973 lines
40 KiB
C
973 lines
40 KiB
C
/* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
/** dachboden front panel access control
|
|
* @file
|
|
* @author King Kévin <kingkevin@cuvoodoo.info>
|
|
* @date 2016-2020
|
|
*/
|
|
|
|
/* standard libraries */
|
|
#include <stdint.h> // standard integer types
|
|
#include <stdlib.h> // standard utilities
|
|
#include <string.h> // string utilities
|
|
#include <time.h> // date/time utilities
|
|
#include <ctype.h> // utilities to check chars
|
|
|
|
/* STM32 (including CM3) libraries */
|
|
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
|
|
#include <libopencm3/cm3/scb.h> // vector table definition
|
|
#include <libopencm3/cm3/nvic.h> // interrupt utilities
|
|
#include <libopencm3/stm32/gpio.h> // general purpose input output library
|
|
#include <libopencm3/stm32/rcc.h> // real-time control clock library
|
|
#include <libopencm3/stm32/exti.h> // external interrupt utilities
|
|
#include <libopencm3/stm32/rtc.h> // real time clock utilities
|
|
#include <libopencm3/stm32/iwdg.h> // independent watchdog utilities
|
|
#include <libopencm3/stm32/dbgmcu.h> // debug utilities
|
|
#include <libopencm3/stm32/desig.h> // design utilities
|
|
#include <libopencm3/stm32/flash.h> // flash utilities
|
|
#include <libopencm3/stm32/f1/bkp.h> // backup domain utilities
|
|
#include <libopencm3/stm32/timer.h> // timer utilities
|
|
|
|
/* own libraries */
|
|
#include "global.h" // board definitions
|
|
#include "print.h" // printing utilities
|
|
#include "uart.h" // USART utilities
|
|
#include "usb_cdcacm.h" // USB CDC ACM utilities
|
|
#include "terminal.h" // handle the terminal interface
|
|
#include "menu.h" // menu utilities
|
|
#include "led_ws2812b.h" // WS2812B RGB LED control
|
|
|
|
/** watchdog period in ms */
|
|
#define WATCHDOG_PERIOD 10000
|
|
|
|
/** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime
|
|
* set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time
|
|
*/
|
|
#define RTC_DATE_TIME 1
|
|
|
|
/** number of RTC ticks per second
|
|
* @note use integer divider of oscillator to keep second precision
|
|
*/
|
|
#define RTC_TICKS_SECOND 1
|
|
|
|
#if defined(RTC_DATE_TIME) && RTC_DATE_TIME
|
|
/** the start time from which to RTC ticks count
|
|
* @note this allows the 32-bit value to reach further in time, particularly when there are several ticks per second
|
|
*/
|
|
const time_t rtc_offset = 1577833200; // We 1. Jan 00:00:00 CET 2020
|
|
#endif
|
|
|
|
/** RTC time when device is started */
|
|
static time_t time_start = 0;
|
|
|
|
/** @defgroup main_flags flag set in interrupts to be processed in main task
|
|
* @{
|
|
*/
|
|
volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */
|
|
/** @} */
|
|
|
|
/** GPIO pin connected to relay, used to control button connection to panel */
|
|
#define RELAY_PANEL_PIN PB6
|
|
/** GPIO pin connected to relay, used to simulate button press */
|
|
#define RELAY_BUTTON_PIN PB7
|
|
/** GPIO for button 1 */
|
|
#define BUTTON1_PIN PB9
|
|
/** GPIO for button 2 */
|
|
#define BUTTON2_PIN PB8
|
|
|
|
/** which button has been pressed */
|
|
volatile uint8_t button_pressed = 0;
|
|
|
|
/** if we apply the opening policy */
|
|
bool opening_apply = false;
|
|
uint8_t pattern_length = 0;
|
|
|
|
static struct opening_settings_t {
|
|
uint8_t days; /**< which days of the week it door access applies (bit 7 = Monday) */
|
|
uint16_t start_time; /**< at which minutes of the day to start */
|
|
uint16_t stop_time; /**< at which minutes of the day to stop */
|
|
uint8_t button_pattern[10]; /**< sequence of buttons to press to open the door */
|
|
} opening_settings;
|
|
|
|
/** timer to generate the ticks for the button LED animations */
|
|
