espressif_tinyusb/src/class/hid/hid_device.c

354 lines
11 KiB
C
Raw Normal View History

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_HID)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "common/tusb_common.h"
#include "hid_device.h"
#include "device/usbd_pvt.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
uint8_t itf_num;
uint8_t ep_in;
uint8_t ep_out; // optional Out endpoint
uint8_t boot_protocol; // Boot mouse or keyboard
bool boot_mode; // default = false (Report)
uint8_t idle_rate; // up to application to handle idle rate
uint16_t report_desc_len;
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_HID_EP_BUFSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_HID_EP_BUFSIZE];
tusb_hid_descriptor_hid_t const * hid_descriptor;
} hidd_interface_t;
CFG_TUSB_MEM_SECTION static hidd_interface_t _hidd_itf[CFG_TUD_HID];
/*------------- Helpers -------------*/
static inline hidd_interface_t* get_interface_by_itfnum(uint8_t itf_num)
{
for (uint8_t i=0; i < CFG_TUD_HID; i++ )
{
if ( itf_num == _hidd_itf[i].itf_num ) return &_hidd_itf[i];
}
return NULL;
}
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
bool tud_hid_ready(void)
{
uint8_t itf = 0;
uint8_t const ep_in = _hidd_itf[itf].ep_in;
return tud_ready() && (ep_in != 0) && usbd_edpt_ready(TUD_OPT_RHPORT, ep_in);
}
bool tud_hid_report(uint8_t report_id, void const* report, uint8_t len)
{
TU_VERIFY( tud_hid_ready() );
uint8_t itf = 0;
hidd_interface_t * p_hid = &_hidd_itf[itf];
if (report_id)
{
len = tu_min8(len, CFG_TUD_HID_EP_BUFSIZE-1);
p_hid->epin_buf[0] = report_id;
memcpy(p_hid->epin_buf+1, report, len);
len++;
}else
{
// If report id = 0, skip ID field
len = tu_min8(len, CFG_TUD_HID_EP_BUFSIZE);
memcpy(p_hid->epin_buf, report, len);
}
return usbd_edpt_xfer(TUD_OPT_RHPORT, p_hid->ep_in, p_hid->epin_buf, len);
}
bool tud_hid_boot_mode(void)
{
uint8_t itf = 0;
return _hidd_itf[itf].boot_mode;
}
//--------------------------------------------------------------------+
// KEYBOARD API
//--------------------------------------------------------------------+
bool tud_hid_keyboard_report(uint8_t report_id, uint8_t modifier, uint8_t keycode[6])
{
hid_keyboard_report_t report;
report.modifier = modifier;
if ( keycode )
{
memcpy(report.keycode, keycode, 6);
}else
{
tu_memclr(report.keycode, 6);
}
return tud_hid_report(report_id, &report, sizeof(report));
}
//--------------------------------------------------------------------+
// MOUSE APPLICATION API
//--------------------------------------------------------------------+
bool tud_hid_mouse_report(uint8_t report_id, uint8_t buttons, int8_t x, int8_t y, int8_t vertical, int8_t horizontal)
{
hid_mouse_report_t report =
{
.buttons = buttons,
.x = x,
.y = y,
.wheel = vertical,
.pan = horizontal
};
return tud_hid_report(report_id, &report, sizeof(report));
}
//--------------------------------------------------------------------+
// USBD-CLASS API
//--------------------------------------------------------------------+
void hidd_init(void)
{
hidd_reset(TUD_OPT_RHPORT);
}
void hidd_reset(uint8_t rhport)
{
(void) rhport;
tu_memclr(_hidd_itf, sizeof(_hidd_itf));
}
2020-05-28 06:19:12 +02:00
