stm32f1/application.c

805 lines
34 KiB
C

/** SWJ (SWD + JTAG) finder
* @file
* @author King Kévin <kingkevin@cuvoodoo.info>
* @copyright SPDX-License-Identifier: GPL-3.0-or-later
* @date 2016-2021
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // standard utilities
#include <string.h> // string utilities
#include <time.h> // date/time utilities
#include <ctype.h> // utilities to check chars
#include <math.h> // rounding utilities
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/scb.h> // vector table definition
#include <libopencm3/cm3/nvic.h> // interrupt utilities
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/exti.h> // external interrupt utilities
#include <libopencm3/stm32/rtc.h> // real time clock utilities
#include <libopencm3/stm32/iwdg.h> // independent watchdog utilities
#include <libopencm3/stm32/dbgmcu.h> // debug utilities
#include <libopencm3/stm32/desig.h> // design utilities
#include <libopencm3/stm32/flash.h> // flash utilities
#include <libopencm3/stm32/adc.h> // ADC utilities
/* own libraries */
#include "global.h" // board definitions
#include "print.h" // printing utilities
#include "usb_cdcacm.h" // USB CDC ACM utilities
#include "terminal.h" // handle the terminal interface
#include "menu.h" // menu utilities
#include "swd.h" // SWD utilities
/** watchdog period in ms */
#define WATCHDOG_PERIOD 10000
/** wakeup frequency (i.e. least number of times per second to perform the main loop) */
#define WAKEUP_FREQ 16
/** @defgroup main_flags flag set in interrupts to be processed in main task
* @{
*/
static volatile bool wakeup_flag = false; /**< flag set when wakeup timer triggered */
static volatile bool second_flag = false; /**< flag set when a second passed */
/** @} */
/** number of seconds since boot */
static uint32_t boot_time = 0;
#define TARGET_CHANNEL 1 /**< PA1/ADC1_IN1 used to measure target voltage */
#define SIGNAL_CHANNEL 2 /**< PA2/ADC1_IN2 used to measure signal voltage */
const uint8_t channels[] = {ADC_CHANNEL17, ADC_CHANNEL(TARGET_CHANNEL), ADC_CHANNEL(SIGNAL_CHANNEL)}; /**< voltages to convert (channel 17 = internal voltage reference) */
#define SIGNAL_PD_PIN PA3 /**< pin to pull signal low for voltage measurement */
#define SIGNAL_PU_PIN PA4 /**< pin to pull signal to target voltage (controlling gate of pMOS) */
#define TARGET_EN PA5 /**< pin to provide target voltage to LV side of voltage shifter (pulling them high through 10 kO) */
#define MUX_EN_PIN PB2 /**< pin to enable analog multiplexer (active low) */
#define MUX_S0_PIN PA6 /**< pin to set S0 bit of analog multiplexer */
#define MUX_S1_PIN PA7 /**< pin to set S1 bit of analog multiplexer */
#define MUX_S2_PIN PB0 /**< pin to set S2 bit of analog multiplexer */
#define MUX_S3_PIN PB1 /**< pin to set S3 bit of analog multiplexer */
#define SIGNAL_NUMBERS 12 /**< number of target signals */
static const char* signal_names[] = {"B12", "B13", "B14", "B15", "A8 ", "A9 ", "A10", "A15", "B3 ", "B4 ", "B5 ", "B6 "}; /**< names of pin connected to target signals */
static const uint32_t signal_rccs[] = {GPIO_RCC(PB12), GPIO_RCC(PB13), GPIO_RCC(PB14), GPIO_RCC(PB15), GPIO_RCC(PA8), GPIO_RCC(PA9), GPIO_RCC(PA10), GPIO_RCC(PA15), GPIO_RCC(PB3), GPIO_RCC(PB4), GPIO_RCC(PB5), GPIO_RCC(PB6)}; /**< RCC for signal pin ports */
static const uint32_t signal_ports[] = {GPIO_PORT(PB12), GPIO_PORT(PB13), GPIO_PORT(PB14), GPIO_PORT(PB15), GPIO_PORT(PA8), GPIO_PORT(PA9), GPIO_PORT(PA10), GPIO_PORT(PA15), GPIO_PORT(PB3), GPIO_PORT(PB4), GPIO_PORT(PB5), GPIO_PORT(PB6)}; /**< GPIO ports for signal pin */
static const uint32_t signal_pins[] = {GPIO_PIN(PB12), GPIO_PIN(PB13), GPIO_PIN(PB14), GPIO_PIN(PB15), GPIO_PIN(PA8), GPIO_PIN(PA9), GPIO_PIN(PA10), GPIO_PIN(PA15), GPIO_PIN(PB3), GPIO_PIN(PB4), GPIO_PIN(PB5), GPIO_PIN(PB6)}; /**< GPIO pins for signal pin */
size_t putc(char c)
{
size_t length = 0; // number of characters printed
static char last_c = 0; // to remember on which character we last sent
if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF
if ('\r' != last_c) { // CR has not already been sent
usb_cdcacm_putchar('\r'); // send CR over USB
