stm32f1/lib/busvoodoo_global.c

174 lines
11 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** BusVoodoo global definitions and methods (code)
* @file busvoodoo_global.c
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2018
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <math.h> // math utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/adc.h> // ADC utilities
#include <libopencm3/stm32/dac.h> // DAC utilities
/* own libraries */
#include "global.h" // board definitions
#include "busvoodoo_global.h" // BusVoodoo definitions
const char* busvoodoo_io_names[13] = {"I2C_SMBA/SPI_NSS/I2S_WS", "SDIO_CMD", "USART_CTS/SPI_SCK/I2S_CK", "SDIO_D3/UART_RX", "I2C_SDA/USART_RX", "SDIO_D0", "SPI_MOSI/I2S_SD", "SDIO_CK/USART_CK", "I2C_SCL/USART_TX", "SDIO_D1", "I2S_MCK", "USART_RTS/SPI_MISO", "SDIO_D2/UART_TX"};
const uint32_t busvoodoo_io_ports[13] = {GPIOB, GPIOD, GPIOB, GPIOC, GPIOB, GPIOC, GPIOB, GPIOC, GPIOB, GPIOC, GPIOC, GPIOB, GPIOC};
const uint32_t busvoodoo_io_pins[13] = {GPIO12, GPIO2, GPIO13, GPIO11, GPIO11, GPIO8, GPIO15, GPIO12, GPIO10, GPIO9, GPIO6, GPIO14, GPIO10};
const uint8_t busvoodoo_io_groups[13] = {6, 6, 4, 4, 1, 1, 5, 5, 2, 2, 3, 3, 3};
bool busvoodoo_full = false;
void busvoodoo_setup(void)
{
// enable all GPIO domains since we use pins on all ports
rcc_periph_clock_enable(RCC_GPIOA); // enable clock for all GPIO domains
rcc_periph_clock_enable(RCC_GPIOB); // enable clock for all GPIO domains
rcc_periph_clock_enable(RCC_GPIOC); // enable clock for all GPIO domains
rcc_periph_clock_enable(RCC_GPIOD); // enable clock for all GPIO domains
busvoodoo_safe_state(); // switch off all outputs
// check if this BusVoodoo is a full version
rcc_periph_clock_enable(RCC_ADC12_IN(BUSVOODOO_12V_CHANNEL)); // enable clock for GPIO domain for 12V channel
gpio_set(ADC12_IN_PORT(BUSVOODOO_12V_CHANNEL), ADC12_IN_PIN(BUSVOODOO_12V_CHANNEL)); // pull ADC 12V high
gpio_set_mode(ADC12_IN_PORT(BUSVOODOO_12V_CHANNEL), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, ADC12_IN_PIN(BUSVOODOO_12V_CHANNEL)); // set 12V channel as digital input with pull-up capabilities
// on a full version (fully populated board) the ADC 12V signal will be pulled low
if (gpio_get(ADC12_IN_PORT(BUSVOODOO_12V_CHANNEL), ADC12_IN_PIN(BUSVOODOO_12V_CHANNEL))) { // check is ADC 12V is pulled low
busvoodoo_full = false;
} else {
busvoodoo_full = true;
}
// setup ADC to measure the 5V, 3.3V, xV, and 12V power rails voltages
rcc_periph_clock_enable(RCC_ADC12_IN(BUSVOODOO_5V_CHANNEL)); // enable clock for GPIO domain for 5V channel
gpio_set_mode(ADC12_IN_PORT(BUSVOODOO_5V_CHANNEL), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, ADC12_IN_PIN(BUSVOODOO_5V_CHANNEL)); // set 5V channel as analogue input for the ADC
rcc_periph_clock_enable(RCC_ADC12_IN(BUSVOODOO_3V3_CHANNEL)); // enable clock for GPIO domain for 3.3V channel
gpio_set_mode(ADC12_IN_PORT(BUSVOODOO_3V3_CHANNEL), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, ADC12_IN_PIN(BUSVOODOO_3V3_CHANNEL)); // set 3.3V channel as analogue input for the ADC
rcc_periph_clock_enable(RCC_ADC12_IN(BUSVOODOO_XV_CHANNEL)); // enable clock for GPIO domain for xV channel
gpio_set_mode(ADC12_IN_PORT(BUSVOODOO_XV_CHANNEL), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, ADC12_IN_PIN(BUSVOODOO_XV_CHANNEL)); // set xV channel as analogue input for the ADC
rcc_periph_clock_enable(RCC_ADC12_IN(BUSVOODOO_12V_CHANNEL)); // enable clock for GPIO domain for 12V channel
gpio_set_mode(ADC12_IN_PORT(BUSVOODOO_12V_CHANNEL), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, ADC12_IN_PIN(BUSVOODOO_12V_CHANNEL)); // set 12V channel as analogue input for the ADC
