Merge pull request #1304 from kkitayam/add_hcd_for_frdm_kl25z

Add hcd driver for frdm kl25z
This commit is contained in:
Ha Thach 2022-02-09 16:14:50 +07:00 committed by GitHub
commit 63cb3cdc74
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 633 additions and 1 deletions

View File

@ -42,7 +42,7 @@ Supported MCUs
+--------------+---------+-------------+--------+------+-----------+-------------------+--------------+
| NXP | iMXRT | RT10xx | ✔ | ✔ | ✔ | ci_hs | |
| +---------+-------------+--------+------+-----------+-------------------+--------------+
| | Kinetis | KL25 | ✔ | | ✖ | | |
| | Kinetis | KL25 | ✔ | | ✖ | | |
| | +-------------+--------+------+-----------+-------------------+--------------+
| | | K32L2 | ✔ | | ✖ | | |
| +---------+-------------+--------+------+-----------+-------------------+--------------+

View File

@ -23,6 +23,7 @@ LD_FILE = $(MCU_DIR)/gcc/MKL25Z128xxx4_flash.ld
SRC_C += \
src/portable/nxp/khci/dcd_khci.c \
src/portable/nxp/khci/hcd_khci.c \
$(MCU_DIR)/system_MKL25Z4.c \
$(MCU_DIR)/project_template/clock_config.c \
$(MCU_DIR)/drivers/fsl_clock.c \

View File

@ -39,7 +39,12 @@
//--------------------------------------------------------------------+
void USB0_IRQHandler(void)
{
#if TUSB_OPT_HOST_ENABLED
tuh_int_handler(0);
#endif
#if TUSB_OPT_DEVICE_ENABLED
tud_int_handler(0);
#endif
}
//--------------------------------------------------------------------+

View File

@ -0,0 +1,626 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Koji Kitayama
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_HOST_ENABLED && ( \
( CFG_TUSB_MCU == OPT_MCU_MKL25ZXX ) || ( CFG_TUSB_MCU == OPT_MCU_K32L2BXX ) \
)
#include "fsl_device_registers.h"
#define KHCI USB0
#include "host/hcd.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
enum {
TOK_PID_OUT = 0x1u,
TOK_PID_IN = 0x9u,
TOK_PID_SETUP = 0xDu,
TOK_PID_DATA0 = 0x3u,
TOK_PID_DATA1 = 0xbu,
TOK_PID_ACK = 0x2u,
TOK_PID_STALL = 0xeu,
TOK_PID_NAK = 0xau,
TOK_PID_BUSTO = 0x0u,
TOK_PID_ERR = 0xfu,
};
typedef struct TU_ATTR_PACKED
{
union {
uint32_t head;
struct {
union {
struct {
uint16_t : 2;
__IO uint16_t tok_pid : 4;
uint16_t data : 1;
__IO uint16_t own : 1;
uint16_t : 8;
};
struct {
uint16_t : 2;
uint16_t bdt_stall : 1;
uint16_t dts : 1;
uint16_t ninc : 1;
uint16_t keep : 1;
uint16_t : 10;
};
};
__IO uint16_t bc : 10;
uint16_t : 6;
};
};
uint8_t *addr;
}buffer_descriptor_t;
TU_VERIFY_STATIC( sizeof(buffer_descriptor_t) == 8, "size is not correct" );
typedef struct TU_ATTR_PACKED
{
union {
uint32_t state;
struct {
uint32_t pipenum:16;
uint32_t odd : 1;
uint32_t : 0;
};
};
uint8_t *buffer;
uint16_t length;
uint16_t remaining;
} endpoint_state_t;
typedef struct TU_ATTR_PACKED
{
uint8_t dev_addr;
uint8_t ep_addr;
uint16_t max_packet_size;
union {
uint8_t flags;
struct {
uint8_t data : 1;
uint8_t xfer : 2;
uint8_t : 0;
};
};
uint8_t *buffer;
uint16_t length;
uint16_t remaining;
} pipe_state_t;
typedef struct
