stm32f1/application.c

973 lines
40 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** dachboden front panel access control
* @file
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2016-2020
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // standard utilities
#include <string.h> // string utilities
#include <time.h> // date/time utilities
#include <ctype.h> // utilities to check chars
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/scb.h> // vector table definition
#include <libopencm3/cm3/nvic.h> // interrupt utilities
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/exti.h> // external interrupt utilities
#include <libopencm3/stm32/rtc.h> // real time clock utilities
#include <libopencm3/stm32/iwdg.h> // independent watchdog utilities
#include <libopencm3/stm32/dbgmcu.h> // debug utilities
#include <libopencm3/stm32/desig.h> // design utilities
#include <libopencm3/stm32/flash.h> // flash utilities
#include <libopencm3/stm32/f1/bkp.h> // backup domain utilities
#include <libopencm3/stm32/timer.h> // timer utilities
/* own libraries */
#include "global.h" // board definitions
#include "print.h" // printing utilities
#include "uart.h" // USART utilities
#include "usb_cdcacm.h" // USB CDC ACM utilities
#include "terminal.h" // handle the terminal interface
#include "menu.h" // menu utilities
#include "led_ws2812b.h" // WS2812B RGB LED control
/** watchdog period in ms */
#define WATCHDOG_PERIOD 10000
/** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime
* set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time
*/
#define RTC_DATE_TIME 1
/** number of RTC ticks per second
* @note use integer divider of oscillator to keep second precision
*/
#define RTC_TICKS_SECOND 1
#if defined(RTC_DATE_TIME) && RTC_DATE_TIME
/** the start time from which to RTC ticks count
* @note this allows the 32-bit value to reach further in time, particularly when there are several ticks per second
*/
const time_t rtc_offset = 1577833200; // We 1. Jan 00:00:00 CET 2020
#endif
/** RTC time when device is started */
static time_t time_start = 0;
/** @defgroup main_flags flag set in interrupts to be processed in main task
* @{
*/
volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */
/** @} */
/** GPIO pin connected to relay, used to control button connection to panel */
#define RELAY_PANEL_PIN PB6
/** GPIO pin connected to relay, used to simulate button press */
#define RELAY_BUTTON_PIN PB7
/** GPIO for button 1 */
#define BUTTON1_PIN PB9
/** GPIO for button 2 */
#define BUTTON2_PIN PB8
/** which button has been pressed */
volatile uint8_t button_pressed = 0;
/** if we apply the opening policy */
bool opening_apply = false;
uint8_t pattern_length = 0;
static struct opening_settings_t {
uint8_t days; /**< which days of the week it door access applies (bit 7 = Monday) */
uint16_t start_time; /**< at which minutes of the day to start */
uint16_t stop_time; /**< at which minutes of the day to stop */
uint8_t button_pattern[10]; /**< sequence of buttons to press to open the door */
} opening_settings;
/** timer to generate the ticks for the button LED animations */
#define LED_ANIMATION_TIMER 2
/** number of timer ticks passed, for the LED animation */
static volatile uint8_t led_animation_ticks = 0;
/** the button LED animation for the rust fade (duration in ticks, R, G, B) */
static const uint8_t rust_animation[][4] = {
{0, 0, 0, 0},
{1, 0xb7 / 10 * 1, 0x41 / 10 * 1, 0x0e / 10 * 1},
{1, 0xb7 / 10 * 2, 0x41 / 10 * 2, 0x0e / 10 * 2},
{1, 0xb7 / 10 * 3, 0x41 / 10 * 3, 0x0e / 10 * 3},
{1, 0xb7 / 10 * 4, 0x41 / 10 * 4, 0x0e / 10 * 4},
{1, 0xb7 / 10 * 5, 0x41 / 10 * 5, 0x0e / 10 * 5},
{1, 0xb7 / 10 * 4, 0x41 / 10 * 4, 0x0e / 10 * 4},
{1, 0xb7 / 10 * 3, 0x41 / 10 * 3, 0x0e / 10 * 3},
{1, 0xb7 / 10 * 2, 0x41 / 10 * 2, 0x0e / 10 * 2},
{1, 0xb7 / 10 * 1, 0x41 / 10 * 1, 0x0e / 10 * 1},
{0, 0, 0, 0},
};
/** the button LED animation for the strobe (duration in ticks, R, G, B) */
static const uint8_t strobe_animation[][4] = {
{0, 0, 0, 0},
{1, 0xff / 2, 0xff / 2, 0xff / 2},
{2, 0, 0, 0},
{1, 0xff / 2, 0xff / 2, 0xff / 2},
{0, 0, 0, 0},
};
/** save current opening_settings into SRAM */
static void save_opening_settings(void)
{
BKP_DR1 = 0; // invalid saved settings
BKP_DR2 = opening_settings.days & 0x7f;
BKP_DR3 = opening_settings.start_time;
BKP_DR4 = opening_settings.stop_time;
BKP_DR5 = opening_settings.button_pattern[0];
BKP_DR6 = opening_settings.button_pattern[1];
BKP_DR7 = opening_settings.button_pattern[2];
BKP_DR8 = opening_settings.button_pattern[3];
BKP_DR9 = opening_settings.button_pattern[4];
BKP_DR10 = opening_settings.button_pattern[5];