length++; // remember we printed 1 character
}
}
usb_cdcacm_putchar(c); // send byte over USB
length++; // remember we printed 1 character
last_c = c; // remember last character
return length; // return number of characters printed
}
/** print voltage with fixed precision
* @param[in] voltage voltage to print
* @param[in] precision number of digits after comma to print
* @note %f is used to force scientific notation
*/
static void print_fpu(double voltage, uint8_t precision)
{
uint32_t multiplier = 1;
for (uint8_t i = 0; i < precision; i++) {
multiplier *= 10;
}
double to_print = round(voltage * multiplier);
printf("%d.", (int32_t)to_print / multiplier);
char decimal[32];
snprintf(decimal, LENGTH(decimal), "%u", abs(to_print) % multiplier);
if (strlen(decimal) > precision) {
decimal[precision] = 0;
}
for (uint8_t i = strlen(decimal); i < precision; i++) {
putc('0');
}
puts(decimal);
}
/** measure target and signal voltages
* @return voltages of channels
*/
static float* measure_voltages(void)
{
static float voltages[LENGTH(channels)]; // to store and return the voltages
// read lid temperature using ADC
ADC_SR(ADC1) = 0; // reset flags
uint16_t adc_values[LENGTH(channels)];
for (uint8_t i = 0; i < LENGTH(channels); i++) {
adc_start_conversion_regular(ADC1); // start conversion (using trigger)
while (!adc_eoc(ADC1)); // wait until conversion finished
adc_values[i] = adc_read_regular(ADC1); // read voltage value (clears flag)
voltages[i] = adc_values[i] * 1.21 / adc_values[0]; // use 1.21 V internal voltage reference to get ADC voltage
}
voltages[1] *= 2.0; // the is a /2 voltage divider for target voltage
return voltages;
}
/** measure and print target voltage */
static void print_voltage_target(void)
{
gpio_set(GPIO_PORT(SIGNAL_PU_PIN), GPIO_PIN(SIGNAL_PU_PIN)); // ensure we are not pulling up the signal
gpio_set(GPIO_PORT(SIGNAL_PD_PIN), GPIO_PIN(SIGNAL_PD_PIN)); // ensure we are not pulling down the signal
gpio_set(GPIO_PORT(TARGET_EN), GPIO_PIN(TARGET_EN)); // ensure the level shifters pulling up the signals are not enabled
float* voltages = measure_voltages(); // measure voltages
puts("target voltage: ");
print_fpu(voltages[1], 2);
puts(" V");
if (voltages[1] > 3.25) {
puts(" (warning: signal voltage may exceed 3.30 V limit)");
} else if (voltages[1] < 1.0) {
puts(" (warning: target voltage seems not connected)");
}
putc('\n');
}
/** select channel of multiplexer
* @param[in] channel channel to select, or -1 to disable multiplexer
*/
static void mux_select(int8_t channel)
{
gpio_set(GPIO_PORT(MUX_EN_PIN), GPIO_PIN(MUX_EN_PIN)); // disable multiplexer while we are switching
if (channel < 0 || channel > 15) {
return; // no channel to select
}
// select channel using bit pattern
if (channel & 0x1) {
gpio_set(GPIO_PORT(MUX_S0_PIN), GPIO_PIN(MUX_S0_PIN));
} else {
gpio_clear(GPIO_PORT(MUX_S0_PIN), GPIO_PIN(MUX_S0_PIN));
}
if (channel & 0x2) {
gpio_set(GPIO_PORT(MUX_S1_PIN), GPIO_PIN(MUX_S1_PIN));
} else {
gpio_clear(GPIO_PORT(MUX_S1_PIN), GPIO_PIN(MUX_S1_PIN));
}
if (channel & 0x4) {
gpio_set(GPIO_PORT(MUX_S2_PIN), GPIO_PIN(MUX_S2_PIN));
} else {
gpio_clear(GPIO_PORT(MUX_S2_PIN), GPIO_PIN(MUX_S2_PIN));
}
if (channel & 0x8) {
gpio_set(GPIO_PORT(MUX_S3_PIN), GPIO_PIN(MUX_S3_PIN));
} else {
gpio_clear(GPIO_PORT(MUX_S3_PIN), GPIO_PIN(MUX_S3_PIN));
}
gpio_clear(GPIO_PORT(MUX_EN_PIN), GPIO_PIN(MUX_EN_PIN)); // enable multiplexer
}
// menu commands
static void command_swd_scan(void* argument)
{
(void)argument; // we won't use the argument
printf("SWD target DPIDR: ");
uint32_t data; // data to read/write over SWD
enum swd_ack_e ack; // SWD acknowledge response
swd_line_reset(); // put target in reset state
swd_jtag_to_swd(); // put target SWJ in SWD mode
swd_line_reset(); // put target in reset state
swd_idle_cycles(2); // idle before packer request
swd_packet_request(false, SWD_A_DP_DPIDR, true); // request DPIDR
swd_turnaround(1); // switch from writing to reading
ack = swd_acknowledge_response(); // get ack
if (SWD_ACK_OK != ack) {
printf("ack error\n");
return;
}
if (!swd_read(&data)) {
printf("parity error\n");
return;