#define LED_ANIMATION_TIMER 2
|
|
|
|
/** number of timer ticks passed, for the LED animation */
|
|
static volatile uint8_t led_animation_ticks = 0;
|
|
|
|
/** the button LED animation for the rust fade (duration in ticks, R, G, B) */
|
|
static const uint8_t rust_animation[][4] = {
|
|
{0, 0, 0, 0},
|
|
{1, 0xb7 / 10 * 1, 0x41 / 10 * 1, 0x0e / 10 * 1},
|
|
{1, 0xb7 / 10 * 2, 0x41 / 10 * 2, 0x0e / 10 * 2},
|
|
{1, 0xb7 / 10 * 3, 0x41 / 10 * 3, 0x0e / 10 * 3},
|
|
{1, 0xb7 / 10 * 4, 0x41 / 10 * 4, 0x0e / 10 * 4},
|
|
{1, 0xb7 / 10 * 5, 0x41 / 10 * 5, 0x0e / 10 * 5},
|
|
{1, 0xb7 / 10 * 4, 0x41 / 10 * 4, 0x0e / 10 * 4},
|
|
{1, 0xb7 / 10 * 3, 0x41 / 10 * 3, 0x0e / 10 * 3},
|
|
{1, 0xb7 / 10 * 2, 0x41 / 10 * 2, 0x0e / 10 * 2},
|
|
{1, 0xb7 / 10 * 1, 0x41 / 10 * 1, 0x0e / 10 * 1},
|
|
{0, 0, 0, 0},
|
|
};
|
|
|
|
/** the button LED animation for the strobe (duration in ticks, R, G, B) */
|
|
static const uint8_t strobe_animation[][4] = {
|
|
{0, 0, 0, 0},
|
|
{1, 0xff / 2, 0xff / 2, 0xff / 2},
|
|
{2, 0, 0, 0},
|
|
{1, 0xff / 2, 0xff / 2, 0xff / 2},
|
|
{0, 0, 0, 0},
|
|
};
|
|
|
|
/** save current opening_settings into SRAM */
|
|
static void save_opening_settings(void)
|
|
{
|
|
BKP_DR1 = 0; // invalid saved settings
|
|
BKP_DR2 = opening_settings.days & 0x7f;
|
|
BKP_DR3 = opening_settings.start_time;
|
|
BKP_DR4 = opening_settings.stop_time;
|
|
BKP_DR5 = opening_settings.button_pattern[0];
|
|
BKP_DR6 = opening_settings.button_pattern[1];
|
|
BKP_DR7 = opening_settings.button_pattern[2];
|
|
BKP_DR8 = opening_settings.button_pattern[3];
|
|
BKP_DR9 = opening_settings.button_pattern[4];
|
|
BKP_DR10 = opening_settings.button_pattern[5];
|
|
BKP_DR11 = opening_settings.button_pattern[6];
|
|
BKP_DR12 = opening_settings.button_pattern[7];
|
|
BKP_DR13 = opening_settings.button_pattern[8];
|
|
BKP_DR14 = opening_settings.button_pattern[9];
|
|
BKP_DR1 = 0x4223; //validate saved setting
|
|
}
|
|
|
|
size_t putc(char c)
|
|
{
|
|
size_t length = 0; // number of characters printed
|
|
static char last_c = 0; // to remember on which character we last sent
|
|
if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF
|
|
if ('\r' != last_c) { // CR has not already been sent
|
|
#if !defined(STLINKV2)
|
|
uart_putchar_nonblocking('\r'); // send CR over USART
|
|
#endif
|
|
usb_cdcacm_putchar('\r'); // send CR over USB
|
|
length++; // remember we printed 1 character
|
|
}
|
|
}
|
|
#if !defined(STLINKV2)
|
|
uart_putchar_nonblocking(c); // send byte over USART
|
|
#endif
|
|
usb_cdcacm_putchar(c); // send byte over USB
|
|
length++; // remember we printed 1 character
|
|
last_c = c; // remember last character
|
|
return length; // return number of characters printed
|
|
}
|
|
|
|
/** display available commands
|
|
* @param[in] argument no argument required
|
|
*/
|
|
static void command_help(void* argument);
|
|
|
|
/** show software and hardware version
|
|
* @param[in] argument no argument required
|
|
*/
|
|
static void command_version(void* argument);
|
|
|
|
/** show uptime
|
|
* @param[in] argument no argument required
|
|
*/
|
|
static void command_uptime(void* argument);
|
|
|
|
#if RTC_DATE_TIME
|
|
/** show date and time
|
|
* @param[in] argument date and time to set
|
|
*/
|
|
static void command_datetime(void* argument);
|
|
#endif
|
|
|
|
/** reset board
|
|
* @param[in] argument no argument required
|
|
*/
|
|
static void command_reset(void* argument);
|
|
|
|
/** switch to DFU bootloader
|
|
* @param[in] argument no argument required
|
|
*/
|
|
static void command_bootloader_dfu(void* argument);
|
|
|
|
/** switch to system memory / embedded USART bootloader
|
|
* @param[in] argument no argument required
|
|
*/
|
|
static void command_bootloader_embedded(void* argument);
