unit (CIU)
* @param[in] cmd Command with all flags set
* @param[in] arg Argument for the command
* @return TRUE on times-out, otherwise FALSE
**********************************************************************/
int32_t sdif_send_cmd(uint32_t cmd, uint32_t arg)
{
volatile int32_t tmo = 50;
volatile int delay;
/* set command arg reg*/
LPC_SDMMC->CMDARG = arg;
LPC_SDMMC->CMD = MCI_CMD_START | cmd;
/* poll untill command is accepted by the CIU */
while (--tmo && (LPC_SDMMC->CMD & MCI_CMD_START))
{
if (tmo & 1)
delay = 50;
else
delay = 18000;
while (--delay > 1);
}
return (tmo < 1) ? 1 : 0;
}
/*********************************************************************//**
* @brief Function to retrieve command response
* @param[in] pdev Pointer to card info structure
* @return None
**********************************************************************/
void sdif_get_response(uint32_t *resp)
{
/* on this chip response is not a fifo so read all 4 regs */
resp[0] = LPC_SDMMC->RESP0;
resp[1] = LPC_SDMMC->RESP1;
resp[2] = LPC_SDMMC->RESP2;
resp[3] = LPC_SDMMC->RESP3;
}
/*********************************************************************//**
* @brief Function to set speed of the clock going to card
* @param[in] speed Desired clock speed to the card
* @return None
**********************************************************************/
void sdif_set_clock(uint32_t speed)
{
/* compute SD/MMC clock dividers */
uint32_t div;
/* Exit if the clock is already set at the passed speed */
if (sdif_dev.sdif_slot_clk_rate == speed)
return;
div = ((sdif_dev.sdio_clk_rate / speed) + 2) >> 1;
sdif_dev.sdif_slot_clk_rate = speed;
if ((div == LPC_SDMMC->CLKDIV) && LPC_SDMMC->CLKENA)
return; /* Closest speed is already set */
/* disable clock */
LPC_SDMMC->CLKENA = 0;
/* User divider 0 */
LPC_SDMMC->CLKSRC = MCI_CLKSRC_CLKDIV0;
/* inform CIU */
sdif_send_cmd(MCI_CMD_UPD_CLK | MCI_CMD_PRV_DAT_WAIT, 0);
/* set divider 0 to desired value */
LPC_SDMMC->CLKDIV = MCI_CLOCK_DIVIDER(0, div);
/* inform CIU */
sdif_send_cmd(MCI_CMD_UPD_CLK | MCI_CMD_PRV_DAT_WAIT, 0);
/* enable clock */
LPC_SDMMC->CLKENA = MCI_CLKEN_ENABLE;
/* inform CIU */
sdif_send_cmd(MCI_CMD_UPD_CLK | MCI_CMD_PRV_DAT_WAIT, 0);
}
/*********************************************************************//**
* @brief Detect if an SD card is inserted
* @param[in] None
* @return Returns 0 if a card is detected, otherwise 1
**********************************************************************/
int32_t sdif_card_ndetect(void)
{
/* No card = high state in regsiter */
if (LPC_SDMMC->CDETECT & 1)
return 0;
return 1;
}
/*********************************************************************//**
* @brief Detect if write protect is enabled
* @param[in] None
* @return Returns 1 if card is write protected, otherwise 0
**********************************************************************/
int32_t sdif_card_wp_on(void)
{
if (LPC_SDMMC->WRTPRT & 1)
return 1;
return 0;
}
/*********************************************************************//**
* @brief Enable or disable slot power
* @param[in] enable !0 to enable, or 0 to disable
* @return None
**********************************************************************/
void sdif_power_onoff(int32_t enable)
{
if (enable)
LPC_SDMMC->PWREN = 1;
else
LPC_SDMMC->PWREN = 0;
}
/*********************************************************************//**
* @brief Reset card in slot
* @param[in] reset Sets SD_RST to passed state
* @return None
**********************************************************************/
void sdif_reset(int32_t reset)
{
if (reset)
LPC_SDMMC->RST_N = 1;
else
LPC_SDMMC->RST_N = 0;
}
/*********************************************************************//**
* @brief Set block size for transfer
* @param[in] bytes Lock size in bytes
* @return None
**********************************************************************/
void sdif_set_blksize(uint32_t bytes)
{
LPC_SDMMC->BLKSIZ = bytes;
}
/*********************************************************************//**
* @brief Enter or exit low power mode (disables clocking)
* @param[in] lpmode !0 to enable low power mode, 0 = exit
* @return None
**********************************************************************/
void sdif_set_lowpower_mode(int32_t lpmode)
