Merge pull request #757 from kkitayam/add_support_for_gr_citrus

Add support for GR-CITRUS
This commit is contained in:
Ha Thach 2021-03-31 22:01:43 +07:00 committed by GitHub
commit 2f5dda90b7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 1354 additions and 4 deletions

View File

@ -267,6 +267,73 @@ jobs:
asset_name: ${{ matrix.family }}-tinyusb-${{ github.event.release.tag_name }}-examples.zip
asset_content_type: application/zip
# ---------------------------------------
# Build Renesas family
# ---------------------------------------
build-renesas:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
family:
# Alphabetical order
- 'rx63n'
steps:
- name: Setup Python
uses: actions/setup-python@v2
- name: Checkout TinyUSB
uses: actions/checkout@v2
- name: Checkout common submodules in lib
run: git submodule update --init lib/FreeRTOS-Kernel lib/lwip
- name: Set Toolchain URL
run: echo >> $GITHUB_ENV TOOLCHAIN_URL=http://gcc-renesas.com/downloads/get.php?f=rx/8.3.0.202004-gnurx/gcc-8.3.0.202004-GNURX-ELF.run
- name: Cache Toolchain
uses: actions/cache@v2
id: cache-toolchain
with:
path: ~/cache/
key: ${{ runner.os }}-21-03-30-${{ env.TOOLCHAIN_URL }}
- name: Install Toolchain
if: steps.cache-toolchain.outputs.cache-hit != 'true'
run: |
mkdir -p ~/cache/toolchain/gnurx
wget --progress=dot:mega $TOOLCHAIN_URL -O toolchain.run
chmod +x toolchain.run
./toolchain.run -p ~/cache/toolchain/gnurx -y
- name: Set Toolchain Path
run: echo >> $GITHUB_PATH `echo ~/cache/toolchain/*/bin`
- name: Build
run: python3 tools/build_family.py ${{ matrix.family }}
- uses: actions/upload-artifact@v2
with:
name: ${{ matrix.family }}-tinyusb-examples
path: _bin/
- name: Create Release Asset
if: ${{ github.event_name == 'release' }}
run: |
cd _bin/
zip -r ../${{ matrix.family }}-tinyusb-${{ github.event.release.tag_name }}-examples.zip *
- name: Upload Release Asset
uses: actions/upload-release-asset@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
if: ${{ github.event_name == 'release' }}
with:
upload_url: ${{ github.event.release.upload_url }}
asset_path: ${{ matrix.family }}-tinyusb-${{ github.event.release.tag_name }}-examples.zip
asset_name: ${{ matrix.family }}-tinyusb-${{ github.event.release.tag_name }}-examples.zip
asset_content_type: application/zip
# ---------------------------------------
# Build all no-family (opharned) boards
# ---------------------------------------

3
.gitmodules vendored
View File

@ -116,3 +116,6 @@
[submodule "hw/mcu/silabs/cmsis-dfp-efm32gg12b"]
path = hw/mcu/silabs/cmsis-dfp-efm32gg12b
url = https://github.com/cmsis-packs/cmsis-dfp-efm32gg12b
[submodule "hw/mcu/renesas/rx"]
path = hw/mcu/renesas/rx
url = https://github.com/kkitayam/rx_device.git

View File

@ -132,6 +132,16 @@ extern uint32_t SystemCoreClock;
#define configASSERT( x )
#endif
#ifdef __RX__
/* Renesas RX series */
#define vSoftwareInterruptISR INT_Excep_ICU_SWINT
#define vTickISR INT_Excep_CMT0_CMI0
#define configPERIPHERAL_CLOCK_HZ (configCPU_CLOCK_HZ/2)
#define configKERNEL_INTERRUPT_PRIORITY 1
#define configMAX_SYSCALL_INTERRUPT_PRIORITY 4
#else
/* FreeRTOS hooks to NVIC vectors */
#define xPortPendSVHandler PendSV_Handler
#define xPortSysTickHandler SysTick_Handler
@ -164,4 +174,6 @@ to all Cortex-M ports, and do not rely on any particular library functions. */
See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. */
#define configMAX_SYSCALL_INTERRUPT_PRIORITY ( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
#endif
#endif /* __FREERTOS_CONFIG__H */

View File

@ -93,3 +93,22 @@ void vApplicationGetTimerTaskMemory( StaticTask_t **ppxTimerTaskTCBBuffer, Stack
configTIMER_TASK_STACK_DEPTH is specified in words, not bytes. */
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}
#if CFG_TUSB_MCU == OPT_MCU_RX63X
#include "iodefine.h"
void vApplicationSetupTimerInterrupt(void)
{
/* Enable CMT0 */
SYSTEM.PRCR.WORD = (0xA5u<<8) | TU_BIT(1);
MSTP(CMT0) = 0;
SYSTEM.PRCR.WORD = (0xA5u<<8);
CMT0.CMCNT = 0;
CMT0.CMCOR = (unsigned short)(((configPERIPHERAL_CLOCK_HZ/configTICK_RATE_HZ)-1)/128);
CMT0.CMCR.WORD = TU_BIT(6) | 2;
IR(CMT0, CMI0) = 0;
IPR(CMT0, CMI0) = configKERNEL_INTERRUPT_PRIORITY;
IEN(CMT0, CMI0) = 1;
CMT.CMSTR0.BIT.STR0 = 1;
}
#endif

View File

@ -97,9 +97,9 @@ int main(void)
// skip starting scheduler (and return) for ESP32-S2
#if CFG_TUSB_MCU != OPT_MCU_ESP32S2
vTaskStartScheduler();
NVIC_SystemReset();
return 0;
#endif
return 0;
}
#if CFG_TUSB_MCU == OPT_MCU_ESP32S2