{
union {
/* [OUT,IN][EVEN,ODD] */
buffer_descriptor_t bdt[2][2];
uint16_t bda[2*2];
};
endpoint_state_t endpoint[2];
pipe_state_t pipe[HCD_MAX_XFER * 2];
uint32_t in_progress; /* Bitmap. Each bit indicates that a transfer of the corresponding pipe is in progress */
uint32_t pending; /* Bitmap. Each bit indicates that a transfer of the corresponding pipe will be resume the next frame */
bool need_reset; /* The device has not been reset after connection. */
} hcd_data_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// BDT(Buffer Descriptor Table) must be 256-byte aligned
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(512) static hcd_data_t _hcd;
//CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(4) static uint8_t _rx_buf[1024];
int find_pipe(uint8_t dev_addr, uint8_t ep_addr)
{
/* Find the target pipe */
int num;
for (num = 0; num < HCD_MAX_XFER * 2; ++num) {
pipe_state_t *p = &_hcd.pipe[num];
if ((p->dev_addr == dev_addr) && (p->ep_addr == ep_addr))
return num;
}
return -1;
}
static int prepare_packets(int pipenum)
{
pipe_state_t *pipe = &_hcd.pipe[pipenum];
unsigned const dir_tx = tu_edpt_dir(pipe->ep_addr) ? 0 : 1;
endpoint_state_t *ep = &_hcd.endpoint[dir_tx];
unsigned const odd = ep->odd;
buffer_descriptor_t *bd = _hcd.bdt[dir_tx];
TU_ASSERT(0 == bd[odd].own, -1);
// TU_LOG1(" %p dir %d odd %d data %d\n", &bd[odd], dir_tx, odd, pipe->data);
ep->pipenum = pipenum;
bd[odd ].data = pipe->data;
bd[odd ^ 1].data = pipe->data ^ 1;
bd[odd ^ 1].own = 0;
/* reset values for a next transfer */
int num_tokens = 0; /* The number of prepared packets */
unsigned const mps = pipe->max_packet_size;
unsigned const rem = pipe->remaining;
if (rem > mps) {
/* When total_bytes is greater than the max packet size,
* it prepares to the next transfer to avoid NAK in advance. */
bd[odd ^ 1].bc = rem >= 2 * mps ? mps: rem - mps;
bd[odd ^ 1].addr = pipe->buffer + mps;
bd[odd ^ 1].own = 1;
if (dir_tx) ++num_tokens;
}
bd[odd].bc = rem >= mps ? mps: rem;
bd[odd].addr = pipe->buffer;
__DSB();
bd[odd].own = 1; /* This bit must be set last */
++num_tokens;
return num_tokens;
}
static int select_next_pipenum(int pipenum)
{
unsigned wip = _hcd.in_progress & ~_hcd.pending;
if (!wip) return -1;
unsigned msk = TU_GENMASK(31, pipenum);
int next = __builtin_ctz(wip & msk);
if (next) return next;
msk = TU_GENMASK(pipenum, 0);
next = __builtin_ctz(wip & msk);
return next;
}
/* When transfer is completed, return true. */
static bool continue_transfer(int pipenum, buffer_descriptor_t *bd)
{
pipe_state_t *pipe = &_hcd.pipe[pipenum];
unsigned const bc = bd->bc;
unsigned const rem = pipe->remaining - bc;
pipe->remaining = rem;
if (rem && bc == pipe->max_packet_size) {
int const next_rem = rem - pipe->max_packet_size;
if (next_rem > 0) {
/* Prepare to the after next transfer */
bd->addr += pipe->max_packet_size * 2;
bd->bc = next_rem > pipe->max_packet_size ? pipe->max_packet_size: next_rem;