{
/* Once in low power mode, no SDIF functions should ever be
called, as it can hang the chip. Always exit low power mode
prior to resuming SDIF functions */
if (lpmode)
sdif_disable_clock();
else
sdif_enable_clock();
}
/*********************************************************************//**
* @brief Initializes the MCI card controller
* @param[in] waitfunc Pointer to wait function to be used during for poll command status
* @param[in] irq_callback Pointer to IRQ callback function
* @return None
**********************************************************************/
void sdif_init(uint32_t sdio_clock, MCI_IRQ_CB_FUNC_T irq_callback)
{
volatile uint32_t i;
sdif_dev.sdio_clk_rate = sdio_clock;
sdif_dev.irq_cb = irq_callback;
/* enable SD/MMC clock */
sdif_enable_clock();
/* Software reset */
LPC_SDMMC->BMOD = MCI_BMOD_SWR;
/* reset all blocks */
LPC_SDMMC->CTRL = MCI_CTRL_RESET | MCI_CTRL_FIFO_RESET |
MCI_CTRL_DMA_RESET;
while (LPC_SDMMC->CTRL &
(MCI_CTRL_RESET | MCI_CTRL_FIFO_RESET | MCI_CTRL_DMA_RESET));
/* Internal DMA setup for control register */
LPC_SDMMC->CTRL = MCI_CTRL_USE_INT_DMAC | MCI_CTRL_INT_ENABLE;
LPC_SDMMC->INTMASK = 0;
/* Clear the interrupts for the host controller */
LPC_SDMMC->RINTSTS = 0xFFFFFFFF;
/* Put in max timeout */
LPC_SDMMC->TMOUT = 0xFFFFFFFF;
/* FIFO threshold settings for DMA, DMA burst of 4,
FIFO watermark at 16 */
LPC_SDMMC->FIFOTH = MCI_FIFOTH_DMA_MTS_4 |
MCI_FIFOTH_RX_WM((SD_FIFO_SZ / 2) - 1) |
MCI_FIFOTH_TX_WM(SD_FIFO_SZ / 2);
/* Enable internal DMA, burst size of 4, fixed burst */
LPC_SDMMC->BMOD = MCI_BMOD_DE | MCI_BMOD_PBL4 | MCI_BMOD_DSL(4);
/* disable clock to CIU (needs latch) */
LPC_SDMMC->CLKENA = 0;
LPC_SDMMC->CLKSRC = 0;
}
/*********************************************************************//**
* @brief Close the MCI
* @param[in] None
* @return None
**********************************************************************/
void sdif_deinit(void)
{
/* clear mmc structure*/
sdif_disable_clock();
}
/*********************************************************************//**
* @brief SDIO controller interrupt handler
* @param[in] None
* @return None
**********************************************************************/
void SDIO_IRQHandler(void)
{
/* All SD based register handling is done in the callback
function. The SDIO interrupt is not enabled as part of this
driver and needs to be enabled/disabled in the callbacks or
application as needed. This is to allow flexibility with IRQ
handling for applicaitons and RTOSes. */
sdif_dev.irq_cb(LPC_SDMMC->RINTSTS);
}
/**
* @}
*/
#endif /* _SDIF */
/**
* @}
*/

View File

@ -0,0 +1,694 @@
/**********************************************************************
* $Id$ lpc43xx_sdmmc.c 2012-Aug-15
*//**
* @file lpc43xx_sdmmc.c
* @brief SD/MMC card access and data driver
* @version 1.0
* @date 15. Aug. 2012
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Example group ----------------------------------------------------------- */
/** @addtogroup SDMMC
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "string.h"
#include "lpc_sdmmc.h"
#include "lpc43xx_sdif.h"
#include "lpc43xx_sdmmc.h"
/* If this source file built with example, the lpc43xx FW library configuration
* file in each example directory ("lpc43xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc43xx_libcfg.h"
#else
#include "lpc43xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _SDMMC
/* Global instance of the current card */
static struct _mci_card_struct *g_card_info;
/* Pointer to event setup functions */
static MCI_EVSETUP_FUNC_T sdmmc_evsetup_cb;
/* Pointer to wait functions */
static MCI_WAIT_CB_FUNC_T sdmmc_wait_cb;
/* Pointer to mS delay functin */
static MCI_MSDELAY_FUNC_T sdmmc_msdelay_cb;
/* Helper definition: all SD error conditions in the status word */
#define SD_INT_ERROR (MCI_INT_RESP_ERR | MCI_INT_RCRC | MCI_INT_DCRC | \
MCI_INT_RTO | MCI_INT_DTO | MCI_INT_HTO | MCI_INT_FRUN | MCI_INT_HLE | \
MCI_INT_SBE | MCI_INT_EBE)
/*********************************************************************//**
* @brief Helper function to get a bit field withing multi-word
* buffer. Used to get fields with-in CSD & EXT-CSD
* structures.