BKP_DR11 = opening_settings.button_pattern[6];
BKP_DR12 = opening_settings.button_pattern[7];
BKP_DR13 = opening_settings.button_pattern[8];
BKP_DR14 = opening_settings.button_pattern[9];
BKP_DR1 = 0x4223; //validate saved setting
}
size_t putc(char c)
{
size_t length = 0; // number of characters printed
static char last_c = 0; // to remember on which character we last sent
if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF
if ('\r' != last_c) { // CR has not already been sent
#if !defined(STLINKV2)
uart_putchar_nonblocking('\r'); // send CR over USART
#endif
usb_cdcacm_putchar('\r'); // send CR over USB
length++; // remember we printed 1 character
}
}
#if !defined(STLINKV2)
uart_putchar_nonblocking(c); // send byte over USART
#endif
usb_cdcacm_putchar(c); // send byte over USB
length++; // remember we printed 1 character
last_c = c; // remember last character
return length; // return number of characters printed
}
/** display available commands
* @param[in] argument no argument required
*/
static void command_help(void* argument);
/** show software and hardware version
* @param[in] argument no argument required
*/
static void command_version(void* argument);
/** show uptime
* @param[in] argument no argument required
*/
static void command_uptime(void* argument);
#if RTC_DATE_TIME
/** show date and time
* @param[in] argument date and time to set
*/
static void command_datetime(void* argument);
#endif
/** reset board
* @param[in] argument no argument required
*/
static void command_reset(void* argument);
/** switch to DFU bootloader
* @param[in] argument no argument required
*/
static void command_bootloader_dfu(void* argument);
/** switch to system memory / embedded USART bootloader
* @param[in] argument no argument required
*/
static void command_bootloader_embedded(void* argument);
/** show/set on which days the access policy applies
* @param[in] argument 7x0/1 to enable day of the week, starting with Monday (optional)
*/
static void command_days(void* argument)
{
const char* days = (char*)argument; // argument is optional days
if (NULL != argument) { // days are provided, parse and save them
bool valid = (7 == strlen(days)); // verify input string
for (uint8_t day = 0; day < 7 && valid; day++) {
if (days[day] != '0' && days[day] != '1') {
valid = false;
}
}
if (valid) { // save provided settings
// parse new days
opening_settings.days = 0;
for (uint8_t day = 0; day < 7; day++) {
if ('1' == days[day]) {
opening_settings.days |= (1 << (6 - day));
}
}
save_opening_settings(); // save days
puts("days saved\n");
} else {
puts("provide exactly 7 times 0 (off) or 1 (on). 1st digit for Monday, 7th digit for Sunday\n");
}
}
// display current days
printf("opening days: %07b\n", opening_settings.days);
const char* day_names[] = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"};
for (uint8_t day = 0; day < LENGTH(day_names); day++) {
printf("- %s: %s\n", day_names[day], (opening_settings.days & (1 << (6 - day))) ? "on" : "off");
}
}
/** show/set on which time the access policy starts applying
* @param[in] argument string with time of day, optional
*/
static void command_start(void* argument)
{
const char* time = (char*)argument; // argument is optional time
if (NULL != argument) { // days are provided, parse and save them
bool valid = (5 == strlen(time)); // verify input string
if (!(valid && isdigit((int8_t)time[0]) && isdigit((int8_t)time[1]) && ':' == time[2] && isdigit((int8_t)time[3]) && isdigit((int8_t)time[4]))) {
valid = false;
}
if (valid) { // save provided settings
opening_settings.start_time = 0;
opening_settings.start_time += (time[4] - '0') * 1;
opening_settings.start_time += (time[3] - '0') * 10;
opening_settings.start_time += (time[1] - '0') * 60;
opening_settings.start_time += (time[0] - '0') * 600;
save_opening_settings(); // save days
puts("start time saved\n");
} else {
puts("provide time in HH:MM format\n");
}
}
printf("start time: %02u:%02u\n", opening_settings.start_time / 60, opening_settings.start_time % 60);
}
/** show/set on which time the access policy stops applying
* @param[in] argument string with time of day, optional
*/
static void command_stop(void* argument)
{
const char* time = (char*)argument; // argument is optional time
if (NULL != argument) { // days are provided, parse and save them
bool valid = (5 == strlen(time)); // verify input string
if (!(valid && isdigit((int8_t)time[0]) && isdigit((int8_t)time[1]) && ':' == time[2] && isdigit((int8_t)time[3]) && isdigit((int8_t)time[4]))) {
valid = false;
}
if (valid) { // save provided settings
opening_settings.stop_time = 0;
opening_settings.stop_time += (time[4] - '0') * 1;