}
swd_turnaround(1); // switch from reading to writing
printf("0x%08x ", data);
if (data & 0x1) {
printf("(designer: %03x/%s, version: %u, part number: 0x%02x/%s, revision %u)\n", (data >> 1) & 0x3ff, swd_jep106_manufacturer((data >> 8) & 0x0f, (data >> 1) & 0x7f), (data >> 12) & 0x0f, (data >> 20) & 0xff, swd_dpidr_partno((data >> 1) & 0x3ff, (data >> 20) & 0xff), (data >> 28) & 0x0f);
} else {
printf("(invalid: RAO != 1)\n");
}
}
static void command_voltages(void* argument)
{
(void)argument; // we won't use the argument
float* voltages;
print_voltage_target(); // print target voltage (also sets measurement conditions)
puts("signal voltages:\n");
for (uint8_t i = 0; i < SIGNAL_NUMBERS; i++) {
puts("- ");
puts(signal_names[i]);
mux_select(i); // select the channel
voltages = measure_voltages(); // measure raw voltages
puts(" ");
print_fpu(voltages[2], 2);
puts(" V\n");
}
}
/** identify if signal is an input or output
* @param[in] argument no argument required
*/
static void command_types(void* argument)
{
(void)argument; // we won't use the argument
float* voltages;
print_voltage_target(); // print target voltage (also sets measurement conditions)
puts("signal voltage pulled pulled\n");
puts(" pin raw down up \n");
// just to be sure, reset measurement conditions
gpio_set(GPIO_PORT(SIGNAL_PD_PIN), GPIO_PIN(SIGNAL_PD_PIN)); // ensure pull-down is not active
gpio_set(GPIO_PORT(SIGNAL_PU_PIN), GPIO_PIN(SIGNAL_PU_PIN)); // ensure pull-up is not active
gpio_set(GPIO_PORT(TARGET_EN), GPIO_PIN(TARGET_EN)); // ensure the level shifters pulling up the signals are not enabled
for (uint8_t i = 0; i < SIGNAL_NUMBERS; i++) {
puts(signal_names[i]);
puts(" ");
mux_select(i); // select the channel
voltages = measure_voltages(); // measure raw voltages
print_voltage(voltages[2], 2);
puts(" ");
gpio_clear(GPIO_PORT(SIGNAL_PD_PIN), GPIO_PIN(SIGNAL_PD_PIN)); // pull-down signal
voltages = measure_voltages(); // measure pulled down voltages
print_voltage(voltages[2], 2);
gpio_set(GPIO_PORT(SIGNAL_PD_PIN), GPIO_PIN(SIGNAL_PD_PIN)); // remove pull-down
puts(" ");
gpio_clear(GPIO_PORT(SIGNAL_PU_PIN), GPIO_PIN(SIGNAL_PU_PIN)); // pull-up signal
voltages = measure_voltages(); // measure pulled up voltages
print_voltage(voltages[2], 2);
gpio_set(GPIO_PORT(SIGNAL_PU_PIN), GPIO_PIN(SIGNAL_PU_PIN)); // remove pull-up
putc('\n');
}
mux_select(-1); // disable multiplexer
}
/** display available commands
* @param[in] argument no argument required
*/
static void command_help(void* argument);
/** show software and hardware version
* @param[in] argument no argument required
*/
static void command_version(void* argument)
{
(void)argument; // we won't use the argument
printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date
printf("device serial: %08x%08x%08x\n", DESIG_UNIQUE_ID2, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID0); // show complete serial (different than the one used for USB)
}
/** convert RTC date/time to number of seconds
* @return number of seconds since 2000-01-01 00:00:00
* @warning for simplicity I consider every month to have 31 days
*/
static uint32_t rtc_to_seconds(void)
{
rtc_wait_for_synchro(); // wait until date/time is synchronised
const uint8_t year = ((RTC_DR >> RTC_DR_YT_SHIFT) & RTC_DR_YT_MASK) * 10 + ((RTC_DR >> RTC_DR_YU_SHIFT) & RTC_DR_YU_MASK); // get year
uint8_t month = ((RTC_DR >> RTC_DR_MT_SHIFT) & RTC_DR_MT_MASK) * 10 + ((RTC_DR >> RTC_DR_MU_SHIFT) & RTC_DR_MU_MASK); // get month
if (month > 0) { // month has been initialized, but starts with 1
month--; // fix for calculation
}
uint8_t day = ((RTC_DR >> RTC_DR_DT_SHIFT) & RTC_DR_DT_MASK) * 10 + ((RTC_DR >> RTC_DR_DU_SHIFT) & RTC_DR_DU_MASK); // get day
if (day > 0) { // day has been initialized, but starts with 1
day--; // fix for calculation
}
const uint8_t hour = ((RTC_TR >> RTC_TR_HT_SHIFT) & RTC_TR_HT_MASK) * 10 + ((RTC_TR >> RTC_TR_HU_SHIFT) & RTC_TR_HU_MASK); // get hours
const uint8_t minute = ((RTC_TR >> RTC_TR_MNT_SHIFT) & RTC_TR_MNT_MASK) * 10 + ((RTC_TR >> RTC_TR_MNU_SHIFT) & RTC_TR_MNU_MASK); // get minutes