* @param[in] start Starting bit
* @param[in] end Ending bit
* @param[in] data Pointer to data patternf or bit extraction
* @return None
**********************************************************************/
static uint32_t prv_get_bits(int32_t start, int32_t end, uint32_t* data)
{
uint32_t v;
uint32_t i = end >> 5;
uint32_t j = start & 0x1f;
if (i == (start >> 5))
v = (data[i] >> j);
else
v = ((data[i] << (32 - j)) | (data[start >> 5] >> j));
return (v & ((1 << (end - start + 1)) - 1));
}
/*********************************************************************//**
* @brief Function to execute a command
* @param[in] cmd Command with all flags set
* @param[in] arg Argument for the command
* @param[in] wait_status Status bits to poll for command completion
* @return 0 on success, or error code (-1)
**********************************************************************/
static int32_t sdmmc_execute_command(uint32_t cmd, uint32_t arg,
uint32_t wait_status)
{
int32_t step = (cmd & CMD_BIT_APP) ? 2 : 1;
int32_t status = 0;
uint32_t cmd_reg = 0;
if (!wait_status)
wait_status = (cmd & CMD_MASK_RESP) ? MCI_INT_CMD_DONE : MCI_INT_DATA_OVER;
/* Clear the interrupts & FIFOs*/
if (cmd & CMD_BIT_DATA)
{
/* reset all blocks */
LPC_SDMMC->CTRL |= MCI_CTRL_FIFO_RESET;
/* wait till resets clear */
while (LPC_SDMMC->CTRL & MCI_CTRL_FIFO_RESET);
/* Clear interrupt status */
LPC_SDMMC->RINTSTS = 0xFFFFFFFF;
}
/* also check error conditions */
wait_status |= MCI_INT_EBE | MCI_INT_SBE | MCI_INT_HLE |
MCI_INT_RTO | MCI_INT_RCRC | MCI_INT_RESP_ERR;
if (wait_status & MCI_INT_DATA_OVER)
wait_status |= MCI_INT_FRUN | MCI_INT_HTO | MCI_INT_DTO | MCI_INT_DCRC;
while (step)
{
sdif_set_clock((cmd & CMD_BIT_LS) ? SD_MMC_ENUM_CLOCK : g_card_info->speed);
/* Clear the interrupts */
LPC_SDMMC->RINTSTS = 0xFFFFFFFF;
sdmmc_evsetup_cb(wait_status);
switch (step)
{
case 1: /* Execute command */
cmd_reg = ((cmd & CMD_MASK_CMD) >> CMD_SHIFT_CMD) |
((cmd & CMD_BIT_INIT) ? MCI_CMD_INIT : 0) |
((cmd & CMD_BIT_DATA) ? (MCI_CMD_DAT_EXP | MCI_CMD_PRV_DAT_WAIT) : 0) |
(((cmd & CMD_MASK_RESP) == CMD_RESP_R2) ? MCI_CMD_RESP_LONG : 0) |
((cmd & CMD_MASK_RESP) ? MCI_CMD_RESP_EXP : 0) |
((cmd & CMD_BIT_WRITE) ? MCI_CMD_DAT_WR : 0) |
((cmd & CMD_BIT_STREAM) ? MCI_CMD_STRM_MODE : 0) |
((cmd & CMD_BIT_BUSY) ? MCI_CMD_STOP : 0) |
((cmd & CMD_BIT_AUTO_STOP) ? MCI_CMD_SEND_STOP : 0) |
MCI_CMD_START;
/* wait for previos data finsh for select/deselect commands */
if (((cmd & CMD_MASK_CMD) >> CMD_SHIFT_CMD) == MMC_SELECT_CARD)
{
cmd_reg |= MCI_CMD_PRV_DAT_WAIT;
}
/* wait for command to be accepted by CIU */
if (sdif_send_cmd(cmd_reg, arg) == 0)
--step;
break;
case 0:
return 0;
case 2: /* APP prefix */
cmd_reg = MMC_APP_CMD | MCI_CMD_RESP_EXP |
((cmd & CMD_BIT_INIT) ? MCI_CMD_INIT : 0) |
MCI_CMD_START;
if (sdif_send_cmd(cmd_reg, g_card_info->rca << 16) == 0)
--step;
break;
}
/* wait for command response */
status = sdmmc_wait_cb(wait_status);
/* We return an error if there is a timeout, even if we've fetched
a response */
if (status & SD_INT_ERROR)
return status;
if (status & MCI_INT_CMD_DONE)
{