uint16_t hidd_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
2020-05-28 06:19:12 +02:00
TU_VERIFY(TUSB_CLASS_HID == desc_itf->bInterfaceClass, 0);
2020-04-14 20:01:07 +02:00
2020-05-28 09:44:26 +02:00
// len = interface + hid + n*endpoints
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + sizeof(tusb_hid_descriptor_hid_t) + desc_itf->bNumEndpoints*sizeof(tusb_desc_endpoint_t);
TU_ASSERT(max_len >= drv_len, 0);
2019-12-23 01:18:54 +01:00
// Find available interface
hidd_interface_t * p_hid = NULL;
uint8_t hid_id;
for(hid_id=0; hid_id<CFG_TUD_HID; hid_id++)
{
if ( _hidd_itf[hid_id].ep_in == 0 )
{
p_hid = &_hidd_itf[hid_id];
break;
}
}
2020-05-28 06:19:12 +02:00
TU_ASSERT(p_hid, 0);
uint8_t const *p_desc = (uint8_t const *) desc_itf;
//------------- HID descriptor -------------//
p_desc = tu_desc_next(p_desc);
p_hid->hid_descriptor = (tusb_hid_descriptor_hid_t const *) p_desc;
2020-05-28 06:19:12 +02:00
TU_ASSERT(HID_DESC_TYPE_HID == p_hid->hid_descriptor->bDescriptorType, 0);
//------------- Endpoint Descriptor -------------//
p_desc = tu_desc_next(p_desc);
2020-05-28 06:19:12 +02:00
TU_ASSERT(usbd_open_edpt_pair(rhport, p_desc, desc_itf->bNumEndpoints, TUSB_XFER_INTERRUPT, &p_hid->ep_out, &p_hid->ep_in), 0);
if ( desc_itf->bInterfaceSubClass == HID_SUBCLASS_BOOT ) p_hid->boot_protocol = desc_itf->bInterfaceProtocol;
p_hid->boot_mode = false; // default mode is REPORT
p_hid->itf_num = desc_itf->bInterfaceNumber;
// Use offsetof to avoid pointer to the odd/misaligned address
memcpy(&p_hid->report_desc_len, (uint8_t*) p_hid->hid_descriptor + offsetof(tusb_hid_descriptor_hid_t, wReportLength), 2);
// Prepare for output endpoint
if (p_hid->ep_out)
{
if ( !usbd_edpt_xfer(rhport, p_hid->ep_out, p_hid->epout_buf, sizeof(p_hid->epout_buf)) )
{
TU_LOG1_FAILED();
TU_BREAKPOINT();
}
}
2020-05-28 09:44:26 +02:00
return drv_len;
}
// Handle class control request
// return false to stall control endpoint (e.g unsupported request)
2019-11-27 06:34:30 +01:00
bool hidd_control_request(uint8_t rhport, tusb_control_request_t const * request)
{
2019-11-27 06:34:30 +01:00
TU_VERIFY(request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_INTERFACE);
hidd_interface_t* p_hid = get_interface_by_itfnum( (uint8_t) request->wIndex );
TU_ASSERT(p_hid);
2019-11-27 06:34:30 +01:00
if (request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD)
{
//------------- STD Request -------------//
2019-11-27 06:34:30 +01:00
uint8_t const desc_type = tu_u16_high(request->wValue);
uint8_t const desc_index = tu_u16_low (request->wValue);
(void) desc_index;
2019-11-27 06:34:30 +01:00
if (request->bRequest == TUSB_REQ_GET_DESCRIPTOR && desc_type == HID_DESC_TYPE_HID)
{
TU_VERIFY(p_hid->hid_descriptor != NULL);
2019-11-27 06:34:30 +01:00
TU_VERIFY(tud_control_xfer(rhport, request, (void*) p_hid->hid_descriptor, p_hid->hid_descriptor->bLength));
}
2019-11-27 06:34:30 +01:00
else if (request->bRequest == TUSB_REQ_GET_DESCRIPTOR && desc_type == HID_DESC_TYPE_REPORT)
{
uint8_t const * desc_report = tud_hid_descriptor_report_cb();
2019-11-27 06:34:30 +01:00
tud_control_xfer(rhport, request, (void*) desc_report, p_hid->report_desc_len);
}
else
{
return false; // stall unsupported request