const uint8_t second = ((RTC_TR >> RTC_TR_ST_SHIFT) & RTC_TR_ST_MASK) * 10 + ((RTC_TR >> RTC_TR_SU_SHIFT) & RTC_TR_SU_MASK); // get seconds
const uint32_t seconds = ((((((((year * 12) + month) * 31) + day) * 24) + hour) * 60) + minute) * 60 + second; // convert to number of seconds
return seconds;
}
/** show uptime
* @param[in] argument no argument required
*/
static void command_uptime(void* argument)
{
(void)argument; // we won't use the argument
const uint32_t uptime = rtc_to_seconds() - boot_time; // get time from internal RTC
printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60);
}
/** show date and time
* @param[in] argument date and time to set
*/
static void command_datetime(void* argument)
{
char* datetime = (char*)argument; // argument is optional date time
const char* days[] = { "??", "Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"}; // the days of the week
// set date
if (datetime) { // date has been provided
// parse date
const char* malformed = "date and time malformed, expecting YYYY-MM-DD WD HH:MM:SS\n";
if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + 2 + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough
printf(malformed);
return;
}
if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && \
'-' == datetime[4] && \
isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && \
'-' == datetime[7] && \
isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && \
' ' == datetime[10] && \
isalpha((int8_t)datetime[11]) && isalpha((int8_t)datetime[12]) && \
' ' == datetime[13] && \
isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && \
':' == datetime[16] && \
isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]) && \
':' == datetime[19] && \
isdigit((int8_t)datetime[20]) && isdigit((int8_t)datetime[21]))) { // verify format (good enough to not fail parsing)
printf(malformed);
return;
}
const uint16_t year = strtol(&datetime[0], NULL, 10); // parse year
if (year <= 2000 || year > 2099) {
puts("year out of range\n");
return;
}
const uint8_t month = strtol(&datetime[5], NULL, 10); // parse month
if (month < 1 || month > 12) {
puts("month out of range\n");
return;
}
const uint8_t day = strtol(&datetime[8], NULL, 10); // parse day
if (day < 1 || day > 31) {
puts("day out of range\n");
return;
}
const uint8_t hour = strtol(&datetime[14], NULL, 10); // parse hour
if (hour > 24) {
puts("hour out of range\n");
return;
}
const uint8_t minute = strtol(&datetime[17], NULL, 10); // parse minutes
if (minute > 59) {
puts("minute out of range\n");
return;
}
const uint8_t second = strtol(&datetime[30], NULL, 10); // parse seconds
if (second > 59) {
puts("second out of range\n");
return;
}
uint8_t week_day = 0;
for (uint8_t i = 1; i < LENGTH(days) && 0 == week_day; i++) {
if (days[i][0] == toupper(datetime[11]) && days[i][1] == tolower(datetime[12])) {
week_day = i;
break;
}
}
if (0 == week_day) {
puts("unknown week day\n");
return;
}
uint32_t date = 0; // to build the date
date |= (((year - 2000) / 10) & RTC_DR_YT_MASK) << RTC_DR_YT_SHIFT; // set year tenth
date |= (((year - 2000) % 10) & RTC_DR_YU_MASK) << RTC_DR_YU_SHIFT; // set year unit
date |= ((month / 10) & RTC_DR_MT_MASK) << RTC_DR_MT_SHIFT; // set month tenth
date |= ((month % 10) & RTC_DR_MU_MASK) << RTC_DR_MU_SHIFT; // set month unit
date |= ((day / 10) & RTC_DR_DT_MASK) << RTC_DR_DT_SHIFT; // set day tenth
date |= ((day % 10) & RTC_DR_DU_MASK) << RTC_DR_DU_SHIFT; // set day unit
date |= (week_day & RTC_DR_WDU_MASK) << RTC_DR_WDU_SHIFT; // time day of the week
uint32_t time = 0; // to build the time
time = 0; // reset time
time |= ((hour / 10) & RTC_TR_HT_MASK) << RTC_TR_HT_SHIFT; // set hour tenth
time |= ((hour % 10) & RTC_TR_HU_MASK) << RTC_TR_HU_SHIFT; // set hour unit
time |= ((minute / 10) & RTC_TR_MNT_MASK) << RTC_TR_MNT_SHIFT; // set minute tenth
time |= ((minute % 10) & RTC_TR_MNU_MASK) << RTC_TR_MNU_SHIFT; // set minute unit
time |= ((second / 10) & RTC_TR_ST_MASK) << RTC_TR_ST_SHIFT; // set second tenth
time |= ((second % 10) & RTC_TR_SU_MASK) << RTC_TR_SU_SHIFT; // set second unit
// write date
pwr_disable_backup_domain_write_protect(); // disable backup protection so we can set the RTC clock source