|
|
|
|
/** show/set on which days the access policy applies
|
|
* @param[in] argument 7x0/1 to enable day of the week, starting with Monday (optional)
|
|
*/
|
|
static void command_days(void* argument)
|
|
{
|
|
const char* days = (char*)argument; // argument is optional days
|
|
if (NULL != argument) { // days are provided, parse and save them
|
|
bool valid = (7 == strlen(days)); // verify input string
|
|
for (uint8_t day = 0; day < 7 && valid; day++) {
|
|
if (days[day] != '0' && days[day] != '1') {
|
|
valid = false;
|
|
}
|
|
}
|
|
if (valid) { // save provided settings
|
|
// parse new days
|
|
opening_settings.days = 0;
|
|
for (uint8_t day = 0; day < 7; day++) {
|
|
if ('1' == days[day]) {
|
|
opening_settings.days |= (1 << (6 - day));
|
|
}
|
|
}
|
|
save_opening_settings(); // save days
|
|
puts("days saved\n");
|
|
} else {
|
|
puts("provide exactly 7 times 0 (off) or 1 (on). 1st digit for Monday, 7th digit for Sunday\n");
|
|
}
|
|
}
|
|
// display current days
|
|
printf("opening days: %07b\n", opening_settings.days);
|
|
const char* day_names[] = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"};
|
|
for (uint8_t day = 0; day < LENGTH(day_names); day++) {
|
|
printf("- %s: %s\n", day_names[day], (opening_settings.days & (1 << (6 - day))) ? "on" : "off");
|
|
}
|
|
}
|
|
|
|
/** show/set on which time the access policy starts applying
|
|
* @param[in] argument string with time of day, optional
|
|
*/
|
|
static void command_start(void* argument)
|
|
{
|
|
const char* time = (char*)argument; // argument is optional time
|
|
if (NULL != argument) { // days are provided, parse and save them
|
|
bool valid = (5 == strlen(time)); // verify input string
|
|
if (!(valid && isdigit((int8_t)time[0]) && isdigit((int8_t)time[1]) && ':' == time[2] && isdigit((int8_t)time[3]) && isdigit((int8_t)time[4]))) {
|
|
valid = false;
|
|
}
|
|
if (valid) { // save provided settings
|
|
opening_settings.start_time = 0;
|
|
opening_settings.start_time += (time[4] - '0') * 1;
|
|
opening_settings.start_time += (time[3] - '0') * 10;
|
|
opening_settings.start_time += (time[1] - '0') * 60;
|
|
opening_settings.start_time += (time[0] - '0') * 600;
|
|
save_opening_settings(); // save days
|
|
puts("start time saved\n");
|
|
} else {
|
|
puts("provide time in HH:MM format\n");
|
|
}
|
|
}
|
|
printf("start time: %02u:%02u\n", opening_settings.start_time / 60, opening_settings.start_time % 60);
|
|
}
|
|
|
|
/** show/set on which time the access policy stops applying
|
|
* @param[in] argument string with time of day, optional
|
|
*/
|
|
static void command_stop(void* argument)
|
|
{
|
|
const char* time = (char*)argument; // argument is optional time
|
|
if (NULL != argument) { // days are provided, parse and save them
|
|
bool valid = (5 == strlen(time)); // verify input string
|
|
if (!(valid && isdigit((int8_t)time[0]) && isdigit((int8_t)time[1]) && ':' == time[2] && isdigit((int8_t)time[3]) && isdigit((int8_t)time[4]))) {
|
|
valid = false;
|
|
}
|
|
if (valid) { // save provided settings
|
|
opening_settings.stop_time = 0;
|
|
opening_settings.stop_time += (time[4] - '0') * 1;
|
|
opening_settings.stop_time += (time[3] - '0') * 10;
|
|
opening_settings.stop_time += (time[1] - '0') * 60;
|
|
opening_settings.stop_time += (time[0] - '0') * 600;
|
|
save_opening_settings(); // save days
|
|
puts("stop time saved\n");
|
|
} else {
|
|
puts("provide time in HH:MM format\n");
|
|
}
|
|
}
|
|
printf("stop time: %02u:%02u\n", opening_settings.stop_time / 60, opening_settings.stop_time % 60);
|
|
}
|
|
|
|
/** open door by simulating button press
|
|
* @param[in] argument not used
|
|
*/
|
|
static void command_open(void* argument)
|
|
{
|
|
(void)argument; // we won't use the argument