opening_settings.stop_time += (time[3] - '0') * 10;
opening_settings.stop_time += (time[1] - '0') * 60;
opening_settings.stop_time += (time[0] - '0') * 600;
save_opening_settings(); // save days
puts("stop time saved\n");
} else {
puts("provide time in HH:MM format\n");
}
}
printf("stop time: %02u:%02u\n", opening_settings.stop_time / 60, opening_settings.stop_time % 60);
}
/** open door by simulating button press
* @param[in] argument not used
*/
static void command_open(void* argument)
{
(void)argument; // we won't use the argument
gpio_set(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set high to activate relay and take control over the button
gpio_set(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set high to activate relay an simulate button press
sleep_ms(1000); // hold button a bit
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set low to deactivate relay and release button
if (!opening_apply) {
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set low to deactivate relay and git control back to button
}
}
/** show/set button pattern
* @param[in] argument sequence of 1/2
*/
static void command_pattern(void* argument)
{
const char* pattern = (char*)argument; // argument is optional pattern
if (NULL != argument) { // pattern provided
bool valid = (LENGTH(opening_settings.button_pattern) >= strlen(pattern)); // verify input string
for (uint8_t i = 0; i < strlen(pattern) && valid; i++) {
if ('1' != pattern[i] && '2' != pattern[i]) {
valid = false;
}
}
if (valid) { // save provided settings
// reset pattern
for (uint8_t i = 0; i < LENGTH(opening_settings.button_pattern); i++) {
opening_settings.button_pattern[i] = 0;
}
// save new pattern
for (uint8_t i = 0; i < strlen(pattern); i++) {
opening_settings.button_pattern[i] = pattern[i] - '0';
}
save_opening_settings(); // save days
puts("button sequence saved\n");
} else {
printf("provide buttons sequence of up to %u 1 or 2\n", LENGTH(opening_settings.button_pattern));
}
for (pattern_length = 0; pattern_length < LENGTH(opening_settings.button_pattern) && opening_settings.button_pattern[pattern_length]; pattern_length++);
}
if (0 == opening_settings.button_pattern[0]) {
puts("no button sequence set\n");
} else {
puts("button sequence: ");
for (uint8_t i = 0; i < LENGTH(opening_settings.button_pattern) && opening_settings.button_pattern[i]; i++) {
putc(opening_settings.button_pattern[i] + '0');
}
putc('\n');
}
}
/** test LEDs
* @param[in] argument "on" or "off"
*/
static void command_led(void* argument)
{
const char* onoff = (char*)argument; // if it should be switched on or off
if (NULL == onoff || 0 == strlen(onoff)) {
puts("say if the LEDs should be switched on or off\n");
} else if (0 == strcmp(onoff, "on")) {
for (uint8_t led = 0; led < LED_WS2812B_LEDS; led++) {
led_ws2812b_set_rgb(led, 0x20, 0x20 , 0x20);
}
} else if (0 == strcmp(onoff, "off")) {
for (uint8_t led = 0; led < LED_WS2812B_LEDS; led++) {
led_ws2812b_set_rgb(led, 0, 0 , 0);
}
} else {
printf("unknown argument %s\n", onoff);
}
}
/** list of all supported commands */
static const struct menu_command_t menu_commands[] = {
{
.shortcut = 'h',
.name = "help",
.command_description = "display help",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_help,
},
{
.shortcut = 'v',
.name = "version",
.command_description = "show software and hardware version",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_version,
},
{
.shortcut = 'u',
.name = "uptime",
.command_description = "show uptime",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_uptime,
},
#if RTC_DATE_TIME
{
.shortcut = 'D',
.name = "date",
.command_description = "show/set date and time",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[YYYY-MM-DD HH:MM:SS]",
.command_handler = &command_datetime,
},
#endif
{
.shortcut = 'r',
.name = "reset",
.command_description = "reset board",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_reset,
},
{
.shortcut = 'b',
.name = "bootloader",
.command_description = "reboot into DFU bootloader",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_bootloader_dfu,
},
{
.shortcut = 'B',
.name = "embedded",
.command_description = "boot embedded USART bootloader",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_bootloader_embedded,
},
{
.shortcut = 'd',
.name = "days",
.command_description = "on which days to apply the access policy",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[0001000, 0/1 for Monday to Sunday]",
.command_handler = &command_days,
},
{
.shortcut = 's',
.name = "start",
.command_description = "on which time to start the access policy",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[HH:MM]",
.command_handler = &command_start,