View File

@ -132,6 +132,16 @@ extern uint32_t SystemCoreClock;
#define configASSERT( x )
#endif
#ifdef __RX__
/* Renesas RX series */
#define vSoftwareInterruptISR INT_Excep_ICU_SWINT
#define vTickISR INT_Excep_CMT0_CMI0
#define configPERIPHERAL_CLOCK_HZ (configCPU_CLOCK_HZ/2)
#define configKERNEL_INTERRUPT_PRIORITY 1
#define configMAX_SYSCALL_INTERRUPT_PRIORITY 4
#else
/* FreeRTOS hooks to NVIC vectors */
#define xPortPendSVHandler PendSV_Handler
#define xPortSysTickHandler SysTick_Handler
@ -164,4 +174,6 @@ to all Cortex-M ports, and do not rely on any particular library functions. */
See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. */
#define configMAX_SYSCALL_INTERRUPT_PRIORITY ( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
#endif
#endif /* __FREERTOS_CONFIG__H */

View File

@ -93,3 +93,22 @@ void vApplicationGetTimerTaskMemory( StaticTask_t **ppxTimerTaskTCBBuffer, Stack
configTIMER_TASK_STACK_DEPTH is specified in words, not bytes. */
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}
#if CFG_TUSB_MCU == OPT_MCU_RX63X
#include "iodefine.h"
void vApplicationSetupTimerInterrupt(void)
{
/* Enable CMT0 */
SYSTEM.PRCR.WORD = (0xA5u<<8) | TU_BIT(1);
MSTP(CMT0) = 0;
SYSTEM.PRCR.WORD = (0xA5u<<8);
CMT0.CMCNT = 0;
CMT0.CMCOR = (unsigned short)(((configPERIPHERAL_CLOCK_HZ/configTICK_RATE_HZ)-1)/128);
CMT0.CMCR.WORD = TU_BIT(6) | 2;
IR(CMT0, CMI0) = 0;
IPR(CMT0, CMI0) = configKERNEL_INTERRUPT_PRIORITY;
IEN(CMT0, CMI0) = 1;
CMT.CMSTR0.BIT.STR0 = 1;
}
#endif

View File

@ -98,9 +98,9 @@ int main(void)
// skip starting scheduler (and return) for ESP32-S2
#if CFG_TUSB_MCU != OPT_MCU_ESP32S2
vTaskStartScheduler();
NVIC_SystemReset();
return 0;
#endif
return 0;
}
#if CFG_TUSB_MCU == OPT_MCU_ESP32S2

View File

@ -123,6 +123,9 @@
#elif CFG_TUSB_MCU == OPT_MCU_EFM32GG || CFG_TUSB_MCU == OPT_MCU_EFM32GG11 || CFG_TUSB_MCU == OPT_MCU_EFM32GG12
#include "em_device.h"
#elif CFG_TUSB_MCU == OPT_MCU_RX63X
// no header needed
#else
#error "Missing MCU header"
#endif

View File

@ -0,0 +1,61 @@
DEPS_SUBMODULES += hw/mcu/renesas/rx
CFLAGS += \
-nostartfiles \
-ffunction-sections \
-fdata-sections \
-fshort-enums \
-mcpu=rx610 \
-misa=v1 \
-mlittle-endian-data \
-DCFG_TUSB_MCU=OPT_MCU_RX63X
# Cross Compiler for RX
CROSS_COMPILE = rx-elf-
RX_NEWLIB ?= 1
ifeq ($(CMDEXE),1)
OPTLIBINC="$(shell for /F "usebackq delims=" %%i in (`where rx-elf-gcc`) do echo %%~dpi..\rx-elf\optlibinc)"
else
OPTLIBINC=$(shell dirname `which rx-elf-gcc`)../rx-elf/optlibinc
endif
ifeq ($(RX_NEWLIB),1)
CFLAGS += -DSSIZE_MAX=__INT_MAX__
else
# setup for optlib
CFLAGS += -nostdinc \
-isystem $(OPTLIBINC) \
-DLWIP_NO_INTTYPES_H
LIBS += -loptc -loptm
endif
MCU_DIR = hw/mcu/renesas/rx/rx63n
# All source paths should be relative to the top level.
LD_FILE = $(BOARD_PATH)/r5f5631fd.ld
SRC_C += \
src/portable/renesas/usba/dcd_usba.c \
$(MCU_DIR)/vects.c
INC += \
$(TOP)/$(BOARD_PATH) \
$(TOP)/$(MCU_DIR)
SRC_S += $(MCU_DIR)/start.S
# For freeRTOS port source
FREERTOS_PORT = RX600
# For flash-jlink target
JLINK_DEVICE = R5F5631F
JLINK_IF = JTAG
# For flash-pyocd target
PYOCD_TARGET =
# flash using jlink
flash: flash-jlink