switch (cmd & CMD_MASK_RESP)
{
case 0:
break;
case CMD_RESP_R1:
case CMD_RESP_R3:
sdif_get_response(&g_card_info->response[0]);
break;
case CMD_RESP_R2:
sdif_get_response(&g_card_info->response[0]);
break;
}
}
}
return 0;
}
/*********************************************************************//**
* @brief Checks whether card is acquired properly or not
* @return !0 if card has been acquired, otherwise 0
**********************************************************************/
static int32_t prv_card_acquired(void)
{
return (g_card_info->cid[0] != 0);
}
/*********************************************************************//**
* @brief Function to process the CSD & EXT-CSD of the card
* @param[in] None
* @return None
**********************************************************************/
static void prv_process_csd(void)
{
int32_t status = 0;
int32_t c_size = 0;
int32_t c_size_mult = 0;
int32_t mult = 0;
/* compute block length based on CSD response */
g_card_info->block_len = 1 << prv_get_bits(80, 83, g_card_info->csd);
if ((g_card_info->card_type & CARD_TYPE_HC) &&
(g_card_info->card_type & CARD_TYPE_SD))
{
/* See section 5.3.3 CSD Register (CSD Version 2.0) of SD2.0 spec
an explanation for the calculation of these values */
c_size = prv_get_bits(48, 63, (uint32_t*)g_card_info->csd) + 1;
g_card_info->blocknr = c_size << 10; /* 512 byte blocks */
}
else
{
/* See section 5.3 of the 4.1 revision of the MMC specs for
an explanation for the calculation of these values */
c_size = prv_get_bits(62, 73, (uint32_t*)g_card_info->csd);
c_size_mult = prv_get_bits(47, 49, (uint32_t*)g_card_info->csd);
mult = 1 << (c_size_mult + 2);
g_card_info->blocknr = (c_size + 1) * mult;
/* adjust blocknr to 512/block */
if (g_card_info->block_len > MMC_SECTOR_SIZE)
g_card_info->blocknr = g_card_info->blocknr *
(g_card_info->block_len >> 9);
/* get extended CSD for newer MMC cards CSD spec >= 4.0*/
if (((g_card_info->card_type & CARD_TYPE_SD) == 0) &&
(prv_get_bits(122, 125, (uint32_t*)g_card_info->csd) >= 4))
{
/* put card in trans state */
status = sdmmc_execute_command(CMD_SELECT_CARD,
g_card_info->rca << 16, 0);
/* set block size and byte count */
LPC_SDMMC->BLKSIZ = MMC_SECTOR_SIZE;
LPC_SDMMC->BYTCNT = MMC_SECTOR_SIZE;
/* send EXT_CSD command */
sdif_dma_setup((uint32_t) g_card_info->ext_csd, MMC_SECTOR_SIZE);
status = sdmmc_execute_command(CMD_SEND_EXT_CSD, 0, 0 |
MCI_INT_DATA_OVER);
if ((status & SD_INT_ERROR) == 0)
{
/* check EXT_CSD_VER is greater than 1.1 */
if ((g_card_info->ext_csd[48] & 0xFF) > 1)
g_card_info->blocknr = g_card_info->ext_csd[53]; /* bytes 212:215 represent sec count */
/* switch to 52MHz clock if card type is set to 1 or else set to 26MHz */
if ((g_card_info->ext_csd[49] & 0xFF) == 1)
{
/* for type 1 MMC cards high speed is 52MHz */
g_card_info->speed = MMC_HIGH_BUS_MAX_CLOCK;
}
else
{
/* for type 0 MMC cards high speed is 26MHz */
g_card_info->speed = MMC_LOW_BUS_MAX_CLOCK;
}
}
}
}
g_card_info->device_size = g_card_info->blocknr << 9; /* blocknr * 512 */
}
/*********************************************************************//**