rcc_periph_clock_enable(RCC_ADC1); // enable clock for ADC domain
adc_off(ADC1); // switch off ADC while configuring it
adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_28DOT5CYC); // use 28.5 cycles to sample (long enough to be stable)
adc_enable_temperature_sensor(ADC1); // enable internal voltage reference
adc_enable_external_trigger_regular(ADC1, ADC_CR2_EXTSEL_SWSTART); // use software trigger to start conversion
uint8_t channels[] = {ADC_CHANNEL17, ADC_CHANNEL(BUSVOODOO_5V_CHANNEL), ADC_CHANNEL(BUSVOODOO_3V3_CHANNEL), ADC_CHANNEL(BUSVOODOO_XV_CHANNEL), ADC_CHANNEL(BUSVOODOO_12V_CHANNEL)}; // voltages to convert: internal, 5V, 3.3V, xV, 12V
adc_set_regular_sequence(ADC1, LENGTH(channels), channels); // set channels to convert
adc_enable_discontinuous_mode_regular(ADC1, LENGTH(channels)); // convert all channels
adc_power_on(ADC1); // switch on ADC
sleep_us(1); // wait t_stab for the ADC to stabilize
adc_reset_calibration(ADC1); // remove previous non-calibration
adc_calibration(ADC1); // calibrate ADC for less accuracy errors
// setup DAC to control xV and 12V voltage outputs
gpio_set_mode(GPIO(BUSVOODOO_XVCTL_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO(BUSVOODOO_XVCTL_PIN)); // set xV pin as analog (the DAC will use it as output)
rcc_periph_clock_enable(RCC_DAC); // enable clock for DAC domain
dac_disable(BUSVOODOO_XVCTL_CHANNEL); // disable output to configure it properly
dac_buffer_enable(BUSVOODOO_XVCTL_CHANNEL); // enable output buffer to be able to drive larger loads (should be per default)
if (busvoodoo_full) {
gpio_set_mode(GPIO(BUSVOODOO_12VCTL_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO(BUSVOODOO_12VCTL_PIN)); // set 12V pin as analog (the DAC will use it as output)
dac_disable(BUSVOODOO_12VCTL_CHANNEL); // disable output to configure it properly
dac_buffer_enable(BUSVOODOO_12VCTL_CHANNEL); // enable output buffer to be able to drive larger loads (should be per default)
}
dac_set_trigger_source(DAC_CR_TSEL1_SW); // use software to trigger the voltage change
dac_set_trigger_source(DAC_CR_TSEL2_SW); // use software to trigger the voltage change
}
void busvoodoo_safe_state(void)
{
// disable voltage outputs
gpio_set(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO(BUSVOODOO_VOUTEN_PIN)); // disable 5V and 3.3V output on connector
gpio_set_mode(GPIO(BUSVOODOO_VOUTEN_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO(BUSVOODOO_VOUTEN_PIN)); // set pin as output (open-drain pulled high to disable the pMOS)
gpio_clear(GPIO(BUSVOODOO_XVEN_PORT), GPIO(BUSVOODOO_XVEN_PIN)); // disable xV voltage regulator
gpio_set_mode(GPIO(BUSVOODOO_XVEN_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(BUSVOODOO_XVEN_PIN)); // set pin as output (push-pull, pulled low for safety)
gpio_set(GPIO(BUSVOODOO_12VEN_PORT), GPIO(BUSVOODOO_12VEN_PIN)); // disable 12V voltage regulator
gpio_set_mode(GPIO(BUSVOODOO_12VEN_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO(BUSVOODOO_12VEN_PIN)); // set pin as output (open-drain pulled high to disable the pMOS)
// set DAC channel back to analog
gpio_set_mode(GPIO(BUSVOODOO_XVCTL_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO(BUSVOODOO_XVCTL_PIN)); // set xV pin as analog
gpio_set_mode(GPIO(BUSVOODOO_12VCTL_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO(BUSVOODOO_12VCTL_PIN)); // set 12V pin as analog
// disable embedded pull-ups
gpio_primary_remap(AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW_ON, 0); // disable JTAG (but keep SWD) so to use the underlying GPIOs (PA15, PB3, PB4)