View File

@ -0,0 +1,255 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2021, Koji Kitayama
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
/* How to connect JLink and GR-CITRUS
*
* GR-CITRUS needs to solder some pads to enable JTAG interface.
* - Short the following pads individually with solder.
* - J4
* - J5
* - Short EMLE pad and 3.3V(GR-CITRUS pin name) with a wire.
*
* The pads are [the back side of GR-CITRUS](https://www.slideshare.net/MinaoYamamoto/grcitrusrx631/2).
*
* Connet the pins between GR-CITRUS and JLink as follows.
*
* | JTAG Function | GR-CITRUS pin name| JLink pin No.| note |
* |:-------------:|:-----------------:|:------------:|:--------:|
* | VTref | 3.3V | 1 | |
* | TRST | 5 | 3 | |
* | GND | GND | 4 | |
* | TDI | 3 | 5 | |
* | TMS | 2 | 7 | |
* | TCK | 14 | 9 | short J4 |
* | TDO | 9 | 13 | short J5 |
* | nRES | RST | 15 | |
*
* JLink firmware needs to update to V6.96 or newer version to avoid
* [a bug](https://forum.segger.com/index.php/Thread/7758-SOLVED-Bug-in-JLink-from-V6-88b-regarding-RX65N)
* regarding downloading.
*
* When using SEGGER RTT, `RX_NEWLIB=0` should be added to make command arguments.
* The option is used to change the C runtime library to `optlib` from `newlib`.
* RTT may not work with `newlib`.
*/
#include "../board.h"
#include "iodefine.h"
#include "interrupt_handlers.h"
#define IRQ_PRIORITY_CMT0 5
#define IRQ_PRIORITY_USBI0 6
#define IRQ_PRIORITY_SCI0 5
#define SYSTEM_PRCR_PRC1 (1<<1)
#define SYSTEM_PRCR_PRKEY (0xA5u<<8)
#define CMT_PCLK 48000000
#define CMT_CMCR_CKS_DIV_128 2
#define CMT_CMCR_CMIE (1<<6)
#define MPC_PFS_ISEL (1<<6)
#define SCI_PCLK 48000000
#define SCI_SSR_FER (1<<4)
#define SCI_SSR_ORER (1<<5)
#define SCI_SCR_TEIE (1u<<2)
#define SCI_SCR_RE (1u<<4)
#define SCI_SCR_TE (1u<<5)
#define SCI_SCR_RIE (1u<<6)
#define SCI_SCR_TIE (1u<<7)
//--------------------------------------------------------------------+
// SCI0 handling
//--------------------------------------------------------------------+
typedef struct {
uint8_t *buf;
uint32_t cnt;
} sci_buf_t;
static volatile sci_buf_t sci0_buf[2];
void INT_Excep_SCI0_TXI0(void)
{
uint8_t *buf = sci0_buf[0].buf;
uint32_t cnt = sci0_buf[0].cnt;
if (!buf || !cnt) {
SCI0.SCR.BYTE &= ~(SCI_SCR_TEIE | SCI_SCR_TE | SCI_SCR_TIE);
return;
}
SCI0.TDR = *buf;
if (--cnt) {
++buf;
} else {
buf = NULL;
SCI0.SCR.BIT.TIE = 0;
SCI0.SCR.BIT.TEIE = 1;
}
sci0_buf[0].buf = buf;
sci0_buf[0].cnt = cnt;
}
void INT_Excep_SCI0_TEI0(void)
{
SCI0.SCR.BYTE &= ~(SCI_SCR_TEIE | SCI_SCR_TE | SCI_SCR_TIE);
}
void INT_Excep_SCI0_RXI0(void)
{
uint8_t *buf = sci0_buf[1].buf;
uint32_t cnt = sci0_buf[1].cnt;
if (!buf || !cnt ||
(SCI0.SSR.BYTE & (SCI_SSR_FER | SCI_SSR_ORER))) {
sci0_buf[1].buf = NULL;
SCI0.SSR.BYTE = 0;
SCI0.SCR.BYTE &= ~(SCI_SCR_RE | SCI_SCR_RIE);
return;
}
*buf = SCI0.RDR;
if (--cnt) {
++buf;
} else {
buf = NULL;
SCI0.SCR.BYTE &= ~(SCI_SCR_RE | SCI_SCR_RIE);
}
sci0_buf[1].buf = buf;
sci0_buf[1].cnt = cnt;
}
//--------------------------------------------------------------------+
// Forward USB interrupt events to TinyUSB IRQ Handler
//--------------------------------------------------------------------+
void INT_Excep_USB0_USBI0(void)
{
tud_int_handler(0);
}
void board_init(void)
{
#if CFG_TUSB_OS == OPT_OS_NONE
/* Enable CMT0 */
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY | SYSTEM_PRCR_PRC1;
MSTP(CMT0) = 0;
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY;
/* Setup 1ms tick timer */
CMT0.CMCNT = 0;
CMT0.CMCOR = CMT_PCLK / 1000 / 128;
CMT0.CMCR.WORD = CMT_CMCR_CMIE | CMT_CMCR_CKS_DIV_128;
IR(CMT0, CMI0) = 0;
IPR(CMT0, CMI0) = IRQ_PRIORITY_CMT0;
IEN(CMT0, CMI0) = 1;
CMT.CMSTR0.BIT.STR0 = 1;
#endif
/* Unlock MPC registers */
MPC.PWPR.BIT.B0WI = 0;
MPC.PWPR.BIT.PFSWE = 1;
/* LED PA0 */
PORTA.PMR.BIT.B0 = 0U;
PORTA.PODR.BIT.B0 = 0U;
PORTA.PDR.BIT.B0 = 1U;
/* UART TXD0 => P20, RXD0 => P21 */
PORT2.PMR.BIT.B0 = 1U;
PORT2.PCR.BIT.B0 = 1U;
MPC.P20PFS.BYTE = 0b01010;
PORT2.PMR.BIT.B1 = 1U;
MPC.P21PFS.BYTE = 0b01010;
/* USB VBUS -> P16 DPUPE -> P14 */
PORT1.PMR.BIT.B4 = 1U;
PORT1.PMR.BIT.B6 = 1U;
MPC.P14PFS.BYTE = 0b10001;
MPC.P16PFS.BYTE = MPC_PFS_ISEL | 0b10001;
MPC.PFUSB0.BIT.PUPHZS = 1;
/* Lock MPC registers */
MPC.PWPR.BIT.PFSWE = 0;
MPC.PWPR.BIT.B0WI = 1;
IR(USB0, USBI0) = 0;
IPR(USB0, USBI0) = IRQ_PRIORITY_USBI0;
/* Enable SCI0 */
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY | SYSTEM_PRCR_PRC1;
MSTP(SCI0) = 0;
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY;
SCI0.BRR = (SCI_PCLK / (32 * 115200)) - 1;
IR(SCI0, RXI0) = 0;
IR(SCI0, TXI0) = 0;
IR(SCI0, TEI0) = 0;
IPR(SCI0, RXI0) = IRQ_PRIORITY_SCI0;
IPR(SCI0, TXI0) = IRQ_PRIORITY_SCI0;
IPR(SCI0, TEI0) = IRQ_PRIORITY_SCI0;
IEN(SCI0, RXI0) = 1;
IEN(SCI0, TXI0) = 1;
IEN(SCI0, TEI0) = 1;
}
//--------------------------------------------------------------------+
// Board porting API
//--------------------------------------------------------------------+
void board_led_write(bool state)
{
PORTA.PODR.BIT.B0 = state ? 1 : 0;
}
uint32_t board_button_read(void)
{
return 0;
}
int board_uart_read(uint8_t* buf, int len)
{
sci0_buf[1].buf = buf;
sci0_buf[1].cnt = len;
SCI0.SCR.BYTE |= SCI_SCR_RE | SCI_SCR_RIE;
while (SCI0.SCR.BIT.RE) ;
return len - sci0_buf[1].cnt;
}
int board_uart_write(void const *buf, int len)
{
sci0_buf[0].buf = (uint8_t*)buf;
sci0_buf[0].cnt = len;
SCI0.SCR.BYTE |= SCI_SCR_TE | SCI_SCR_TIE;
while (SCI0.SCR.BIT.TE) ;
return len;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void INT_Excep_CMT0_CMI0(void)
{
++system_ticks;
}
uint32_t board_millis(void)
{
return system_ticks;
}
#else
uint32_t SystemCoreClock = 96000000;
#endif

