stm32f1/lib/usart_ir.c

176 lines
7.1 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/* this library handles USART communication over pulse coded InfraRed transmission */
/* peripherals used: USART, timer (check source for details) */
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdio.h> // standard I/O facilities
#include <stdlib.h> // general utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/usart.h> // universal synchronous asynchronous receiver transmitter library
#include <libopencm3/stm32/timer.h> // timer library
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include "usart_ir.h" // USART InfraRed header and definitions
/* which USART to use */
#define USART USART3
#define USART_RCC RCC_USART3
#define USART_IRQ NVIC_USART3_IRQ
#define USART_PORT GPIOB
#define USART_PIN_TX GPIO_USART3_TX
#define USART_PIN_RX GPIO_USART3_RX
/* which timer to use to create PWM for IR modulation */
#define TIMER TIM2
#define TIMER_RCC RCC_TIM2
#define TIMER_OC TIM_OC2
#define TIMER_PORT GPIOA
#define TIMER_PORT_RCC RCC_GPIOA
#define TIMER_PIN GPIO_TIM2_CH2
#define USART_BAUDRATE 2400 // serial baudrate (in bits per second, with 8N1 configuration)
#define USART_BUFFER 128 // RX and TX buffer sizes
#define IR_MODULATION 38000 // infra-red modulation frequency
/* input and output ring buffer, indexes, and available memory */
static uint8_t rx_buffer[USART_BUFFER] = {0};
static volatile uint8_t rx_i = 0;
static volatile uint8_t rx_used = 0;
static uint8_t tx_buffer[USART_BUFFER] = {0};
static volatile uint8_t tx_i = 0;
static volatile uint8_t tx_used = 0;
/* show the user how much data received over USART is ready */
volatile uint8_t usart_ir_received = 0; // same as rx_used, but since the user can write this variable we don't rely on it
/* setup USART/IR peripheral */
void usart_ir_setup(void)
{
/* setup timer to generate infra-red pulse modulation (using PWM) */
rcc_periph_clock_enable(TIMER_PORT_RCC); // enable clock for GPIO peripheral
gpio_set_mode(TIMER_PORT, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, TIMER_PIN); // set pin a output
rcc_periph_clock_enable(RCC_AFIO); // enable clock for alternate function (PWM)
rcc_periph_clock_enable(TIMER_RCC); // enable clock for timer peripheral
timer_reset(TIMER); // reset timer state
timer_set_mode(TIMER, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock, edge alignment (simple count), and count up
timer_set_prescaler(TIMER, 0); // no pre-scaler to keep most precise timer (72MHz/2^16=1099Hz)
timer_set_period(TIMER, rcc_ahb_frequency/IR_MODULATION-1+15); // set the infra-red modulation frequency (plus hand tuning)
timer_set_oc_value(TIMER, TIMER_OC, rcc_ahb_frequency/IR_MODULATION/2-1); // duty cycle to 50%
timer_set_oc_mode(TIMER, TIMER_OC, TIM_OCM_PWM1); // set timer to generate PWM
timer_enable_oc_output(TIMER, TIMER_OC); // enable output to provide the modulation
timer_enable_counter(TIMER); // start timer to generate modulation
/* enable USART I/O peripheral */
rcc_periph_clock_enable(USART_RCC); // enable clock for USART peripheral
gpio_set_mode(USART_PORT, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, USART_PIN_TX); // setup GPIO pin USART transmit
gpio_set_mode(USART_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, USART_PIN_RX); // setup GPIO pin USART receive
gpio_set(USART_PORT, USART_PIN_RX); // pull up to avoid noise when not connected
/* setup UART parameters */
usart_set_baudrate(USART, USART_BAUDRATE);
usart_set_databits(USART, 8);
usart_set_stopbits(USART, USART_STOPBITS_1);
usart_set_mode(USART, USART_MODE_TX_RX);
usart_set_parity(USART, USART_PARITY_NONE);
usart_set_flow_control(USART, USART_FLOWCONTROL_NONE);
nvic_enable_irq(USART_IRQ); // enable the USART interrupt
usart_enable_rx_interrupt(USART); // enable receive interrupt
usart_enable(USART); // enable USART
/* reset buffer states */
tx_i = 0;
tx_used = 0;
rx_i = 0;
rx_used = 0;
usart_ir_received = 0;
}
/* put character on USART/IR (blocking) */
void usart_ir_putchar_blocking(char c)
{
usart_ir_flush(); // empty buffer first
usart_send_blocking(USART, c); // send character
}
/* ensure all data has been transmitted (blocking) */
void usart_ir_flush(void)
{
while (tx_used) { // idle until buffer is empty
__WFI(); // sleep until interrupt
}
usart_wait_send_ready(USART); // wait until transmit register is empty (transmission might not be complete)
}
/* get character from USART/IR (blocking) */
char usart_ir_getchar(void)
{
while (!rx_used) { // idle until data is available
__WFI(); // sleep until interrupt;
}
char to_return = rx_buffer[rx_i]; // get the next available character
rx_i = (rx_i+1)%sizeof(rx_buffer); // update used buffer
rx_used--; // update used buffer
usart_ir_received = rx_used; // update available data
return to_return;
}
/* put character on USART/IR (non-blocking until buffer is full) */
void usart_ir_putchar_nonblocking(char c)
{
while (tx_used>=sizeof(tx_buffer)) { // idle until buffer has some space
usart_enable_tx_interrupt(USART); // enable transmit interrupt
__WFI(); // sleep until something happened
}
tx_buffer[(tx_i+tx_used)%sizeof(tx_buffer)] = c; // put character in buffer
tx_used++; // update used buffer
usart_enable_tx_interrupt(USART); // enable transmit interrupt
}
#if (USART==USART1)
void usart1_isr(void)
#elif (USART==USART2)
void usart2_isr(void)
#elif (USART==USART3)
void usart3_isr(void)
#endif
{ // USART interrupt
if (usart_get_interrupt_source(USART, USART_SR_TXE)) { // data has been transmitted
if (!tx_used) { // no data in the buffer to transmit
usart_disable_tx_interrupt(USART); // disable transmit interrupt
} else {
usart_send(USART,tx_buffer[tx_i]); // put data in transmit register
tx_i = (tx_i+1)%sizeof(rx_buffer); // update location on buffer
tx_used--; // update used size
}
}
if (usart_get_interrupt_source(USART, USART_SR_RXNE)) { // data has been received
// only save data if there is space in the buffer
if (rx_used>=sizeof(rx_buffer)) {
usart_recv(USART); // read to clear interrupt
} else {
rx_buffer[(rx_i+rx_used)%sizeof(rx_buffer)] = usart_recv(USART); // put character in buffer
rx_used++; // update used buffer
usart_ir_received = rx_used; // update available data
}
}
}