* @brief Puts current selected card in trans state
* @param[in] None
* @return 0 on success, or error code (-1)
**********************************************************************/
static int32_t prv_set_trans_state(void)
{
uint32_t status;
/* get current state of the card */
status = sdmmc_execute_command(CMD_SEND_STATUS, g_card_info->rca << 16, 0);
if (status & MCI_INT_RTO)
{
/* unable to get the card state. So return immediatly. */
return -1;
}
/* check card state in response */
status = R1_CURRENT_STATE(g_card_info->response[0]);
switch (status)
{
case SDMMC_STBY_ST:
/* put card in 'Trans' state */
status = sdmmc_execute_command(CMD_SELECT_CARD, g_card_info->rca << 16, 0);
if (status != 0)
{
/* unable to put the card in Trans state. So return immediatly. */
return -1;
}
break;
case SDMMC_TRAN_ST:
/*do nothing */
break;
default:
/* card shouldn't be in other states so return */
return -1;
}
return 0;
}
/*********************************************************************//**
* @brief Sets card data width and block size
* @param[in] None
* @return 0 on success, or error code (-1)
**********************************************************************/
static int32_t prv_set_card_params(void)
{
uint32_t status;
#if SDIO_BUS_WIDTH > 1
if (g_card_info->card_type & CARD_TYPE_SD)
{
status = sdmmc_execute_command(CMD_SD_SET_WIDTH, 2, 0);
if (status != 0)
return -1;
/* if positive response */
LPC_SDMMC->CTYPE = MCI_CTYPE_4BIT;
}
#elif SDIO_BUS_WIDTH > 4
#error 8-bit mode not supported yet!
#endif
/* set block length */
LPC_SDMMC->BLKSIZ = MMC_SECTOR_SIZE;
status = sdmmc_execute_command(CMD_SET_BLOCKLEN, MMC_SECTOR_SIZE, 0);
if (status != 0)
return -1;
return 0;
}
/* Public Functions ----------------------------------------------------------- */
/** @defgroup SDMMC_Public_Functions
* @ingroup SDMMC
* @{
*/
/*********************************************************************//**
* @brief Function to enumerate the SD/MMC/SDHC/MMC+ cards
* @param[in] evsetup_cb Pointer to event setup function callback
* @param[in] waitfunc_cb Pointer to wait function callback
* @param[in] msdelay_func Pointer to function that delays
* @param[in] pcardinfo Pointer to pre-allocated card info structure
* @return 1 if a card is acquired, otherwise 0
**********************************************************************/
int32_t sdmmc_acquire(MCI_EVSETUP_FUNC_T evsetup_cb,
MCI_WAIT_CB_FUNC_T waitfunc_cb, MCI_MSDELAY_FUNC_T msdelay_func,
struct _mci_card_struct *pcardinfo)
{
int32_t status;
int32_t tries = 0;
uint32_t ocr = OCR_VOLTAGE_RANGE_MSK;
uint32_t r;
int32_t state = 0;
uint32_t command = 0;
g_card_info = pcardinfo;
/* Make sure callbacks are valid */
if ((waitfunc_cb == NULL) || (msdelay_func == NULL) ||
(evsetup_cb == NULL))
return 0;
sdmmc_evsetup_cb = evsetup_cb;
sdmmc_wait_cb = waitfunc_cb;
sdmmc_msdelay_cb = msdelay_func;
/* clear card struct */
memset(g_card_info, 0, sizeof(*g_card_info));
/* clear card type */
LPC_SDMMC->CTYPE = 0;
/* set high speed for the card as 20MHz */
g_card_info->speed = MMC_MAX_CLOCK;
status = sdmmc_execute_command(CMD_IDLE, 0, MCI_INT_CMD_DONE);