View File

@ -0,0 +1,31 @@
/************************************************************************/
/* File Version: V1.00 */
/* Date Generated: 08/07/2013 */
/************************************************************************/
#include "iodefine.h"
#ifdef __cplusplus
extern "C" {
#endif
extern void HardwareSetup(void);
#ifdef __cplusplus
}
#endif
void HardwareSetup(void)
{
SYSTEM.PRCR.WORD = 0xA503u;
SYSTEM.SOSCCR.BYTE = 0x01u;
SYSTEM.MOSCWTCR.BYTE = 0x0Du;
SYSTEM.PLLWTCR.BYTE = 0x0Eu;
SYSTEM.PLLCR.WORD = 0x0F00u;
SYSTEM.MOSCCR.BYTE = 0x00u;
SYSTEM.PLLCR2.BYTE = 0x00u;
for (unsigned i = 0; i < 2075u; ++i) __asm("nop");
SYSTEM.SCKCR.LONG = 0x21021211u;
SYSTEM.SCKCR2.WORD = 0x0033u;
SYSTEM.SCKCR3.WORD = 0x0400u;
SYSTEM.SYSCR0.WORD = 0x5A01;
SYSTEM.MSTPCRB.BIT.MSTPB15 = 0;
SYSTEM.PRCR.WORD = 0xA500u;
}

View File

@ -0,0 +1,127 @@
__USTACK_SIZE = 0x00000200;
__ISTACK_SIZE = 0x00000200;
MEMORY
{
RAM : ORIGIN = 0x4, LENGTH = 0x3fffc
ROM : ORIGIN = 0xFFE00000, LENGTH = 0x200000
}
SECTIONS
{
.fvectors 0xFFFFFF80: AT(0xFFFFFF80)
{
KEEP(*(.fvectors))
} > ROM
.text 0xFFE00000: AT(0xFFE00000)
{
*(.text)
*(.text.*)
*(P)
etext = .;
} > ROM
.rvectors ALIGN(4):
{
_rvectors_start = .;
KEEP(*(.rvectors))
_rvectors_end = .;
} > ROM
.init :
{
KEEP(*(.init))
__preinit_array_start = .;
KEEP(*(.preinit_array))
__preinit_array_end = .;
__init_array_start = (. + 3) & ~ 3;
KEEP(*(.init_array))
KEEP(*(SORT(.init_array.*)))
__init_array_end = .;
__fini_array_start = .;
KEEP(*(.fini_array))
KEEP(*(SORT(.fini_array.*)))
__fini_array_end = .;
} > ROM
.fini :
{
KEEP(*(.fini))
} > ROM
.got :
{
*(.got)
*(.got.plt)
} > ROM
.rodata :
{
*(.rodata)
*(.rodata.*)
*(C_1)
*(C_2)
*(C)
_erodata = .;
} > ROM
.eh_frame_hdr :
{
*(.eh_frame_hdr)
} > ROM
.eh_frame :
{
*(.eh_frame)
} > ROM
.jcr :
{
*(.jcr)
} > ROM
.tors :
{
__CTOR_LIST__ = .;
. = ALIGN(2);
___ctors = .;
*(.ctors)
___ctors_end = .;
__CTOR_END__ = .;
__DTOR_LIST__ = .;
___dtors = .;
*(.dtors)
___dtors_end = .;
__DTOR_END__ = .;
. = ALIGN(2);
_mdata = .;
} > ROM
.data : AT(_mdata)
{
_data = .;
*(.data)
*(.data.*)
*(D)
*(D_1)
*(D_2)
_edata = .;
} > RAM
.gcc_exc :
{
*(.gcc_exc)
} > RAM
.bss :
{
_bss = .;
*(.bss)
*(.bss.**)
*(COMMON)
*(B)
*(B_1)
*(B_2)
_ebss = .;
_end = .;
} > RAM
.ustack :
{
. = ALIGN(8);
. = . + __USTACK_SIZE;
PROVIDE(_ustack = .);
} > RAM
.istack :
{
. = ALIGN(8);
. = . + __ISTACK_SIZE;
PROVIDE(_istack = .);
} > RAM
}