__DSB();
bd->own = 1; /* This bit must be set last */
while (KHCI->CTL & USB_CTL_TXSUSPENDTOKENBUSY_MASK) ;
KHCI->TOKEN = KHCI->TOKEN; /* Queue the same token as the last */
} else if (TUSB_DIR_IN == tu_edpt_dir(pipe->ep_addr)) { /* IN */
while (KHCI->CTL & USB_CTL_TXSUSPENDTOKENBUSY_MASK) ;
KHCI->TOKEN = KHCI->TOKEN;
}
return true;
}
pipe->data = bd->data ^ 1;
return false;
}
static bool resume_transfer(int pipenum)
{
int num_tokens = prepare_packets(pipenum);
TU_ASSERT(0 <= num_tokens);
const unsigned ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
pipe_state_t *pipe = &_hcd.pipe[pipenum];
unsigned flags = KHCI->ENDPOINT[0].ENDPT & USB_ENDPT_HOSTWOHUB_MASK;
flags |= USB_ENDPT_EPRXEN_MASK | USB_ENDPT_EPTXEN_MASK;
switch (pipe->xfer) {
case TUSB_XFER_CONTROL:
flags |= USB_ENDPT_EPHSHK_MASK;
break;
case TUSB_XFER_ISOCHRONOUS:
flags |= USB_ENDPT_EPCTLDIS_MASK | USB_ENDPT_RETRYDIS_MASK;
break;
default:
flags |= USB_ENDPT_EPHSHK_MASK | USB_ENDPT_EPCTLDIS_MASK | USB_ENDPT_RETRYDIS_MASK;
break;
}
// TU_LOG1(" resume pipenum %d flags %x\n", pipenum, flags);
KHCI->ENDPOINT[0].ENDPT = flags;
KHCI->ADDR = (KHCI->ADDR & USB_ADDR_LSEN_MASK) | pipe->dev_addr;
unsigned const token = tu_edpt_number(pipe->ep_addr) |
((tu_edpt_dir(pipe->ep_addr) ? TOK_PID_IN: TOK_PID_OUT) << USB_TOKEN_TOKENPID_SHIFT);
do {
while (KHCI->CTL & USB_CTL_TXSUSPENDTOKENBUSY_MASK) ;
KHCI->TOKEN = token;
} while (--num_tokens);
if (ie) NVIC_EnableIRQ(USB0_IRQn);
return true;
}
static void suspend_transfer(int pipenum, buffer_descriptor_t *bd)
{
pipe_state_t *pipe = &_hcd.pipe[pipenum];
pipe->buffer = bd->addr;
pipe->data = bd->data ^ 1;
if ((TUSB_XFER_INTERRUPT == pipe->xfer) ||
(TUSB_XFER_BULK == pipe->xfer)) {
_hcd.pending |= TU_BIT(pipenum);
KHCI->INTEN |= USB_ISTAT_SOFTOK_MASK;
}
}
static void process_tokdne(uint8_t rhport)
{
(void)rhport;
const unsigned s = KHCI->STAT;
KHCI->ISTAT = USB_ISTAT_TOKDNE_MASK; /* fetch the next token if received */
uint8_t const dir_in = (s & USB_STAT_TX_MASK) ? TUSB_DIR_OUT: TUSB_DIR_IN;
unsigned const odd = (s & USB_STAT_ODD_MASK) ? 1 : 0;
buffer_descriptor_t *bd = (buffer_descriptor_t *)&_hcd.bda[s];
endpoint_state_t *ep = &_hcd.endpoint[s >> 3];
/* fetch status before discarded by the next steps */
const unsigned pid = bd->tok_pid;
/* reset values for a next transfer */
bd->bdt_stall = 0;
bd->dts = 1;
bd->ninc = 0;
bd->keep = 0;
/* Update the odd variable to prepare for the next transfer */
ep->odd = odd ^ 1;
int pipenum = ep->pipenum;
int next_pipenum;
// TU_LOG1("TOKDNE %x PID %x pipe %d\n", s, pid, pipenum);
xfer_result_t result;
switch (pid) {
default:
if (continue_transfer(pipenum, bd))
return;
result = XFER_RESULT_SUCCESS;
break;
case TOK_PID_NAK:
suspend_transfer(pipenum, bd);
next_pipenum = select_next_pipenum(pipenum);
if (0 <= next_pipenum)
resume_transfer(next_pipenum);
return;
case TOK_PID_STALL:
result = XFER_RESULT_STALLED;
break;
case TOK_PID_ERR: /* mismatch toggle bit */