}
}
2019-11-27 06:34:30 +01:00
else if (request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS)
{
//------------- Class Specific Request -------------//
2019-11-27 06:34:30 +01:00
switch( request->bRequest )
{
case HID_REQ_CONTROL_GET_REPORT:
{
// wValue = Report Type | Report ID
2019-11-27 06:34:30 +01:00
uint8_t const report_type = tu_u16_high(request->wValue);
uint8_t const report_id = tu_u16_low(request->wValue);
2019-11-27 06:34:30 +01:00
uint16_t xferlen = tud_hid_get_report_cb(report_id, (hid_report_type_t) report_type, p_hid->epin_buf, request->wLength);
TU_ASSERT( xferlen > 0 );
2019-11-27 06:34:30 +01:00
tud_control_xfer(rhport, request, p_hid->epin_buf, xferlen);
}
break;
case HID_REQ_CONTROL_SET_REPORT:
2019-11-27 06:34:30 +01:00
TU_VERIFY(request->wLength <= sizeof(p_hid->epout_buf));
tud_control_xfer(rhport, request, p_hid->epout_buf, request->wLength);
break;
case HID_REQ_CONTROL_SET_IDLE:
2019-11-27 06:34:30 +01:00
p_hid->idle_rate = tu_u16_high(request->wValue);
if ( tud_hid_set_idle_cb )
{
// stall request if callback return false
if ( !tud_hid_set_idle_cb(p_hid->idle_rate) ) return false;
}
2019-11-27 06:34:30 +01:00
tud_control_status(rhport, request);
break;
case HID_REQ_CONTROL_GET_IDLE:
// TODO idle rate of report
2019-11-27 06:34:30 +01:00
tud_control_xfer(rhport, request, &p_hid->idle_rate, 1);
break;
case HID_REQ_CONTROL_GET_PROTOCOL:
{
uint8_t protocol = (uint8_t)(1-p_hid->boot_mode); // 0 is Boot, 1 is Report protocol
2019-11-27 06:34:30 +01:00
tud_control_xfer(rhport, request, &protocol, 1);
}
break;
case HID_REQ_CONTROL_SET_PROTOCOL:
2019-11-27 06:34:30 +01:00
p_hid->boot_mode = 1 - request->wValue; // 0 is Boot, 1 is Report protocol
if (tud_hid_boot_mode_cb) tud_hid_boot_mode_cb(p_hid->boot_mode);
2019-11-27 06:34:30 +01:00
tud_control_status(rhport, request);
break;
default: return false; // stall unsupported request
}
}else
{
return false; // stall unsupported request
}
return true;
}
// Invoked when class request DATA stage is finished.
// return false to stall control endpoint (e.g Host send non-sense DATA)
bool hidd_control_complete(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void) rhport;
hidd_interface_t* p_hid = get_interface_by_itfnum( (uint8_t) p_request->wIndex );
TU_ASSERT(p_hid);
if (p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS &&
p_request->bRequest == HID_REQ_CONTROL_SET_REPORT)
{
// wValue = Report Type | Report ID
uint8_t const report_type = tu_u16_high(p_request->wValue);
uint8_t const report_id = tu_u16_low(p_request->wValue);
tud_hid_set_report_cb(report_id, (hid_report_type_t) report_type, p_hid->epout_buf, p_request->wLength);
}
return true;
}
bool hidd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void) result;
2019-12-23 01:18:54 +01:00
uint8_t itf = 0;
hidd_interface_t * p_hid = _hidd_itf;
for ( ; ; itf++, p_hid++)
{
if (itf >= TU_ARRAY_SIZE(_hidd_itf)) return false;
if ( ep_addr == p_hid->ep_out ) break;
}
if (ep_addr == p_hid->ep_out)
{
tud_hid_set_report_cb(0, HID_REPORT_TYPE_INVALID, p_hid->epout_buf, xferred_bytes);
TU_ASSERT(usbd_edpt_xfer(rhport, p_hid->ep_out, p_hid->epout_buf, sizeof(p_hid->epout_buf)));
}
return true;
}
#endif