1
hw/bsp/rx63n/family.mk Normal file
View File

@ -0,0 +1 @@
include $(TOP)/$(BOARD_PATH)/board.mk

1
hw/mcu/renesas/rx Submodule

@ -0,0 +1 @@
Subproject commit 4a51dfe6ecdf936d2d89f223f069e24a2d109207

View File

@ -0,0 +1,736 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Koji Kitayama
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && ( CFG_TUSB_MCU == OPT_MCU_RX63X )
#include "device/dcd.h"
#include "iodefine.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
#define SYSTEM_PRCR_PRC1 (1<<1)
#define SYSTEM_PRCR_PRKEY (0xA5u<<8)
#define USB_FIFOSEL_TX ((uint16_t)(1u<<5))
#define USB_FIFOSEL_MBW_8 ((uint16_t)(0u<<10))
#define USB_FIFOSEL_MBW_16 ((uint16_t)(1u<<10))
#define USB_IS0_CTSQ ((uint16_t)(7u))
#define USB_IS0_DVSQ ((uint16_t)(7u<<4))
#define USB_IS0_VALID ((uint16_t)(1u<<3))
#define USB_IS0_BRDY ((uint16_t)(1u<<8))
#define USB_IS0_NRDY ((uint16_t)(1u<<9))
#define USB_IS0_BEMP ((uint16_t)(1u<<10))
#define USB_IS0_CTRT ((uint16_t)(1u<<11))
#define USB_IS0_DVST ((uint16_t)(1u<<12))
#define USB_IS0_SOFR ((uint16_t)(1u<<13))
#define USB_IS0_RESM ((uint16_t)(1u<<14))
#define USB_IS0_VBINT ((uint16_t)(1u<<15))
#define USB_IS1_SACK ((uint16_t)(1u<<4))
#define USB_IS1_SIGN ((uint16_t)(1u<<5))
#define USB_IS1_EOFERR ((uint16_t)(1u<<6))
#define USB_IS1_ATTCH ((uint16_t)(1u<<11))
#define USB_IS1_DTCH ((uint16_t)(1u<<12))
#define USB_IS1_BCHG ((uint16_t)(1u<<14))
#define USB_IS1_OVRCR ((uint16_t)(1u<<15))
#define USB_IS0_CTSQ_MSK (7u)
#define USB_IS0_CTSQ_SETUP (1u)
#define USB_IS0_DVSQ_DEF (1u<<4)
#define USB_IS0_DVSQ_ADDR (2u<<4)
#define USB_IS0_DVSQ_SUSP (4u<<4)
#define USB_PIPECTR_PID_NAK (0u)
#define USB_PIPECTR_PID_BUF (1u)
#define USB_PIPECTR_PID_STALL (2u)
#define USB_PIPECTR_CCPL (1u<<2)
#define USB_PIPECTR_SQMON (1u<<6)
#define USB_PIPECTR_SQCLR (1u<<8)
#define USB_PIPECTR_ACLRM (1u<<9)
#define USB_PIPECTR_INBUFM (1u<<14)
#define USB_PIPECTR_BSTS (1u<<15)
#define USB_FIFOCTR_DTLN (0x1FF)
#define USB_FIFOCTR_FRDY (1u<<13)
#define USB_FIFOCTR_BCLR (1u<<14)
#define USB_FIFOCTR_BVAL (1u<<15)
#define USB_PIPECFG_SHTNAK (1u<<7)
#define USB_PIPECFG_DBLB (1u<<9)
#define USB_PIPECFG_BULK (1u<<14)
#define USB_PIPECFG_ISO (3u<<14)
#define USB_PIPECFG_INT (2u<<14)
#define FIFO_REQ_CLR (1u)
#define FIFO_COMPLETE (1u<<1)
typedef struct {
union {
struct {
uint16_t : 8;
uint16_t TRCLR: 1;
uint16_t TRENB: 1;
uint16_t : 0;
};
uint16_t TRE;
};
uint16_t TRN;
} reg_pipetre_t;
typedef union {
struct {
volatile uint16_t u8: 8;
volatile uint16_t : 0;
};
volatile uint16_t u16;
} hw_fifo_t;
typedef struct TU_ATTR_PACKED
{
uintptr_t addr; /* the start address of a transfer data buffer */
uint16_t length; /* the number of bytes in the buffer */
uint16_t remaining; /* the number of bytes remaining in the buffer */
struct {
uint32_t ep : 8; /* an assigned endpoint address */
uint32_t : 0;
};
} pipe_state_t;
typedef struct
{
pipe_state_t pipe[9];
uint8_t ep[2][16]; /* a lookup table for a pipe index from an endpoint address */
} dcd_data_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
CFG_TUSB_MEM_SECTION static dcd_data_t _dcd;
static uint32_t disable_interrupt(void)
{
uint32_t pswi;
pswi = __builtin_rx_mvfc(0) & 0x010000;
__builtin_rx_clrpsw('I');
return pswi;
}
static void enable_interrupt(uint32_t pswi)
{
__builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi);
}
static unsigned find_pipe(unsigned xfer)
{
switch (xfer) {
case TUSB_XFER_ISOCHRONOUS:
for (int i = 1; i <= 2; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
break;
case TUSB_XFER_BULK:
for (int i = 3; i <= 5; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
for (int i = 1; i <= 1; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
break;
case TUSB_XFER_INTERRUPT:
for (int i = 6; i <= 9; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
break;
default:
/* No support for control transfer */
break;
}
return 0;
}
static volatile uint16_t* get_pipectr(unsigned num)
{
volatile uint16_t *ctr = NULL;
if (num) {
ctr = (volatile uint16_t*)&USB0.PIPE1CTR.WORD;
ctr += num - 1;
} else {
ctr = (volatile uint16_t*)&USB0.DCPCTR.WORD;
}
return ctr;
}
static volatile reg_pipetre_t* get_pipetre(unsigned num)
{