|
|
gpio_set(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set high to activate relay and take control over the button
|
|
gpio_set(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set high to activate relay an simulate button press
|
|
sleep_ms(1000); // hold button a bit
|
|
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set low to deactivate relay and release button
|
|
if (!opening_apply) {
|
|
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set low to deactivate relay and git control back to button
|
|
}
|
|
}
|
|
|
|
/** show/set button pattern
|
|
* @param[in] argument sequence of 1/2
|
|
*/
|
|
static void command_pattern(void* argument)
|
|
{
|
|
const char* pattern = (char*)argument; // argument is optional pattern
|
|
if (NULL != argument) { // pattern provided
|
|
bool valid = (LENGTH(opening_settings.button_pattern) >= strlen(pattern)); // verify input string
|
|
for (uint8_t i = 0; i < strlen(pattern) && valid; i++) {
|
|
if ('1' != pattern[i] && '2' != pattern[i]) {
|
|
valid = false;
|
|
}
|
|
}
|
|
if (valid) { // save provided settings
|
|
// reset pattern
|
|
for (uint8_t i = 0; i < LENGTH(opening_settings.button_pattern); i++) {
|
|
opening_settings.button_pattern[i] = 0;
|
|
}
|
|
// save new pattern
|
|
for (uint8_t i = 0; i < strlen(pattern); i++) {
|
|
opening_settings.button_pattern[i] = pattern[i] - '0';
|
|
}
|
|
save_opening_settings(); // save days
|
|
puts("button sequence saved\n");
|
|
} else {
|
|
printf("provide buttons sequence of up to %u 1 or 2\n", LENGTH(opening_settings.button_pattern));
|
|
}
|
|
for (pattern_length = 0; pattern_length < LENGTH(opening_settings.button_pattern) && opening_settings.button_pattern[pattern_length]; pattern_length++);
|
|
}
|
|
if (0 == opening_settings.button_pattern[0]) {
|
|
puts("no button sequence set\n");
|
|
} else {
|
|
puts("button sequence: ");
|
|
for (uint8_t i = 0; i < LENGTH(opening_settings.button_pattern) && opening_settings.button_pattern[i]; i++) {
|
|
putc(opening_settings.button_pattern[i] + '0');
|
|
}
|
|
putc('\n');
|
|
}
|
|
}
|
|
|
|
/** test LEDs
|
|
* @param[in] argument "on" or "off"
|
|
*/
|
|
static void command_led(void* argument)
|
|
{
|
|
const char* onoff = (char*)argument; // if it should be switched on or off
|
|
if (NULL == onoff || 0 == strlen(onoff)) {
|
|
puts("say if the LEDs should be switched on or off\n");
|
|
} else if (0 == strcmp(onoff, "on")) {
|
|
for (uint8_t led = 0; led < LED_WS2812B_LEDS; led++) {
|
|
led_ws2812b_set_rgb(led, 0x20, 0x20 , 0x20);
|
|
}
|
|
} else if (0 == strcmp(onoff, "off")) {
|
|
for (uint8_t led = 0; led < LED_WS2812B_LEDS; led++) {
|
|
led_ws2812b_set_rgb(led, 0, 0 , 0);
|
|
}
|
|
} else {
|
|
printf("unknown argument %s\n", onoff);
|
|
}
|
|
}
|
|
|
|
/** list of all supported commands */
|
|
static const struct menu_command_t menu_commands[] = {
|
|
{
|
|
.shortcut = 'h',
|
|
.name = "help",
|
|
.command_description = "display help",
|
|
.argument = MENU_ARGUMENT_NONE,
|
|
.argument_description = NULL,
|
|
.command_handler = &command_help,
|
|
},
|
|
{
|
|
.shortcut = 'v',
|
|
.name = "version",
|
|
.command_description = "show software and hardware version",
|
|
.argument = MENU_ARGUMENT_NONE,
|
|
.argument_description = NULL,
|
|
.command_handler = &command_version,
|
|
},
|
|
{
|
|
.shortcut = 'u',
|
|
.name = "uptime",
|
|
.command_description = "show uptime",
|
|
.argument = MENU_ARGUMENT_NONE,
|
|
.argument_description = NULL,
|
|
.command_handler = &command_uptime,
|
|
},
|
|
#if RTC_DATE_TIME
|
|
{
|
|
.shortcut = 'D',
|
|
.name = "date",
|
|
.command_description = "show/set date and time",
|
|
.argument = MENU_ARGUMENT_STRING,
|
|
.argument_description = "[YYYY-MM-DD HH:MM:SS]",