while (state < 100)
{
switch (state)
{
case 0: /* Setup for SD */
/* check if it is SDHC card */
status = sdmmc_execute_command( CMD_SD_SEND_IF_COND, SD_SEND_IF_ARG, 0);
if (!(status & MCI_INT_RTO))
{
/* check response has same echo pattern */
if ((g_card_info->response[0] & SD_SEND_IF_ECHO_MSK) == SD_SEND_IF_RESP)
ocr |= OCR_HC_CCS;
}
++state;
command = CMD_SD_OP_COND;
tries = INIT_OP_RETRIES;
/* assume SD card */
g_card_info->card_type |= CARD_TYPE_SD;
g_card_info->speed = SD_MAX_CLOCK;
break;
case 10: /* Setup for MMC */
/* start fresh for MMC crds */
g_card_info->card_type &= ~CARD_TYPE_SD;
status = sdmmc_execute_command(CMD_IDLE, 0, MCI_INT_CMD_DONE);
command = CMD_MMC_OP_COND;
tries = INIT_OP_RETRIES;
ocr |= OCR_HC_CCS;
++state;
/* for MMC cards high speed is 20MHz */
g_card_info->speed = MMC_MAX_CLOCK;
break;
case 1:
case 11:
status = sdmmc_execute_command(command, 0, 0);
if (status & MCI_INT_RTO)
state += 9; /* Mode unavailable */
else
++state;
break;
case 2: /* Initial OCR check */
case 12:
ocr = g_card_info->response[0] | (ocr & OCR_HC_CCS);
if (ocr & OCR_ALL_READY)
++state;
else
state += 2;
break;
case 3: /* Initial wait for OCR clear */
case 13:
while ((ocr & OCR_ALL_READY) && --tries > 0)
{
sdmmc_msdelay_cb(MS_ACQUIRE_DELAY);
status = sdmmc_execute_command(command, 0, 0);
ocr = g_card_info->response[0] | (ocr & OCR_HC_CCS);
}
if (ocr & OCR_ALL_READY)
state += 7;
else
++state;
break;
case 14:
/* for MMC cards set high capacity bit */
ocr |= OCR_HC_CCS;
case 4: /* Assign OCR */
tries = SET_OP_RETRIES;
ocr &= OCR_VOLTAGE_RANGE_MSK | OCR_HC_CCS; /* Mask for the bits we care about */
do
{
sdmmc_msdelay_cb(MS_ACQUIRE_DELAY);
status = sdmmc_execute_command(command, ocr, 0);
r = g_card_info->response[0];
} while (!(r & OCR_ALL_READY) && --tries > 0);
if (r & OCR_ALL_READY)
{
/* is it high capacity card */
g_card_info->card_type |= (r & OCR_HC_CCS);
++state;
}
else
state += 6;
break;
case 5: /* CID polling */
case 15:
status = sdmmc_execute_command(CMD_ALL_SEND_CID, 0, 0);
memcpy(&g_card_info->cid, &g_card_info->response[0], 16);
++state;
break;
case 6: /* RCA send, for SD get RCA */
status = sdmmc_execute_command(CMD_SD_SEND_RCA, 0, 0);
g_card_info->rca = (g_card_info->response[0]) >> 16;
++state;
break;
case 16: /* RCA assignment for MMC set to 1 */
g_card_info->rca = 1;
status = sdmmc_execute_command(CMD_MMC_SET_RCA, g_card_info->rca << 16, 0);
++state;
break;
case 7:
case 17:
status = sdmmc_execute_command(CMD_SEND_CSD, g_card_info->rca << 16, 0);
memcpy(&g_card_info->csd, &g_card_info->response[0], 16);
state = 100;
break;
default:
state += 100; /* break from while loop */
break;
}
}
/* Compute card size, block size and no. of blocks
based on CSD response recived. */
if (prv_card_acquired()) {
prv_process_csd();
/* Setup card data width and block size (once) */
if (prv_set_trans_state() != 0)
return 0;
if (prv_set_card_params() != 0)
return 0;
}
return prv_card_acquired();
}
/*********************************************************************//**
* @brief Get card's current state (idle, transfer, program, etc.)