volatile reg_pipetre_t* tre = NULL;
if ((1 <= num) && (num <= 5)) {
tre = (volatile reg_pipetre_t*)&USB0.PIPE1TRE.WORD;
tre += num - 1;
}
return tre;
}
static volatile uint16_t* ep_addr_to_pipectr(uint8_t rhport, unsigned ep_addr)
{
(void)rhport;
volatile uint16_t *ctr = NULL;
const unsigned epn = tu_edpt_number(ep_addr);
if (epn) {
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
if (num) {
ctr = (volatile uint16_t*)&USB0.PIPE1CTR.WORD;
ctr += num - 1;
}
} else {
ctr = (volatile uint16_t*)&USB0.DCPCTR.WORD;
}
return ctr;
}
static unsigned wait_for_pipe_ready(void)
{
unsigned ctr;
do {
ctr = USB0.D0FIFOCTR.WORD;
} while (!(ctr & USB_FIFOCTR_FRDY));
return ctr;
}
static unsigned select_pipe(unsigned num, unsigned attr)
{
USB0.PIPESEL.WORD = num;
USB0.D0FIFOSEL.WORD = num | attr;
while (!(USB0.D0FIFOSEL.BIT.CURPIPE != num)) ;
return wait_for_pipe_ready();
}
/* 1 less than mps bytes were written to FIFO
* 2 no bytes were written to FIFO
* 0 mps bytes were written to FIFO */
static int fifo_write(volatile void *fifo, pipe_state_t* pipe, unsigned mps)
{
unsigned rem = pipe->remaining;
if (!rem) return 2;
unsigned len = TU_MIN(rem, mps);
hw_fifo_t *reg = (hw_fifo_t*)fifo;
uintptr_t addr = pipe->addr + pipe->length - rem;
if (addr & 1u) {
/* addr is not 2-byte aligned */
reg->u8 = *(const uint8_t *)addr;
++addr;
--len;
}
while (len >= 2) {
reg->u16 = *(const uint16_t *)addr;
addr += 2;
len -= 2;
}
if (len) {
reg->u8 = *(const uint8_t *)addr;
++addr;
}
if (rem < mps) return 1;
return 0;
}
/* 1 less than mps bytes were read from FIFO
* 2 the end of the buffer reached.
* 0 mps bytes were read from FIFO */
static int fifo_read(volatile void *fifo, pipe_state_t* pipe, unsigned mps, size_t len)
{
unsigned rem = pipe->remaining;
if (!rem) return 2;
if (rem < len) len = rem;
pipe->remaining = rem - len;
hw_fifo_t *reg = (hw_fifo_t*)fifo;
uintptr_t addr = pipe->addr;
unsigned loop = len;
while (loop--) {
*(uint8_t *)addr = reg->u8;
++addr;
}
pipe->addr = addr;
if (rem < mps) return 1;
if (rem == len) return 2;
return 0;
}
static void process_setup_packet(uint8_t rhport)
{
uint16_t setup_packet[4];
if (0 == (USB0.INTSTS0.WORD & USB_IS0_VALID)) return;
USB0.CFIFOCTR.WORD = USB_FIFOCTR_BCLR;
setup_packet[0] = USB0.USBREQ.WORD;
setup_packet[1] = USB0.USBVAL;
setup_packet[2] = USB0.USBINDX;
setup_packet[3] = USB0.USBLENG;
USB0.INTSTS0.WORD = ~USB_IS0_VALID;
dcd_event_setup_received(rhport, (const uint8_t*)&setup_packet[0], true);
}
static void process_status_completion(uint8_t rhport)
{
uint8_t ep_addr;
/* Check the data stage direction */
if (USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX) {
/* IN transfer. */
ep_addr = tu_edpt_addr(0, TUSB_DIR_IN);
} else {
/* OUT transfer. */
ep_addr = tu_edpt_addr(0, TUSB_DIR_OUT);
}
dcd_event_xfer_complete(rhport, ep_addr, 0, XFER_RESULT_SUCCESS, true);
}
static bool process_edpt0_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void)rhport;
pipe_state_t *pipe = &_dcd.pipe[0];
/* configure fifo direction and access unit settings */
if (ep_addr) { /* IN, 2 bytes */
USB0.CFIFOSEL.WORD = USB_FIFOSEL_TX | USB_FIFOSEL_MBW_16;
while (!(USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX)) ;
} else { /* OUT, a byte */
USB0.CFIFOSEL.WORD = USB_FIFOSEL_MBW_8;
while (USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX) ;
}
if (total_bytes) {
pipe->addr = (uintptr_t)buffer;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
if (ep_addr) { /* IN */
TU_ASSERT(USB0.DCPCTR.BIT.BSTS && (USB0.USBREQ.WORD & 0x80));
if (fifo_write(&USB0.CFIFO.WORD, pipe, 64)) {
USB0.CFIFOCTR.WORD = USB_FIFOCTR_BVAL;
}
}
USB0.DCPCTR.WORD = USB_PIPECTR_PID_BUF;
} else {
/* ZLP */
pipe->addr = 0;
pipe->length = 0;
pipe->remaining = 0;
USB0.DCPCTR.WORD = USB_PIPECTR_CCPL | USB_PIPECTR_PID_BUF;
}
return true;
}
static void process_edpt0_bemp(uint8_t rhport)
{
pipe_state_t *pipe = &_dcd.pipe[0];
const unsigned rem = pipe->remaining;
if (rem > 64) {
pipe->remaining = rem - 64;
int r = fifo_write(&USB0.CFIFO.WORD, &_dcd.pipe[0], 64);
if (r) USB0.CFIFOCTR.WORD = USB_FIFOCTR_BVAL;
return;
}
pipe->addr = 0;
pipe->remaining = 0;
dcd_event_xfer_complete(rhport, tu_edpt_addr(0, TUSB_DIR_IN),