rtc_unlock(); // enable writing RTC registers
RTC_ISR |= RTC_ISR_INIT; // enter initialisation mode
while (!(RTC_ISR & RTC_ISR_INITF)); // wait to enter initialisation mode
RTC_DR = date; // set date
RTC_TR = time; // set time
RTC_ISR &= ~RTC_ISR_INIT; // exit initialisation mode
rtc_lock(); // protect RTC register against writing
pwr_enable_backup_domain_write_protect(); // re-enable protection now that we configured the RTC clock
}
// show date
if (!(RTC_ISR & RTC_ISR_INITS)) { // date has not been set yet
puts("date/time not initialized\n");
} else {
rtc_wait_for_synchro(); // wait until date/time is synchronised
const uint8_t year = ((RTC_DR >> RTC_DR_YT_SHIFT) & RTC_DR_YT_MASK) * 10 + ((RTC_DR >> RTC_DR_YU_SHIFT) & RTC_DR_YU_MASK); // get year
const uint8_t month = ((RTC_DR >> RTC_DR_MT_SHIFT) & RTC_DR_MT_MASK) * 10 + ((RTC_DR >> RTC_DR_MU_SHIFT) & RTC_DR_MU_MASK); // get month
const uint8_t day = ((RTC_DR >> RTC_DR_DT_SHIFT) & RTC_DR_DT_MASK) * 10 + ((RTC_DR >> RTC_DR_DU_SHIFT) & RTC_DR_DU_MASK); // get day
const uint8_t week_day = ((RTC_DR >> RTC_DR_WDU_SHIFT) & RTC_DR_WDU_MASK); // get week day
const uint8_t hour = ((RTC_TR >> RTC_TR_HT_SHIFT) & RTC_TR_HT_MASK) * 10 + ((RTC_TR >> RTC_TR_HU_SHIFT) & RTC_TR_HU_MASK); // get hours
const uint8_t minute = ((RTC_TR >> RTC_TR_MNT_SHIFT) & RTC_TR_MNT_MASK) * 10 + ((RTC_TR >> RTC_TR_MNU_SHIFT) & RTC_TR_MNU_MASK); // get minutes
const uint8_t second = ((RTC_TR >> RTC_TR_ST_SHIFT) & RTC_TR_ST_MASK) * 10 + ((RTC_TR >> RTC_TR_SU_SHIFT) & RTC_TR_SU_MASK); // get seconds
printf("date: 20%02d-%02d-%02d %s %02d:%02d:%02d\n", year, month, day, days[week_day], hour, minute, second);
}
}
/** reset board
* @param[in] argument no argument required
*/
static void command_reset(void* argument)
{
(void)argument; // we won't use the argument
scb_reset_system(); // reset device
while (true); // wait for the reset to happen
}
/** switch to system memory (e.g. embedded bootloader)
* @param[in] argument no argument required
*/
static void command_system(void* argument)
{
(void)argument; // we won't use the argument
system_memory(); // jump to system memory
}
/** switch to DFU bootloader
* @param[in] argument no argument required
*/
static void command_bootloader(void* argument)
{
(void)argument; // we won't use the argument
dfu_bootloader(); // start DFU bootloader
}
/** list of all supported commands */
static const struct menu_command_t menu_commands[] = {
{
.shortcut = 'h',
.name = "help",
.command_description = "display help",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_help,
},
{
.shortcut = 'V',
.name = "version",
.command_description = "show software and hardware version",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_version,
},
{
.shortcut = 'u',
.name = "uptime",
.command_description = "show uptime",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_uptime,
},
{
.shortcut = 'd',
.name = "date",
.command_description = "show/set date and time",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[YYYY-MM-DD HH:MM:SS]",
.command_handler = &command_datetime,
},
{
.shortcut = 'r',
.name = "reset",
.command_description = "reset board",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_reset,
},
{
.shortcut = 'S',
.name = "system",
.command_description = "reboot into system memory",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_system,
},
{
.shortcut = 'b',
.name = "bootloader",
.command_description = "reboot into DFU bootloader",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_bootloader,
},
{
.shortcut = 's',
.name = "scan",
.command_description = "scan SWD device",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_swd_scan,
},
{
.shortcut = 'v',
.name = "voltage",
.command_description = "measure target and signal voltages",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_voltages,
},
{
.shortcut = 't',
.name = "type",
.command_description = "identify signal types",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_types,
},
};
static void command_help(void* argument)
{
(void)argument; // we won't use the argument