},
{
.shortcut = 'S',
.name = "stop",
.command_description = "on which time to stop the access policy",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[HH:MM]",
.command_handler = &command_stop,
},
{
.shortcut = 'o',
.name = "open",
.command_description = "open door",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_open,
},
{
.shortcut = 'l',
.name = "led",
.command_description = "test LEDs",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "on|off",
.command_handler = &command_led,
},
{
.shortcut = 'p',
.name = "password",
.command_description = "set/show password button sequence",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[sequence of 1/2]",
.command_handler = &command_pattern,
},
};
static void command_help(void* argument)
{
(void)argument; // we won't use the argument
printf("available commands:\n");
menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands
}
static void command_version(void* argument)
{
(void)argument; // we won't use the argument
printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date
const uint16_t dev_id = DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK;
const uint16_t rev_id = DBGMCU_IDCODE >> 16;
printf("chip: ID=0x%03x, rev=0x%04x\n", dev_id, rev_id);
// show flash size
puts("flash size: ");
if (0xffff == DESIG_FLASH_SIZE) {
puts("unknown (probably a defective micro-controller\n");
} else {
printf("%u KB\n", DESIG_FLASH_SIZE);
}
// display device identity
printf("device id: %08x%08x%04x%04x\n", DESIG_UNIQUE_ID2, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID0 & 0xffff, DESIG_UNIQUE_ID0 >> 16);
}
static void command_uptime(void* argument)
{
(void)argument; // we won't use the argument
uint32_t uptime = (rtc_get_counter_val() - time_start) / RTC_TICKS_SECOND; // get time from internal RTC
printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60);
}
#if RTC_DATE_TIME
static void command_datetime(void* argument)
{
char* datetime = (char*)argument; // argument is optional date time
if (NULL == argument) { // no date and time provided, just show the current day and time
const time_t time_rtc = rtc_get_counter_val() / RTC_TICKS_SECOND + rtc_offset; // get time from internal RTC
const struct tm* time_tm = localtime(&time_rtc); // convert time
const char* days[] = { "Su", "Mo", "Tu", "We", "Th", "Fr", "Sa"}; // the days of the week
printf("date: %s %d-%02d-%02d %02d:%02d:%02d\n", days[time_tm->tm_wday], 1900 + time_tm->tm_year, 1 + time_tm->tm_mon, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec);
} else { // date and time provided, set it
const char* malformed = "date and time malformed, expecting YYYY-MM-DD HH:MM:SS\n";
struct tm time_tm; // to store the parsed date time
if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough
printf(malformed);
return;
}
if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && '-' == datetime[4] && isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && '-' == datetime[7] && isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && ' ' == datetime[10] && isdigit((int8_t)datetime[11]) && isdigit((int8_t)datetime[12]) && ':' == datetime[13] && isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && ':' == datetime[16] && isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]))) { // verify format (good enough to not fail parsing)
printf(malformed);
return;
}
time_tm.tm_year = strtol(&datetime[0], NULL, 10) - 1900; // parse year
time_tm.tm_mon = strtol(&datetime[5], NULL, 10) - 1; // parse month
time_tm.tm_mday = strtol(&datetime[8], NULL, 10); // parse day
time_tm.tm_hour = strtol(&datetime[11], NULL, 10); // parse hour
time_tm.tm_min = strtol(&datetime[14], NULL, 10); // parse minutes
time_tm.tm_sec = strtol(&datetime[17], NULL, 10); // parse seconds
time_t time_rtc = mktime(&time_tm); // get back seconds
time_rtc -= rtc_offset; // remove start offset
time_start = time_rtc * RTC_TICKS_SECOND + (rtc_get_counter_val() - time_start); // update uptime with current date
rtc_set_counter_val(time_rtc * RTC_TICKS_SECOND); // save date/time to internal RTC
printf("date and time saved: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm.tm_year, 1 + time_tm.tm_mon, time_tm.tm_mday, time_tm.tm_hour, time_tm.tm_min, time_tm.tm_sec);
}
}
#endif
static void command_reset(void* argument)
{
(void)argument; // we won't use the argument
scb_reset_system(); // reset device
while (true); // wait for the reset to happen
}
static void command_bootloader_dfu(void* argument)
{
(void)argument; // we won't use the argument
// disable relays
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN));
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN));