pipe->length, XFER_RESULT_SUCCESS, true);
}
static void process_edpt0_brdy(uint8_t rhport)
{
size_t len = USB0.CFIFOCTR.BIT.DTLN;
int cplt = fifo_read(&USB0.CFIFO.WORD, &_dcd.pipe[0], 64, len);
if (cplt || (len < 64)) {
if (2 != cplt) {
USB0.CFIFOCTR.WORD = USB_FIFOCTR_BCLR;
}
dcd_event_xfer_complete(rhport, tu_edpt_addr(0, TUSB_DIR_OUT),
_dcd.pipe[0].length - _dcd.pipe[0].remaining,
XFER_RESULT_SUCCESS, true);
}
}
static bool process_pipe_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void)rhport;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
TU_ASSERT(num);
pipe_state_t *pipe = &_dcd.pipe[num];
pipe->addr = (uintptr_t)buffer;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
USB0.PIPESEL.WORD = num;
const unsigned mps = USB0.PIPEMAXP.WORD;
if (dir) { /* IN */
USB0.D0FIFOSEL.WORD = num | USB_FIFOSEL_MBW_16;
while (!(USB0.D0FIFOSEL.BIT.CURPIPE != num)) ;
int r = fifo_write(&USB0.D0FIFO.WORD, pipe, mps);
if (r) USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BVAL;
USB0.D0FIFOSEL.WORD = 0;
} else {
volatile reg_pipetre_t *pt = get_pipetre(num);
if (pt) {
volatile uint16_t *ctr = get_pipectr(num);
if (*ctr & 0x3) *ctr = USB_PIPECTR_PID_NAK;
pt->TRE = TU_BIT(8);
pt->TRN = (total_bytes + mps - 1) / mps;
pt->TRENB = 1;
*ctr = USB_PIPECTR_PID_BUF;
}
}
// TU_LOG1("X %x %d\r\n", ep_addr, total_bytes);
return true;
}
static void process_pipe_brdy(uint8_t rhport, unsigned num)
{
pipe_state_t *pipe = &_dcd.pipe[num];
if (tu_edpt_dir(pipe->ep)) { /* IN */
select_pipe(num, USB_FIFOSEL_MBW_16);
const unsigned mps = USB0.PIPEMAXP.WORD;
unsigned rem = pipe->remaining;
rem -= TU_MIN(rem, mps);
pipe->remaining = rem;
if (rem) {
int r = 0;
r = fifo_write(&USB0.D0FIFO.WORD, pipe, mps);
if (r) USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BVAL;
USB0.D0FIFOSEL.WORD = 0;
return;
}
USB0.D0FIFOSEL.WORD = 0;
pipe->addr = 0;
pipe->remaining = 0;
dcd_event_xfer_complete(rhport, pipe->ep, pipe->length,
XFER_RESULT_SUCCESS, true);
} else {
const unsigned ctr = select_pipe(num, USB_FIFOSEL_MBW_8);
const unsigned len = ctr & USB_FIFOCTR_DTLN;
const unsigned mps = USB0.PIPEMAXP.WORD;
int cplt = fifo_read(&USB0.D0FIFO.WORD, pipe, mps, len);
if (cplt || (len < mps)) {
if (2 != cplt) {
USB0.D0FIFO.WORD = USB_FIFOCTR_BCLR;
}
USB0.D0FIFOSEL.WORD = 0;
dcd_event_xfer_complete(rhport, pipe->ep,
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
return;
}
USB0.D0FIFOSEL.WORD = 0;
}
}
static void process_bus_reset(uint8_t rhport)
{
USB0.BEMPENB.WORD = 1;
USB0.BRDYENB.WORD = 1;
USB0.CFIFOCTR.WORD = USB_FIFOCTR_BCLR;
USB0.D0FIFOSEL.WORD = 0;
USB0.D1FIFOSEL.WORD = 0;
volatile uint16_t *ctr = (volatile uint16_t*)((uintptr_t)(&USB0.PIPE1CTR.WORD));
volatile uint16_t *tre = (volatile uint16_t*)((uintptr_t)(&USB0.PIPE1TRE.WORD));
for (int i = 1; i <= 5; ++i) {
USB0.PIPESEL.WORD = i;
USB0.PIPECFG.WORD = 0;
*ctr = USB_PIPECTR_ACLRM;
*ctr = 0;
++ctr;
*tre = TU_BIT(8);
tre += 2;
}
for (int i = 6; i <= 9; ++i) {
USB0.PIPESEL.WORD = i;
USB0.PIPECFG.WORD = 0;
*ctr = USB_PIPECTR_ACLRM;
*ctr = 0;
++ctr;
}
tu_varclr(&_dcd);
dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true);
}
static void process_set_address(uint8_t rhport)
{
const uint32_t addr = USB0.USBADDR.BIT.USBADDR;
if (!addr) return;
const tusb_control_request_t setup_packet = {
.bmRequestType = 0,
.bRequest = 5,
.wValue = addr,
.wIndex = 0,
.wLength = 0,
};
dcd_event_setup_received(rhport, (const uint8_t*)&setup_packet, true);
}
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
void dcd_init(uint8_t rhport)
{
(void)rhport;
/* Enable USB0 */
uint32_t pswi = disable_interrupt();
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY | SYSTEM_PRCR_PRC1;
MSTP(USB0) = 0;
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY;
enable_interrupt(pswi);
USB0.SYSCFG.BIT.SCKE = 1;
while (!USB0.SYSCFG.BIT.SCKE) ;
USB0.SYSCFG.BIT.DRPD = 0;
USB0.SYSCFG.BIT.DCFM = 0;
USB0.SYSCFG.BIT.USBE = 1;
IR(USB0, USBI0) = 0;
/* Setup default control pipe */
USB0.DCPMAXP.BIT.MXPS = 64;
USB0.INTENB0.WORD = USB_IS0_VBINT | USB_IS0_BRDY | USB_IS0_BEMP | USB_IS0_DVST | USB_IS0_CTRT;
USB0.BEMPENB.WORD = 1;
USB0.BRDYENB.WORD = 1;
if (USB0.INTSTS0.BIT.VBSTS) {
dcd_connect(rhport);
}
}