printf("available commands:\n");
menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands
}
/** process user command
* @param[in] str user command string (\0 ended)
*/
static void process_command(char* str)
{
// ensure actions are available
if (NULL == menu_commands || 0 == LENGTH(menu_commands)) {
return;
}
// don't handle empty lines
if (!str || 0 == strlen(str)) {
return;
}
bool command_handled = false;
if (!command_handled) {
command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command
}
if (!command_handled) {
printf("command not recognized. enter help to list commands\n");
}
}
/** program entry point
* this is the firmware function started by the micro-controller
*/
void main(void);
void main(void)
{
#if DEBUG
// enable functionalities for easier debug
DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered)
DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered)
DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered)
#else
// setup watchdog to reset in case we get stuck (i.e. when an error occurred)
iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period
iwdg_start(); // start independent watchdog
#endif
board_setup(); // setup board
usb_cdcacm_setup(); // setup USB CDC ACM (for printing)
puts("\nwelcome to the CuVoodoo SWJ finder\n"); // print welcome message
#if DEBUG
// show reset cause
if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) {
puts("reset cause(s):");
if (RCC_CSR & RCC_CSR_LPWRRSTF) {
puts(" low-power");
}
if (RCC_CSR & RCC_CSR_WWDGRSTF) {
puts(" window-watchdog");
}
if (RCC_CSR & RCC_CSR_IWDGRSTF) {
puts(" independent-watchdog");
}
if (RCC_CSR & RCC_CSR_SFTRSTF) {
puts(" software");
}
if (RCC_CSR & RCC_CSR_PORRSTF) {
puts(" POR/PDR");
}
if (RCC_CSR & RCC_CSR_PINRSTF) {
puts(" pin");
}
putc('\n');
RCC_CSR |= RCC_CSR_RMVF; // clear reset flags
}
#endif
#if !(DEBUG)
// show watchdog information
printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0);
if (FLASH_OBR & FLASH_OBR_OPTERR) {
puts(" (option bytes not set in flash: software watchdog used, not automatically started at reset)\n");
} else if (FLASH_OBR & FLASH_OBR_WDG_SW) {
puts(" (software watchdog used, not automatically started at reset)\n");
} else {
puts(" (hardware watchdog used, automatically started at reset)\n");
}
#endif
// setup RTC
puts("setup RTC: ");
rcc_periph_clock_enable(RCC_RTC); // enable clock for RTC peripheral
if (!(RCC_BDCR && RCC_BDCR_RTCEN)) { // the RTC has not been configured yet
pwr_disable_backup_domain_write_protect(); // disable backup protection so we can set the RTC clock source
rtc_unlock(); // enable writing RTC registers
#if defined(MINIF401)
rcc_osc_on(RCC_LSE); // enable LSE clock
while (!rcc_is_osc_ready(RCC_LSE)); // wait until clock is ready
rtc_set_prescaler(256, 128); // set clock prescaler to 32768
RCC_BDCR = (RCC_BDCR & ~(RCC_BDCR_RTCSEL_MASK << RCC_BDCR_RTCSEL_SHIFT)) | (RCC_BDCR_RTCSEL_LSE << RCC_BDCR_RTCSEL_SHIFT); // select LSE as RTC clock source
#else
rcc_osc_on(RCC_LSI); // enable LSI clock
while (!rcc_is_osc_ready(RCC_LSI)); // wait until clock is ready
rtc_set_prescaler(250, 128); // set clock prescaler to 32000
RCC_BDCR = (RCC_BDCR & ~(RCC_BDCR_RTCSEL_MASK << RCC_BDCR_RTCSEL_SHIFT)) | (RCC_BDCR_RTCSEL_LSI << RCC_BDCR_RTCSEL_SHIFT); // select LSI as RTC clock source
#endif
RCC_BDCR |= RCC_BDCR_RTCEN; // enable RTC
rtc_lock(); // protect RTC register against writing
pwr_enable_backup_domain_write_protect(); // re-enable protection now that we configured the RTC clock
}
boot_time = rtc_to_seconds(); // remember the start time
puts("OK\n");
// setup wakeup timer for periodic checks
puts("setup wakeup: ");
// RTC needs to be configured beforehand
pwr_disable_backup_domain_write_protect(); // disable backup protection so we can write to the RTC registers
rtc_unlock(); // enable writing RTC registers
rtc_clear_wakeup_flag(); // clear flag for fresh start
#if defined(MINIF401)
rtc_set_wakeup_time((32768 / 2) / WAKEUP_FREQ - 1, RTC_CR_WUCLKSEL_RTC_DIV2); // set wakeup time based on LSE (keep highest precision, also enables the wakeup timer)
#else