// set DFU magic to specific RAM location
__dfu_magic[0] = 'D';
__dfu_magic[1] = 'F';
__dfu_magic[2] = 'U';
__dfu_magic[3] = '!';
scb_reset_system(); // reset system (core and peripherals)
while (true); // wait for the reset to happen
}
static void command_bootloader_embedded(void* argument)
{
(void)argument; // we won't use the argument
// disable relays
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN));
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN));
// set watchdog to exit system memory after some time
iwdg_set_period_ms(25000); // set independent watchdog period (26214.4 ms if the max timeout)
iwdg_start(); // start independent watchdog
iwdg_reset(); // restart timer
// start system memory
const uint32_t address = 0x1FFFF000; // system memory address
SCB_VTOR = (volatile uint32_t)(address); // set vector table to application vector table (store at the beginning of the application)
__asm__ volatile ("MSR msp,%0" : :"r"(*(uint32_t*)address)); // set stack pointer to address provided in the beginning of the application (loaded into a register first)
(*(void(**)(void))((uint32_t)address + 4))(); // start system memory (by jumping to the reset function which address is stored as second entry of the vector table)
while (true); // this should not be reached
}
/** process user command
* @param[in] str user command string (\0 ended)
*/
static void process_command(char* str)
{
// ensure actions are available
if (NULL == menu_commands || 0 == LENGTH(menu_commands)) {
return;
}
// don't handle empty lines
if (!str || 0 == strlen(str)) {
return;
}
bool command_handled = false;
if (!command_handled) {
command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command
}
if (!command_handled) {
printf("command not recognized. enter help to list commands\n");
}
}
/** program entry point
* this is the firmware function started by the micro-controller
*/
void main(void);
void main(void)
{
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
#if DEBUG
// enable functionalities for easier debug
DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered)
DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered)
DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered)
#else
// setup watchdog to reset in case we get stuck (i.e. when an error occurred)
iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period
iwdg_start(); // start independent watchdog
#endif
board_setup(); // setup board
#if !defined(STLINKV2)
uart_setup(); // setup USART (for printing)
#endif
usb_cdcacm_setup(); // setup USB CDC ACM (for printing)
puts("\nwelcome to the dachboden door panel\n"); // print welcome message
#if DEBUG
// show reset cause
if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) {
puts("reset cause(s):");
if (RCC_CSR & RCC_CSR_LPWRRSTF) {
puts(" low-power");
}
if (RCC_CSR & RCC_CSR_WWDGRSTF) {
puts(" window-watchdog");
}
if (RCC_CSR & RCC_CSR_IWDGRSTF) {
puts(" independent-watchdog");
}
if (RCC_CSR & RCC_CSR_SFTRSTF) {
puts(" software");
}
if (RCC_CSR & RCC_CSR_PORRSTF) {
puts(" POR/PDR");
}
if (RCC_CSR & RCC_CSR_PINRSTF) {
puts(" pin");
}
putc('\n');
RCC_CSR |= RCC_CSR_RMVF; // clear reset flags
}
#endif
#if !(DEBUG)
// show watchdog information
printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0);
if (FLASH_OBR & FLASH_OBR_OPTERR) {
puts(" (option bytes not set in flash: software wachtdog used, not automatically started at reset)\n");
} else if (FLASH_OBR & FLASH_OBR_WDG_SW) {
puts(" (software watchdog used, not automatically started at reset)\n");
} else {
puts(" (hardware watchdog used, automatically started at reset)\n");
}
#endif
// setup RTC
puts("setup internal RTC: ");
// note: the blue pill LSE oscillator is affected when toggling the onboard LED -> DON'T USE THE ONBOARD LED since we want to use the LSE
rtc_auto_awake(RCC_LSE, 32768 / RTC_TICKS_SECOND - 1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect)
rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds"
nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt
time_start = rtc_get_counter_val(); // get start time from internal RTC
puts("OK\n");
// setup relays
puts("setup relays: ");
rcc_periph_clock_enable(GPIO_RCC(RELAY_PANEL_PIN)); // enable clock for GPIO domain
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set low to leave per default
gpio_set_mode(GPIO_PORT(RELAY_PANEL_PIN), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(RELAY_PANEL_PIN)); // set as output to control the transistor controlling the relay
rcc_periph_clock_enable(GPIO_RCC(RELAY_BUTTON_PIN)); // enable clock for GPIO domain
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set low to leave per default