void dcd_int_enable(uint8_t rhport)
{
(void)rhport;
IEN(USB0, USBI0) = 1;
}
void dcd_int_disable(uint8_t rhport)
{
(void)rhport;
IEN(USB0, USBI0) = 0;
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
(void)dev_addr;
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void)rhport;
/* TODO */
}
void dcd_connect(uint8_t rhport)
{
(void)rhport;
USB0.SYSCFG.BIT.DPRPU = 1;
}
void dcd_disconnect(uint8_t rhport)
{
(void)rhport;
USB0.SYSCFG.BIT.DPRPU = 0;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void)rhport;
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned xfer = ep_desc->bmAttributes.xfer;
const unsigned mps = ep_desc->wMaxPacketSize.size;
if (xfer == TUSB_XFER_ISOCHRONOUS && mps > 256) {
/* USBa supports up to 256 bytes */
return false;
}
const unsigned num = find_pipe(xfer);
if (!num) return false;
_dcd.pipe[num].ep = ep_addr;
_dcd.ep[dir][epn] = num;
/* setup pipe */
dcd_int_disable(rhport);
USB0.PIPESEL.WORD = num;
USB0.PIPEMAXP.WORD = mps;
volatile uint16_t *ctr = get_pipectr(num);
*ctr = USB_PIPECTR_ACLRM;
*ctr = 0;
unsigned cfg = (dir << 4) | epn;
if (xfer == TUSB_XFER_BULK) {
cfg |= USB_PIPECFG_BULK | USB_PIPECFG_SHTNAK | USB_PIPECFG_DBLB;
} else if (xfer == TUSB_XFER_INTERRUPT) {
cfg |= USB_PIPECFG_INT;
} else {
cfg |= USB_PIPECFG_ISO | USB_PIPECFG_DBLB;
}
USB0.PIPECFG.WORD = cfg;
USB0.BRDYSTS.WORD = 0x1FFu ^ TU_BIT(num);
USB0.BRDYENB.WORD |= TU_BIT(num);
if (dir || (xfer != TUSB_XFER_BULK)) {
*ctr = USB_PIPECTR_PID_BUF;
}
// TU_LOG1("O %d %x %x\r\n", USB0.PIPESEL.WORD, USB0.PIPECFG.WORD, USB0.PIPEMAXP.WORD);
dcd_int_enable(rhport);
return true;
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
USB0.BRDYENB.WORD &= ~TU_BIT(num);
volatile uint16_t *ctr = get_pipectr(num);
*ctr = 0;
USB0.PIPESEL.WORD = num;
USB0.PIPECFG.WORD = 0;
_dcd.pipe[num].ep = 0;
_dcd.ep[dir][epn] = 0;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
bool r;
const unsigned epn = tu_edpt_number(ep_addr);
dcd_int_disable(rhport);
if (0 == epn) {
r = process_edpt0_xfer(rhport, ep_addr, buffer, total_bytes);
} else {
r = process_pipe_xfer(rhport, ep_addr, buffer, total_bytes);
}
dcd_int_enable(rhport);
return r;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr);
if (!ctr) return;
dcd_int_disable(rhport);
const uint32_t pid = *ctr & 0x3;
*ctr = pid | USB_PIPECTR_PID_STALL;
*ctr = USB_PIPECTR_PID_STALL;
dcd_int_enable(rhport);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr);
if (!ctr) return;
dcd_int_disable(rhport);
*ctr = USB_PIPECTR_SQCLR;
if (tu_edpt_dir(ep_addr)) { /* IN */
*ctr = USB_PIPECTR_PID_BUF;
} else {
const unsigned num = _dcd.ep[0][tu_edpt_number(ep_addr)];
USB0.PIPESEL.WORD = num;
if (USB0.PIPECFG.BIT.TYPE != 1) {
*ctr = USB_PIPECTR_PID_BUF;
}
}
dcd_int_enable(rhport);
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_int_handler(uint8_t rhport)
{
(void)rhport;
unsigned is0 = USB0.INTSTS0.WORD;
/* clear bits except VALID */
USB0.INTSTS0.WORD = USB_IS0_VALID;
if (is0 & USB_IS0_VBINT) {
if (USB0.INTSTS0.BIT.VBSTS) {
dcd_connect(rhport);
} else {
dcd_disconnect(rhport);
}
}
if (is0 & USB_IS0_DVST) {
switch (is0 & USB_IS0_DVSQ) {
case USB_IS0_DVSQ_DEF:
process_bus_reset(rhport);
break;
case USB_IS0_DVSQ_ADDR:
process_set_address(rhport);
break;
default:
break;
}
}
if (is0 & USB_IS0_CTRT) {
if (is0 & USB_IS0_CTSQ_SETUP) {
/* A setup packet has been received. */
process_setup_packet(rhport);
} else if (0 == (is0 & USB_IS0_CTSQ_MSK)) {
/* A ZLP has been sent/received. */
process_status_completion(rhport);
}
}
if (is0 & USB_IS0_BEMP) {
const unsigned s = USB0.BEMPSTS.WORD;
USB0.BEMPSTS.WORD = 0;
if (s & 1) {
process_edpt0_bemp(rhport);
}
}
if (is0 & USB_IS0_BRDY) {
const unsigned m = USB0.BRDYENB.WORD;
unsigned s = USB0.BRDYSTS.WORD & m;
USB0.BRDYSTS.WORD = 0;
if (s & 1) {
process_edpt0_brdy(rhport);
s &= ~1;
}
while (s) {
const unsigned num = __builtin_ctz(s);
process_pipe_brdy(rhport, num);
s &= ~TU_BIT(num);
}
}
}
#endif

View File

@ -108,6 +108,9 @@
#define OPT_MCU_EFM32GG11 1301 ///< Silabs EFM32GG11
#define OPT_MCU_EFM32GG12 1302 ///< Silabs EFM32GG12
// Renesas RX
#define OPT_MCU_RX63X 1400 ///< Renesas RX63N/631
/** @} */
/** \defgroup group_supported_os Supported RTOS