rtc_set_wakeup_time((32000 / 2) / WAKEUP_FREQ - 1, RTC_CR_WUCLKSEL_RTC_DIV2); // set wakeup time based on LSI (keep highest precision, also enables the wakeup timer)
#endif
rtc_enable_wakeup_timer_interrupt(); // enable interrupt
rtc_lock(); // disable writing RTC registers
// important: do not re-enable backup_domain_write_protect, since this will prevent clearing flags (but RTC registers do not need to be unlocked)
puts("OK\n");
puts("setup voltage control: ");
rcc_periph_clock_enable(GPIO_RCC(SIGNAL_PD_PIN)); // enable clock for port domain
gpio_set(GPIO_PORT(SIGNAL_PD_PIN), GPIO_PIN(SIGNAL_PD_PIN)); // ensure we are not draining it
gpio_set_output_options(GPIO_PORT(SIGNAL_PD_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(SIGNAL_PD_PIN)); // set output as open-drain
gpio_mode_setup(GPIO_PORT(SIGNAL_PD_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(SIGNAL_PD_PIN)); // configure pin as output
rcc_periph_clock_enable(GPIO_RCC(SIGNAL_PU_PIN)); // enable clock for port domain
gpio_set(GPIO_PORT(SIGNAL_PU_PIN), GPIO_PIN(SIGNAL_PU_PIN)); // ensure we are do enable pMOS to pull up the signal
gpio_set_output_options(GPIO_PORT(SIGNAL_PU_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(SIGNAL_PU_PIN)); // set output as open-drain
gpio_mode_setup(GPIO_PORT(SIGNAL_PU_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(SIGNAL_PU_PIN)); // configure pin as output
rcc_periph_clock_enable(GPIO_RCC(TARGET_EN)); // enable clock for port domain
gpio_set(GPIO_PORT(TARGET_EN), GPIO_PIN(TARGET_EN)); // ensure we do not enable pMOS to power level shifters
gpio_set_output_options(GPIO_PORT(TARGET_EN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(TARGET_EN)); // set output as open-drain
gpio_mode_setup(GPIO_PORT(TARGET_EN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(TARGET_EN)); // configure pin as output
puts("OK\n");
puts("setup analog multiplexer: ");
rcc_periph_clock_enable(GPIO_RCC(MUX_EN_PIN)); // enable clock for port domain
gpio_set(GPIO_PORT(MUX_EN_PIN), GPIO_PIN(MUX_EN_PIN)); // ensure multiplexer is disabled
gpio_set_output_options(GPIO_PORT(MUX_EN_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_EN_PIN)); // set output as push-pull to drive correctly
gpio_mode_setup(GPIO_PORT(MUX_EN_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_EN_PIN)); // configure pin as output
rcc_periph_clock_enable(GPIO_RCC(MUX_S0_PIN)); // enable clock for port domain
gpio_clear(GPIO_PORT(MUX_S0_PIN), GPIO_PIN(MUX_S0_PIN)); // any channel selected is fine
gpio_set_output_options(GPIO_PORT(MUX_S0_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_S0_PIN)); // set output as push-pull to drive correctly
gpio_mode_setup(GPIO_PORT(MUX_S0_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_S0_PIN)); // configure pin as output
rcc_periph_clock_enable(GPIO_RCC(MUX_S1_PIN)); // enable clock for port domain
gpio_clear(GPIO_PORT(MUX_S1_PIN), GPIO_PIN(MUX_S1_PIN)); // any channel selected is fine
gpio_set_output_options(GPIO_PORT(MUX_S1_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_S1_PIN)); // set output as push-pull to drive correctly
gpio_mode_setup(GPIO_PORT(MUX_S1_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_S1_PIN)); // configure pin as output
rcc_periph_clock_enable(GPIO_RCC(MUX_S2_PIN)); // enable clock for port domain
gpio_clear(GPIO_PORT(MUX_S2_PIN), GPIO_PIN(MUX_S2_PIN)); // any channel selected is fine
gpio_set_output_options(GPIO_PORT(MUX_S2_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_S2_PIN)); // set output as push-pull to drive correctly
gpio_mode_setup(GPIO_PORT(MUX_S2_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_S2_PIN)); // configure pin as output
rcc_periph_clock_enable(GPIO_RCC(MUX_S3_PIN)); // enable clock for port domain
gpio_clear(GPIO_PORT(MUX_S3_PIN), GPIO_PIN(MUX_S3_PIN)); // any channel selected is fine
gpio_set_output_options(GPIO_PORT(MUX_S3_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_S3_PIN)); // set output as push-pull to drive correctly
gpio_mode_setup(GPIO_PORT(MUX_S3_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_S3_PIN)); // configure pin as output