gpio_set_mode(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(RELAY_BUTTON_PIN)); // set as output to control the transistor controlling the relay
puts("OK\n");
// setup buttons
puts("setup buttons: ");
rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt
rcc_periph_clock_enable(GPIO_RCC(BUTTON1_PIN)); // enable clock for button
gpio_set(GPIO_PORT(BUTTON1_PIN), GPIO_PIN(BUTTON1_PIN)); // pull up to be able to detect button push (go low)
gpio_set_mode(GPIO_PORT(BUTTON1_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(BUTTON1_PIN)); // set button pin to input
exti_select_source(GPIO_EXTI(BUTTON1_PIN), GPIO_PORT(BUTTON1_PIN)); // mask external interrupt of this pin only for this port
exti_set_trigger(GPIO_EXTI(BUTTON1_PIN), EXTI_TRIGGER_FALLING); // trigger when button is pressed
exti_enable_request(GPIO_EXTI(BUTTON1_PIN)); // enable external interrupt
nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(BUTTON1_PIN)); // enable interrupt
rcc_periph_clock_enable(GPIO_RCC(BUTTON2_PIN)); // enable clock for button
gpio_set(GPIO_PORT(BUTTON2_PIN), GPIO_PIN(BUTTON2_PIN)); // pull up to be able to detect button push (go low)
gpio_set_mode(GPIO_PORT(BUTTON2_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(BUTTON2_PIN)); // set button pin to input
exti_select_source(GPIO_EXTI(BUTTON2_PIN), GPIO_PORT(BUTTON2_PIN)); // mask external interrupt of this pin only for this port
exti_set_trigger(GPIO_EXTI(BUTTON2_PIN), EXTI_TRIGGER_FALLING); // trigger when button is pressed
exti_enable_request(GPIO_EXTI(BUTTON2_PIN)); // enable external interrupt
nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(BUTTON2_PIN)); // enable interrupt
puts("OK\n");
// read opening settings from SRAM
puts("reading access settings: ");
RCC_APB1ENR |= (RCC_APB1ENR_PWREN | RCC_APB1ENR_BKPEN); // enable power
PWR_CR |= PWR_CR_DBP; // enable access
if (0x4223 == BKP_DR1) { // the magic header is present
opening_settings.days = BKP_DR2 & 0x7f;
opening_settings.start_time = BKP_DR3;
opening_settings.stop_time = BKP_DR4;
opening_settings.button_pattern[0] = BKP_DR5;
opening_settings.button_pattern[1] = BKP_DR6;
opening_settings.button_pattern[2] = BKP_DR7;
opening_settings.button_pattern[3] = BKP_DR8;
opening_settings.button_pattern[4] = BKP_DR9;
opening_settings.button_pattern[5] = BKP_DR10;
opening_settings.button_pattern[6] = BKP_DR11;
opening_settings.button_pattern[7] = BKP_DR12;
opening_settings.button_pattern[8] = BKP_DR13;
opening_settings.button_pattern[9] = BKP_DR14;
puts("loaded\n");
} else { // there are no settings saved
memset(&opening_settings, 0, sizeof(struct opening_settings_t)); // clear all values
puts("default\n");
}
// figure out how many button need to be pressed
for (pattern_length = 0; pattern_length < LENGTH(opening_settings.button_pattern) && opening_settings.button_pattern[pattern_length]; pattern_length++);
puts("setup bell LEDs: ");
uint8_t animation_progress = 0; // index of the current animation
led_ws2812b_setup();
for (uint8_t led = 0; led < LED_WS2812B_LEDS; led++) {
led_ws2812b_set_rgb(led, 0x10, 0x10 , 0x10);
}
puts("OK\n");
puts("setup animation timer: ");
// setup timer to wait for minimal time before next transmission (after previous transmission or reception)
rcc_periph_clock_enable(RCC_TIM(LED_ANIMATION_TIMER)); // enable clock for timer block
rcc_periph_reset_pulse(RST_TIM(LED_ANIMATION_TIMER)); // reset timer state
timer_set_mode(TIM(LED_ANIMATION_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock,edge alignment (simple count), and count up
timer_set_prescaler(TIM(LED_ANIMATION_TIMER), 1099 - 1); // set the prescaler so this 16 bits timer allows to wait for maximum 1s ( 1 / (72E6 / 1099 / (2**16)) = 1.0003s)
timer_set_period(TIM(LED_ANIMATION_TIMER), 0xffff / 16); // the timing is not defined in the specification. I tested until the communication was reliable (all requests get an response)
timer_clear_flag(TIM(LED_ANIMATION_TIMER), TIM_SR_UIF); // clear flag
timer_enable_irq(TIM(LED_ANIMATION_TIMER), TIM_DIER_UIE); // enable update interrupt for timer
nvic_enable_irq(NVIC_TIM_IRQ(LED_ANIMATION_TIMER)); // catch interrupt in service routine
puts("OK\n");
// setup terminal
terminal_prefix = ""; // set default prefix
terminal_process = &process_command; // set central function to process commands
terminal_setup(); // start terminal
// start main loop
bool action = false; // if an action has been performed don't go to sleep
button_flag = false; // reset button flag
uint32_t last_button_action = 0; // the last time a button has been pressed
uint8_t button_pattern[LENGTH(opening_settings.button_pattern)]; // to store the input button pattern