gpio_set(GPIO(BUSVOODOO_5VPULLUP_PORT), GPIO(BUSVOODOO_5VPULLUP_PIN)); // set pin high to disable 5V embedded pull-up
gpio_set_mode(GPIO(BUSVOODOO_5VPULLUP_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO(BUSVOODOO_5VPULLUP_PIN)); // set pin as output (open-drain pulled high to disable the pMOS)
gpio_set(GPIO(BUSVOODOO_OEPULLUP_PORT), GPIO(BUSVOODOO_OEPULLUP_PIN)); // set pin high to disable embedded pull-up bus switch
gpio_set_mode(GPIO(BUSVOODOO_OEPULLUP_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO(BUSVOODOO_OEPULLUP_PIN)); // set pin as output (open-drain pulled high to disable the bus switch)
// disable all signal I/O outputs
for (uint8_t pin=0; pin<LENGTH(busvoodoo_io_ports) && pin<LENGTH(busvoodoo_io_pins); pin++) {
gpio_set_mode(busvoodoo_io_ports[pin], GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, busvoodoo_io_pins[pin]); // set pin back to input (floating)
}
// disable all RS-232 and some RS-485 signals (put back to input floating)
gpio_set_mode(GPIO(BUSVOODOO_RS232_TX_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(BUSVOODOO_RS232_TX_PIN));
gpio_set_mode(GPIO(BUSVOODOO_RS232_RX_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(BUSVOODOO_RS232_RX_PIN));
gpio_set_mode(GPIO(BUSVOODOO_RS232_RTS_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(BUSVOODOO_RS232_RTS_PIN));
gpio_set_mode(GPIO(BUSVOODOO_RS232_CTS_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(BUSVOODOO_RS232_CTS_PIN));
gpio_set(GPIO(BUSVOODOO_RS232_EN_PORT), GPIO(BUSVOODOO_RS232_EN_PIN)); // set high to disable receiver
gpio_clear(GPIO(BUSVOODOO_RS232_SHDN_PORT), GPIO(BUSVOODOO_RS232_SHDN_PIN)); // set low to disable transmitter
// disable all CAN and some RS-458 signals (put back to input floating)
gpio_set_mode(GPIO(BUSVOODOO_CAN_TX_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(BUSVOODOO_CAN_TX_PIN));
gpio_set_mode(GPIO(BUSVOODOO_CAN_RX_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(BUSVOODOO_CAN_RX_PIN));
gpio_set_mode(GPIO(BUSVOODOO_CAN_EN_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(BUSVOODOO_CAN_EN_PIN));
gpio_set_mode(GPIO(BUSVOODOO_CAN_S_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(BUSVOODOO_CAN_S_PIN));
}
float busvoodoo_rail_voltage(uint8_t channel)
{
if (channel!=BUSVOODOO_5V_CHANNEL && channel!=BUSVOODOO_3V3_CHANNEL && channel!=BUSVOODOO_XV_CHANNEL && channel!=BUSVOODOO_12V_CHANNEL) { // check channel
return NAN;
}
uint16_t channels[5] = {0}; // to start converted values: internal reference 1.2V, 5V rail, 3.3V rail, xV rail, 12V rail
adc_start_conversion_regular(ADC1); // start conversion to get first voltage
for (uint8_t channel_i=0; channel_i<LENGTH(channels); channel_i++) { // get all conversions
while (!adc_eoc(ADC1)); // wait until conversion finished
channels[channel_i] = adc_read_regular(ADC1); // read voltage value (clears flag)
}
float to_return = NAN; // voltage to return
switch (channel) { // get converter value and calculate according to the voltage divider on this channel
case BUSVOODOO_5V_CHANNEL:
to_return = channels[1]/(10.0/(10.0+10.0));
break;
case BUSVOODOO_3V3_CHANNEL:
to_return = channels[2]/(10.0/(10.0+10.0));
break;
case BUSVOODOO_XV_CHANNEL:
to_return = channels[3]/(10.0/(10.0+10.0));
break;
case BUSVOODOO_12V_CHANNEL:
to_return = channels[4]/(1.5/(10.0+1.5));
break;
default: // unknown channel
to_return = NAN;
break;
}
if (!isnan(to_return)) {
to_return *= 1.2/channels[0]; // calculate voltage from converted values using internal 1.2V voltage reference
}
return to_return;
}