|
|
.command_handler = &command_datetime,
|
|
},
|
|
#endif
|
|
{
|
|
.shortcut = 'r',
|
|
.name = "reset",
|
|
.command_description = "reset board",
|
|
.argument = MENU_ARGUMENT_NONE,
|
|
.argument_description = NULL,
|
|
.command_handler = &command_reset,
|
|
},
|
|
{
|
|
.shortcut = 'b',
|
|
.name = "bootloader",
|
|
.command_description = "reboot into DFU bootloader",
|
|
.argument = MENU_ARGUMENT_NONE,
|
|
.argument_description = NULL,
|
|
.command_handler = &command_bootloader_dfu,
|
|
},
|
|
{
|
|
.shortcut = 'B',
|
|
.name = "embedded",
|
|
.command_description = "boot embedded USART bootloader",
|
|
.argument = MENU_ARGUMENT_NONE,
|
|
.argument_description = NULL,
|
|
.command_handler = &command_bootloader_embedded,
|
|
},
|
|
{
|
|
.shortcut = 'd',
|
|
.name = "days",
|
|
.command_description = "on which days to apply the access policy",
|
|
.argument = MENU_ARGUMENT_STRING,
|
|
.argument_description = "[0001000, 0/1 for Monday to Sunday]",
|
|
.command_handler = &command_days,
|
|
},
|
|
{
|
|
.shortcut = 's',
|
|
.name = "start",
|
|
.command_description = "on which time to start the access policy",
|
|
.argument = MENU_ARGUMENT_STRING,
|
|
.argument_description = "[HH:MM]",
|
|
.command_handler = &command_start,
|
|
},
|
|
{
|
|
.shortcut = 'S',
|
|
.name = "stop",
|
|
.command_description = "on which time to stop the access policy",
|
|
.argument = MENU_ARGUMENT_STRING,
|
|
.argument_description = "[HH:MM]",
|
|
.command_handler = &command_stop,
|
|
},
|
|
{
|
|
.shortcut = 'o',
|
|
.name = "open",
|
|
.command_description = "open door",
|
|
.argument = MENU_ARGUMENT_NONE,
|
|
.argument_description = NULL,
|
|
.command_handler = &command_open,
|
|
},
|
|
{
|
|
.shortcut = 'l',
|
|
.name = "led",
|
|
.command_description = "test LEDs",
|
|
.argument = MENU_ARGUMENT_STRING,
|
|
.argument_description = "on|off",
|
|
.command_handler = &command_led,
|
|
},
|
|
{
|
|
.shortcut = 'p',
|
|
.name = "password",
|
|
.command_description = "set/show password button sequence",
|
|
.argument = MENU_ARGUMENT_STRING,
|
|
.argument_description = "[sequence of 1/2]",
|
|
.command_handler = &command_pattern,
|
|
},
|
|
};
|
|
|
|
static void command_help(void* argument)
|
|
{
|
|
(void)argument; // we won't use the argument
|
|
printf("available commands:\n");
|
|
menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands
|
|
}
|
|
|
|
static void command_version(void* argument)
|
|
{
|
|
(void)argument; // we won't use the argument
|
|
printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date
|
|
const uint16_t dev_id = DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK;
|
|
const uint16_t rev_id = DBGMCU_IDCODE >> 16;
|
|
printf("chip: ID=0x%03x, rev=0x%04x\n", dev_id, rev_id);
|
|
// show flash size
|
|
puts("flash size: ");
|
|
if (0xffff == DESIG_FLASH_SIZE) {
|
|
puts("unknown (probably a defective micro-controller\n");
|
|
} else {
|
|
printf("%u KB\n", DESIG_FLASH_SIZE);
|
|
}
|
|
// display device identity
|
|
printf("device id: %08x%08x%04x%04x\n", DESIG_UNIQUE_ID2, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID0 & 0xffff, DESIG_UNIQUE_ID0 >> 16);
|
|
}
|
|
|
|
static void command_uptime(void* argument)
|
|
{
|
|
(void)argument; // we won't use the argument
|
|
uint32_t uptime = (rtc_get_counter_val() - time_start) / RTC_TICKS_SECOND; // get time from internal RTC
|
|
printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60);
|
|
}
|
|
|
|
#if RTC_DATE_TIME
|
|
static void command_datetime(void* argument)
|
|
{
|
|
char* datetime = (char*)argument; // argument is optional date time
|
|
if (NULL == argument) { // no date and time provided, just show the current day and time
|
|