uint8_t button_input = 0; // how many buttons have been pressed
bool rust_animated = false; // if the rust animation started
bool strobe_animated = false; // if the strobe animation started
while (true) { // infinite loop
iwdg_reset(); // kick the dog
if (user_input_available) { // user input is available
action = true; // action has been performed
led_toggle(); // toggle LED
char c = user_input_get(); // store receive character
terminal_send(c); // send received character to terminal
}
if (button_flag || button_pressed) { // user pressed button
action = true; // action has been performed
sleep_ms(200); // wait a bit to remove noise and double trigger
if (!gpio_get(GPIO_PORT(BUTTON1_PIN), GPIO_PIN(BUTTON1_PIN))) {
button_pressed = 1;
}
if (!gpio_get(GPIO_PORT(BUTTON2_PIN), GPIO_PIN(BUTTON2_PIN))) {
button_pressed = 2;
}
if (button_pressed) {
printf("button pressed: %u\n", button_pressed);
led_toggle(); // toggle LED
if (pattern_length > 0 && opening_apply) { // only check pattern if there is one to compare to
// switch off LEDs
for (uint8_t led = 0; led < LED_WS2812B_LEDS; led++) {
led_ws2812b_set_rgb(led, 0, 0, 0);
}
// start LED animation
if (1 == button_pressed) {
rust_animated = true; // remember rust animation started
led_ws2812b_set_rgb(3, rust_animation[0][1], rust_animation[0][2], rust_animation[0][3]); // start LED animation
led_ws2812b_set_rgb(4, rust_animation[0][1], rust_animation[0][2], rust_animation[0][3]); // start LED animation
led_ws2812b_set_rgb(5, rust_animation[0][1], rust_animation[0][2], rust_animation[0][3]); // start LED animation
strobe_animated = false; // stop strobe animation
led_ws2812b_set_rgb(0, 0, 0, 0); // switch LED off
led_ws2812b_set_rgb(1, 0, 0, 0); // switch LED off
led_ws2812b_set_rgb(2, 0, 0, 0); // switch LED off
} else if (2 == button_pressed) {
strobe_animated = true; // remember strobe animation started
led_ws2812b_set_rgb(0, strobe_animation[0][1], strobe_animation[0][2], strobe_animation[0][3]); // start LED animation
led_ws2812b_set_rgb(1, strobe_animation[0][1], strobe_animation[0][2], strobe_animation[0][3]); // start LED animation
led_ws2812b_set_rgb(2, strobe_animation[0][1], strobe_animation[0][2], strobe_animation[0][3]); // start LED animation
rust_animated = false; // stop rust animation
led_ws2812b_set_rgb(3, 0, 0, 0); // switch LED off
led_ws2812b_set_rgb(4, 0, 0, 0); // switch LED off
led_ws2812b_set_rgb(5, 0, 0, 0); // switch LED off
}
led_animation_ticks = 0; // reset timer counter
animation_progress = 0; // reset animation
timer_set_counter(TIM(LED_ANIMATION_TIMER), 0); // reset timer counter to get right duration
timer_enable_counter(TIM(LED_ANIMATION_TIMER)); // start timer
// store button
if (button_input < LENGTH(button_pattern)) {
button_pattern[button_input++] = button_pressed;
printf("button sequence: %u/%u\n", button_input, pattern_length);
last_button_action = rtc_get_counter_val(); // remember last button action
}
// compare pattern
if (button_input >= pattern_length) {
bool pattern_valid = true;
for (uint8_t i = 0; i < pattern_length; i++) {
if (button_pattern[i] != opening_settings.button_pattern[i]) {
pattern_valid = false;
break;
}
}
// if the correct pattern has been input, press button
if (pattern_valid) {
puts("button sequence valid\n");
gpio_set(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set high to activate relay an simulate button press
sleep_ms(1000); // hold button a bit
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set low to deactivate relay and release button
}
button_input = 0; // restart from scratch
last_button_action = 0; // restart sequence
}
} else { // ignore all button entry when not within the opening hours
button_input = 0;
last_button_action = 0;
}
// wait until both buttons are released
while (!gpio_get(GPIO_PORT(BUTTON1_PIN), GPIO_PIN(BUTTON1_PIN)) || !gpio_get(GPIO_PORT(BUTTON2_PIN), GPIO_PIN(BUTTON2_PIN))) {
//iwdg_reset(); // kick the dog
sleep_ms(100);
}
} // button_pressed
button_pressed = 0; // reset button pressed
button_flag = false; // reset flag
}
if (rtc_internal_tick_flag) { // the internal RTC ticked
rtc_internal_tick_flag = false; // reset flag
action = true; // action has been performed
if (0 == (rtc_get_counter_val() % RTC_TICKS_SECOND)) { // one second has passed
led_toggle(); // toggle LED (good to indicate if main function is stuck)
}
if (last_button_action && last_button_action + 5 * RTC_TICKS_SECOND <= rtc_get_counter_val()) { // pattern entry timeout
puts("button sequence entry timeout\n");
last_button_action = 0; // reset last button time
button_input = 0; // reset pattern input
}
// always enforce the right state