case TOK_PID_BUSTO:
result = XFER_RESULT_FAILED;
break;
}
_hcd.in_progress &= ~TU_BIT(pipenum);
pipe_state_t *pipe = &_hcd.pipe[ep->pipenum];
hcd_event_xfer_complete(pipe->dev_addr,
tu_edpt_addr(KHCI->TOKEN & USB_TOKEN_TOKENENDPT_MASK, dir_in),
pipe->length - pipe->remaining,
result, true);
next_pipenum = select_next_pipenum(pipenum);
if (0 <= next_pipenum)
resume_transfer(next_pipenum);
}
static void process_attach(uint8_t rhport)
{
unsigned ctl = KHCI->CTL;
if (!(ctl & USB_CTL_JSTATE_MASK)) {
/* The attached device is a low speed device. */
KHCI->ADDR = USB_ADDR_LSEN_MASK;
KHCI->ENDPOINT[0].ENDPT = USB_ENDPT_HOSTWOHUB_MASK;
}
hcd_event_device_attach(rhport, true);
}
static void process_bus_reset(uint8_t rhport)
{
KHCI->ISTAT = USB_ISTAT_TOKDNE_MASK;
KHCI->USBCTRL &= ~USB_USBCTRL_SUSP_MASK;
KHCI->CTL &= ~USB_CTL_USBENSOFEN_MASK;
KHCI->ADDR = 0;
KHCI->ENDPOINT[0].ENDPT = 0;
hcd_event_device_remove(rhport, true);
_hcd.in_progress = 0;
_hcd.pending = 0;
buffer_descriptor_t *bd = &_hcd.bdt[0][0];
for (unsigned i = 0; i < 2; ++i, ++bd) {
bd->head = 0;
}
}
/*------------------------------------------------------------------*/
/* Host API
*------------------------------------------------------------------*/
bool hcd_init(uint8_t rhport)
{
(void)rhport;
KHCI->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
while (KHCI->USBTRC0 & USB_USBTRC0_USBRESET_MASK);
tu_memclr(&_hcd, sizeof(_hcd));
KHCI->USBTRC0 |= TU_BIT(6); /* software must set this bit to 1 */
KHCI->BDTPAGE1 = (uint8_t)((uintptr_t)_hcd.bdt >> 8);
KHCI->BDTPAGE2 = (uint8_t)((uintptr_t)_hcd.bdt >> 16);
KHCI->BDTPAGE3 = (uint8_t)((uintptr_t)_hcd.bdt >> 24);
KHCI->USBCTRL &= ~USB_USBCTRL_SUSP_MASK;
KHCI->CTL |= USB_CTL_ODDRST_MASK;
for (unsigned i = 0; i < 16; ++i) {
KHCI->ENDPOINT[i].ENDPT = 0;
}
KHCI->CTL &= ~USB_CTL_ODDRST_MASK;
KHCI->SOFTHLD = 74; /* for 64-byte packets */
// KHCI->SOFTHLD = 144; /* for low speed 8-byte packets */
KHCI->CTL = USB_CTL_HOSTMODEEN_MASK | USB_CTL_SE0_MASK;
KHCI->USBCTRL = USB_USBCTRL_PDE_MASK;
NVIC_ClearPendingIRQ(USB0_IRQn);
KHCI->INTEN = USB_INTEN_ATTACHEN_MASK | USB_INTEN_TOKDNEEN_MASK |
USB_INTEN_USBRSTEN_MASK | USB_INTEN_ERROREN_MASK | USB_INTEN_STALLEN_MASK;
KHCI->ERREN = 0xff;
return true;
}
void hcd_int_enable(uint8_t rhport)
{
(void)rhport;
NVIC_EnableIRQ(USB0_IRQn);
}
void hcd_int_disable(uint8_t rhport)
{
(void)rhport;
NVIC_DisableIRQ(USB0_IRQn);
}
uint32_t hcd_frame_number(uint8_t rhport)
{
(void)rhport;
/* The device must be reset at least once after connection
* in order to start the frame counter. */
if (_hcd.need_reset) hcd_port_reset(rhport);
uint32_t frmnum = KHCI->FRMNUML;
frmnum |= KHCI->FRMNUMH << 8u;
return frmnum;
}
/*--------------------------------------------------------------------+
* Port API
*--------------------------------------------------------------------+ */
bool hcd_port_connect_status(uint8_t rhport)
{
(void)rhport;
if (KHCI->ISTAT & USB_ISTAT_ATTACH_MASK)