* @param[in] None
* @return Current transfer state (0 -
**********************************************************************/
int32_t sdmmc_get_state(void)
{
uint32_t status;
/* get current state of the card */
status = sdmmc_execute_command(CMD_SEND_STATUS, g_card_info->rca << 16, 0);
if (status & MCI_INT_RTO)
return -1;
/* check card state in response */
return (int32_t) R1_CURRENT_STATE(g_card_info->response[0]);
}
/*********************************************************************//**
* @brief Get the device size of SD/MMC card
* @param[in] None
* @return Device size
**********************************************************************/
int32_t sdmmc_get_device_size(void)
{
return g_card_info->device_size;
}
/*********************************************************************//**
* @brief Performs the read of data from the SD/MMC card
* @param[in] buffer Pointer to data buffer to copy to
* @param[in] start_block Start block number
* @param[in] end_block End block number
* @return Bytes read, or 0 on error
**********************************************************************/
int32_t sdmmc_read_blocks(void* buffer, int32_t start_block,
int32_t end_block)
{
int32_t cbRead = (end_block - start_block + 1) * MMC_SECTOR_SIZE;
int32_t status = 0;
int32_t index;
/* if card is not acquired return immediately */
if ((end_block < start_block) || (start_block < 0) ||
(end_block > g_card_info->blocknr))
return 0;
/* put card in trans state */
if (prv_set_trans_state() != 0)
return 0;
/* set number of bytes to read */
LPC_SDMMC->BYTCNT = cbRead;
/* if high capacity card use block indexing */
if (g_card_info->card_type & CARD_TYPE_HC)
index = start_block;
else/*fix at 512 bytes*/
index = start_block << 9;//\* g_card_info->block_len;
sdif_dma_setup((uint32_t) buffer, cbRead);
/* Select single or multiple read based on number of blocks */
if (end_block == start_block)
status = sdmmc_execute_command(CMD_READ_SINGLE,
index, 0 | MCI_INT_DATA_OVER);
else
status = sdmmc_execute_command(CMD_READ_MULTIPLE,
index, 0 | MCI_INT_DATA_OVER);
if (status != 0)
cbRead = 0;
/*Wait for card program to finish*/
while (sdmmc_get_state() != SDMMC_TRAN_ST);
return cbRead;
}
/*********************************************************************//**
* @brief Performs write of data to the SD/MMC card
* @param[in] buffer Pointer to data buffer to copy to
* @param[in] start_block Start block number
* @param[in] end_block End block number
* @return Number of bytes actually written, or 0 on error
**********************************************************************/
int32_t sdmmc_write_blocks(void* buffer,
int32_t start_block,
int32_t end_block)
{
int32_t cbWrote = (end_block - start_block + 1) * MMC_SECTOR_SIZE;
int32_t status;
int32_t index;
/* if card is not acquired return immediately */
if ((end_block < start_block) || (start_block < 0) ||
(end_block > g_card_info->blocknr))
return 0;
/*Wait for card program to finish*/
while (sdmmc_get_state() != SDMMC_TRAN_ST);
/* put card in trans state */
if (prv_set_trans_state() != 0)
return 0;
/* set number of bytes to write */
LPC_SDMMC->BYTCNT = cbWrote;
/* if high capacity card use block indexing */
if (g_card_info->card_type & CARD_TYPE_HC)
index = start_block;
else/*fix at 512 bytes*/
index = start_block << 9;//* g_card_info->block_len;
sdif_dma_setup((uint32_t) buffer, cbWrote);
/*Wait for card program to finish*/
while (sdmmc_get_state() != SDMMC_TRAN_ST);
/* Select single or multiple write based on number of blocks */
if (end_block == start_block)
status = sdmmc_execute_command(CMD_WRITE_SINGLE,
index, 0 | MCI_INT_DATA_OVER);
else
status = sdmmc_execute_command(CMD_WRITE_MULTIPLE, index,
0 | MCI_INT_DATA_OVER);
if (status != 0)
cbWrote = 0;
return cbWrote;
}
/**
* @}
*/
#endif /* _SDMMC */
/**
* @}
*/

View File

@ -341,7 +341,7 @@ int32_t SSP_ReadWrite (LPC_SSPn_Type *SSPx, SSP_DATA_SETUP_Type *dataCfg, \
// Clear status
SSPx->ICR = SSP_ICR_BITMASK;
if(SSP_GetDataSize(SSPx)>8)
if(SSP_GetDataSize(SSPx) > SSP_DATABIT_8)
dataword = 1;
else dataword = 0;