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set low to not simulate button press
// verify if day matches
const time_t time_rtc = rtc_get_counter_val() / RTC_TICKS_SECOND + rtc_offset; // get time from internal RTC
const struct tm* time_tm = localtime(&time_rtc); // convert time
const uint16_t current_time = time_tm->tm_hour * 60 + time_tm->tm_min; // get time of day in minutes
const uint8_t day = 6 - ((time_tm->tm_wday + 6) % 7); // get bit for the current day of week
if (opening_settings.stop_time > opening_settings.start_time) { // stop time is on same day
opening_apply = ((opening_settings.days & (1 << day)) && current_time > opening_settings.start_time && current_time < opening_settings.stop_time);
} else { // stop time is on next day
opening_apply = ((opening_settings.days & (1 << day)) && current_time > opening_settings.start_time) || (opening_settings.days & (1 << (day + 1 % 7)) && current_time < opening_settings.stop_time);
}
if (opening_apply) { // we are in the opening hours
//puts("apply\n");
gpio_set(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set high to activate relay and disconnect button
} else {
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set high to release relay and connect button
}
}
if (led_animation_ticks) { // an LED animation is running
if (rust_animated) {
if (animation_progress < LENGTH(rust_animation)) {
if (led_animation_ticks >= rust_animation[animation_progress][0]) {
animation_progress++; // got to next animation step
led_animation_ticks = 0; // reset time ticks
if (animation_progress < LENGTH(rust_animation)) { // next step of animation reached
led_ws2812b_set_rgb(3, rust_animation[animation_progress][1], rust_animation[animation_progress][2], rust_animation[animation_progress][3]);
led_ws2812b_set_rgb(4, rust_animation[animation_progress][1], rust_animation[animation_progress][2], rust_animation[animation_progress][3]);
led_ws2812b_set_rgb(5, rust_animation[animation_progress][1], rust_animation[animation_progress][2], rust_animation[animation_progress][3]);
} else { // end of animation reached
timer_disable_counter(TIM(LED_ANIMATION_TIMER)); // stop timer
led_ws2812b_set_rgb(3, 0, 0, 0); // switch off LED
led_ws2812b_set_rgb(4, 0, 0, 0); // switch off LED
led_ws2812b_set_rgb(5, 0, 0, 0); // switch off LED
}
}
} else { // end of animation reached
led_animation_ticks = 0; // disable check
timer_disable_counter(TIM(LED_ANIMATION_TIMER)); // stop timer
}
}
if (strobe_animated) {
if (animation_progress < LENGTH(strobe_animation)) {
if (led_animation_ticks >= strobe_animation[animation_progress][0]) {
animation_progress++; // got to next animation step
led_animation_ticks = 0; // reset time ticks
if (animation_progress < LENGTH(strobe_animation)) { // next step of animation reached
led_ws2812b_set_rgb(0, strobe_animation[animation_progress][1], strobe_animation[animation_progress][2], strobe_animation[animation_progress][3]);
led_ws2812b_set_rgb(1, strobe_animation[animation_progress][1], strobe_animation[animation_progress][2], strobe_animation[animation_progress][3]);
led_ws2812b_set_rgb(2, strobe_animation[animation_progress][1], strobe_animation[animation_progress][2], strobe_animation[animation_progress][3]);
} else { // end of animation reached
timer_disable_counter(TIM(LED_ANIMATION_TIMER)); // stop timer
led_ws2812b_set_rgb(3, 0, 0, 0); // switch off LED
led_ws2812b_set_rgb(4, 0, 0, 0); // switch off LED
led_ws2812b_set_rgb(5, 0, 0, 0); // switch off LED
}
}
} else { // end of animation reached
led_animation_ticks = 0; // disable check
timer_disable_counter(TIM(LED_ANIMATION_TIMER)); // stop timer
}
}
}
if (action) { // go to sleep if nothing had to be done, else recheck for activity
action = false;
} else {
__WFI(); // go to sleep
}
} // main loop
}
/** @brief interrupt service routine called when tick passed on RTC */
void rtc_isr(void)
{
rtc_clear_flag(RTC_SEC); // clear flag
rtc_internal_tick_flag = true; // notify to show new time
}
void GPIO_EXTI_ISR(BUTTON1_PIN)(void) // it's the same at BUTTON2_PIN: EXT9_5
{
if (exti_get_flag_status(GPIO_EXTI(BUTTON1_PIN))) {
exti_reset_request(GPIO_EXTI(BUTTON1_PIN)); // reset interrupt
}
if (exti_get_flag_status(GPIO_EXTI(BUTTON2_PIN))) {
exti_reset_request(GPIO_EXTI(BUTTON2_PIN)); // reset interrupt
}
button_flag = true; // perform button action
}
/** interrupt service routine called on animation tick */
void TIM_ISR(LED_ANIMATION_TIMER)(void)
{
if (timer_get_flag(TIM(LED_ANIMATION_TIMER), TIM_SR_UIF)) { // update event happened
timer_clear_flag(TIM(LED_ANIMATION_TIMER), TIM_SR_UIF); // clear flag
led_animation_ticks++; // remember one tick passed
}
}