return true;
return false;
}
void hcd_port_reset(uint8_t rhport)
{
(void)rhport;
KHCI->CTL &= ~USB_CTL_USBENSOFEN_MASK;
KHCI->CTL |= USB_CTL_RESET_MASK;
unsigned cnt = SystemCoreClock / 100;
while (cnt--) __NOP();
KHCI->CTL &= ~USB_CTL_RESET_MASK;
KHCI->CTL |= USB_CTL_USBENSOFEN_MASK;
_hcd.need_reset = false;
}
tusb_speed_t hcd_port_speed_get(uint8_t rhport)
{
(void)rhport;
tusb_speed_t speed = TUSB_SPEED_FULL;
const unsigned ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
if (KHCI->ADDR & USB_ADDR_LSEN_MASK)
speed = TUSB_SPEED_LOW;
if (ie) NVIC_EnableIRQ(USB0_IRQn);
return speed;
}
void hcd_device_close(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
const unsigned ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
pipe_state_t *p = &_hcd.pipe[0];
pipe_state_t *end = &_hcd.pipe[HCD_MAX_XFER * 2];
for (;p != end; ++p) {
if (p->dev_addr == dev_addr)
tu_memclr(p, sizeof(*p));
}
if (ie) NVIC_EnableIRQ(USB0_IRQn);
}
//--------------------------------------------------------------------+
// Endpoints API
//--------------------------------------------------------------------+
bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8])
{
(void)rhport;
// TU_LOG1("SETUP %u\n", dev_addr);
TU_ASSERT(0 == (_hcd.in_progress & TU_BIT(0)));
int pipenum = find_pipe(dev_addr, 0);
if (pipenum < 0) return false;
pipe_state_t *pipe = &_hcd.pipe[pipenum];
pipe[0].data = 0;
pipe[0].buffer = (uint8_t*)(uintptr_t)setup_packet;
pipe[0].length = 8;
pipe[0].remaining = 8;
pipe[1].data = 1;
if (1 != prepare_packets(pipenum))
return false;
_hcd.in_progress |= TU_BIT(pipenum);
unsigned hostwohub = KHCI->ENDPOINT[0].ENDPT & USB_ENDPT_HOSTWOHUB_MASK;
KHCI->ENDPOINT[0].ENDPT = hostwohub |
USB_ENDPT_EPHSHK_MASK | USB_ENDPT_EPRXEN_MASK | USB_ENDPT_EPTXEN_MASK;
KHCI->ADDR = (KHCI->ADDR & USB_ADDR_LSEN_MASK) | dev_addr;
while (KHCI->CTL & USB_CTL_TXSUSPENDTOKENBUSY_MASK) ;
KHCI->TOKEN = (TOK_PID_SETUP << USB_TOKEN_TOKENPID_SHIFT);
return true;
}
bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
(void)rhport;
uint8_t const ep_addr = ep_desc->bEndpointAddress;
// TU_LOG1("O %u %x\n", dev_addr, ep_addr);
/* Find a free pipe */
pipe_state_t *p = &_hcd.pipe[0];
pipe_state_t *end = &_hcd.pipe[HCD_MAX_XFER * 2];
if (dev_addr || ep_addr) {
p += 2;
for (; p < end && (p->dev_addr || p->ep_addr); ++p) ;
if (p == end) return false;
}
p->dev_addr = dev_addr;
p->ep_addr = ep_addr;
p->max_packet_size = ep_desc->wMaxPacketSize;
p->xfer = ep_desc->bmAttributes.xfer;
p->data = 0;
if (!ep_addr) {
/* Open one more pipe for Control IN transfer */
TU_ASSERT(TUSB_XFER_CONTROL == p->xfer);
pipe_state_t *q = p + 1;
TU_ASSERT(!q->dev_addr && !q->ep_addr);
q->dev_addr = dev_addr;
q->ep_addr = tu_edpt_addr(0, TUSB_DIR_IN);
q->max_packet_size = ep_desc->wMaxPacketSize;
q->xfer = ep_desc->bmAttributes.xfer;
q->data = 1;
}
return true;
}
/* The address of buffer must be aligned to 4 byte boundary. And it must be at least 4 bytes long.