mux_select(-1); // ensure it is disabled
puts("OK\n");
puts("setup signal pins: ");
for (uint8_t i = 0; i < SIGNAL_NUMBERS; i++) {
rcc_periph_clock_enable(signal_rccs[i]); // enable clock for port domain
gpio_mode_setup(signal_ports[i], GPIO_MODE_INPUT, GPIO_PUPD_NONE, signal_pins[i]); // ensure pin is floating input
}
puts("OK\n");
puts("setup ADC to measure voltages: ");
rcc_periph_clock_enable(RCC_ADC1); // enable clock for ADC domain
adc_power_off(ADC1); // switch off ADC while configuring it
adc_set_right_aligned(ADC1); // ensure it is right aligned to get the actual value in the 16-bit register
adc_enable_scan_mode(ADC1); // use scan mode do be able to go to next discontinuous subgroup of the regular sequence
adc_enable_discontinuous_mode_regular(ADC1, 1); // use discontinuous mode (to go through all channels of the group, one after another)
adc_set_single_conversion_mode(ADC1); // ensure continuous mode is not used (that's not the same as discontinuous)
adc_eoc_after_each(ADC1); // set EOC after each conversion instead of each group
adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_28CYC); // use at least 15 cycles to be able to sample at 12-bit resolution
adc_set_regular_sequence(ADC1, LENGTH(channels), (uint8_t*)channels); // set channel to convert
adc_enable_temperature_sensor(); // enable internal voltage reference
adc_power_on(ADC1); // switch on ADC
sleep_us(3); // wait t_stab for the ADC to stabilize
rcc_periph_clock_enable(RCC_ADC1_IN(TARGET_CHANNEL)); // enable clock for GPIO domain for target voltage channel
gpio_mode_setup(ADC1_IN_PORT(TARGET_CHANNEL), GPIO_MODE_ANALOG, GPIO_PUPD_NONE, ADC1_IN_PIN(TARGET_CHANNEL)); // set target voltage channel as analog input for the ADC
rcc_periph_clock_enable(RCC_ADC1_IN(SIGNAL_CHANNEL)); // enable clock for GPIO domain for signal channel
gpio_mode_setup(ADC1_IN_PORT(SIGNAL_CHANNEL), GPIO_MODE_ANALOG, GPIO_PUPD_NONE, ADC1_IN_PIN(SIGNAL_CHANNEL)); // set signal channel as analog input for the ADC
measure_voltages(); // try to measure voltages
puts("OK\n");
puts("setup SWD: ");
if (!swd_set_pins(GPIO_PORT(PB10), GPIO_PIN(PB10), GPIO_PORT(PB2), GPIO_PIN(PB2))) {
puts("unknown pins\n");
} else {
swd_setup(100000); // setup SWD clock to 100 KHz, slow enough for any target and loose connection
puts("OK\n");
}
// setup terminal
terminal_prefix = ""; // set default prefix
terminal_process = &process_command; // set central function to process commands
terminal_setup(); // start terminal
// start main loop
bool action = false; // if an action has been performed don't go to sleep
button_flag = false; // reset button flag
led_on(); // switch LED to indicate booting completed
while (true) { // infinite loop
iwdg_reset(); // kick the dog
if (user_input_available) { // user input is available
action = true; // action has been performed
led_toggle(); // toggle LED
char c = user_input_get(); // store receive character
terminal_send(c); // send received character to terminal
}
if (button_flag) { // user pressed button
action = true; // action has been performed
puts("button pressed\n");
led_toggle(); // toggle LED
sleep_ms(100); // wait a bit to remove noise and double trigger
button_flag = false; // reset flag
}
if (wakeup_flag) { // time to do periodic checks
wakeup_flag = false; // clear flag
}
if (second_flag) { // one second passed
second_flag = false; // clear flag
led_toggle(); // toggle LED to indicate if main function is stuck
}
if (action) { // go to sleep if nothing had to be done, else recheck for activity
action = false;
} else {
__WFI(); // go to sleep
}
} // main loop
}
/** interrupt service routine when the wakeup timer triggered */
void rtc_wkup_isr(void)
{
static uint16_t tick = WAKEUP_FREQ; // how many wakeup have occurred
exti_reset_request(EXTI22); // clear EXTI flag used by wakeup
rtc_clear_wakeup_flag(); // clear flag
wakeup_flag = true; // notify main loop
tick--; // count the number of ticks down (do it in the ISR to no miss any tick)
if (0 == tick) { // count down completed
second_flag = true; // notify main loop a second has passed
tick = WAKEUP_FREQ; // restart count down
}
}