* DMA writes data in 4 byte unit */
bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen)
{
(void)rhport;
// TU_LOG1("X %u %x %x %d\n", dev_addr, ep_addr, (uintptr_t)buffer, buflen);
int pipenum = find_pipe(dev_addr, ep_addr);
TU_ASSERT(0 <= pipenum);
TU_ASSERT(0 == (_hcd.in_progress & TU_BIT(pipenum)));
unsigned const ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
pipe_state_t *pipe = &_hcd.pipe[pipenum];
pipe->buffer = buffer;
pipe->length = buflen;
pipe->remaining = buflen;
_hcd.in_progress |= TU_BIT(pipenum);
_hcd.pending |= TU_BIT(pipenum); /* Send at the next Frame */
KHCI->INTEN |= USB_ISTAT_SOFTOK_MASK;
if (ie) NVIC_EnableIRQ(USB0_IRQn);
return true;
}
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
if (!tu_edpt_number(ep_addr)) return true;
int num = find_pipe(dev_addr, ep_addr);
if (num < 0) return false;
pipe_state_t *p = &_hcd.pipe[num];
p->data = 0; /* Reset data toggle */
return true;
}
/*--------------------------------------------------------------------+
* ISR
*--------------------------------------------------------------------+*/
void hcd_int_handler(uint8_t rhport)
{
uint32_t is = KHCI->ISTAT;
uint32_t msk = KHCI->INTEN;
// TU_LOG1("S %lx\n", is);
/* clear disabled interrupts */
KHCI->ISTAT = (is & ~msk & ~USB_ISTAT_TOKDNE_MASK) | USB_ISTAT_SOFTOK_MASK;
is &= msk;
if (is & USB_ISTAT_ERROR_MASK) {
unsigned err = KHCI->ERRSTAT;
if (err) {
TU_LOG1(" ERR %x\n", err);
KHCI->ERRSTAT = err;
} else {
KHCI->INTEN &= ~USB_ISTAT_ERROR_MASK;
}
}
if (is & USB_ISTAT_USBRST_MASK) {
KHCI->INTEN = (msk & ~USB_INTEN_USBRSTEN_MASK) | USB_INTEN_ATTACHEN_MASK;
process_bus_reset(rhport);
return;
}
if (is & USB_ISTAT_ATTACH_MASK) {
KHCI->INTEN = (msk & ~USB_INTEN_ATTACHEN_MASK) | USB_INTEN_USBRSTEN_MASK;
_hcd.need_reset = true;
process_attach(rhport);
return;
}
if (is & USB_ISTAT_STALL_MASK) {
KHCI->ISTAT = USB_ISTAT_STALL_MASK;
}
if (is & USB_ISTAT_SOFTOK_MASK) {
msk &= ~USB_ISTAT_SOFTOK_MASK;
KHCI->INTEN = msk;
if (_hcd.pending) {
int pipenum = __builtin_ctz(_hcd.pending);
_hcd.pending = 0;
if (!(is & USB_ISTAT_TOKDNE_MASK))
resume_transfer(pipenum);
}
}
if (is & USB_ISTAT_TOKDNE_MASK) {
process_tokdne(rhport);
}
}
#endif