const time_t time_rtc = rtc_get_counter_val() / RTC_TICKS_SECOND + rtc_offset; // get time from internal RTC
|
|
const struct tm* time_tm = localtime(&time_rtc); // convert time
|
|
const char* days[] = { "Su", "Mo", "Tu", "We", "Th", "Fr", "Sa"}; // the days of the week
|
|
printf("date: %s %d-%02d-%02d %02d:%02d:%02d\n", days[time_tm->tm_wday], 1900 + time_tm->tm_year, 1 + time_tm->tm_mon, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec);
|
|
} else { // date and time provided, set it
|
|
const char* malformed = "date and time malformed, expecting YYYY-MM-DD HH:MM:SS\n";
|
|
struct tm time_tm; // to store the parsed date time
|
|
if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough
|
|
printf(malformed);
|
|
return;
|
|
}
|
|
if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && '-' == datetime[4] && isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && '-' == datetime[7] && isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && ' ' == datetime[10] && isdigit((int8_t)datetime[11]) && isdigit((int8_t)datetime[12]) && ':' == datetime[13] && isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && ':' == datetime[16] && isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]))) { // verify format (good enough to not fail parsing)
|
|
printf(malformed);
|
|
return;
|
|
}
|
|
time_tm.tm_year = strtol(&datetime[0], NULL, 10) - 1900; // parse year
|
|
time_tm.tm_mon = strtol(&datetime[5], NULL, 10) - 1; // parse month
|
|
time_tm.tm_mday = strtol(&datetime[8], NULL, 10); // parse day
|
|
time_tm.tm_hour = strtol(&datetime[11], NULL, 10); // parse hour
|
|
time_tm.tm_min = strtol(&datetime[14], NULL, 10); // parse minutes
|
|
time_tm.tm_sec = strtol(&datetime[17], NULL, 10); // parse seconds
|
|
time_t time_rtc = mktime(&time_tm); // get back seconds
|
|
time_rtc -= rtc_offset; // remove start offset
|
|
time_start = time_rtc * RTC_TICKS_SECOND + (rtc_get_counter_val() - time_start); // update uptime with current date
|
|
rtc_set_counter_val(time_rtc * RTC_TICKS_SECOND); // save date/time to internal RTC
|
|
printf("date and time saved: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm.tm_year, 1 + time_tm.tm_mon, time_tm.tm_mday, time_tm.tm_hour, time_tm.tm_min, time_tm.tm_sec);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void command_reset(void* argument)
|
|
{
|
|
(void)argument; // we won't use the argument
|
|
scb_reset_system(); // reset device
|
|
while (true); // wait for the reset to happen
|
|
}
|
|
|
|
static void command_bootloader_dfu(void* argument)
|
|
{
|
|
(void)argument; // we won't use the argument
|
|
// disable relays
|
|
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN));
|
|
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN));
|
|
// set DFU magic to specific RAM location
|
|
__dfu_magic[0] = 'D';
|
|
__dfu_magic[1] = 'F';
|
|
__dfu_magic[2] = 'U';
|
|
__dfu_magic[3] = '!';
|
|
scb_reset_system(); // reset system (core and peripherals)
|
|
while (true); // wait for the reset to happen
|
|
}
|
|
|
|
static void command_bootloader_embedded(void* argument)
|
|
{
|
|
(void)argument; // we won't use the argument
|
|
// disable relays
|
|
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN));
|
|
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN));
|
|
// set watchdog to exit system memory after some time
|
|
iwdg_set_period_ms(25000); // set independent watchdog period (26214.4 ms if the max timeout)
|
|
iwdg_start(); // start independent watchdog
|
|
iwdg_reset(); // restart timer
|
|
// start system memory
|
|
const uint32_t address = 0x1FFFF000; // system memory address
|
|
SCB_VTOR = (volatile uint32_t)(address); // set vector table to application vector table (store at the beginning of the application)
|
|
__asm__ volatile ("MSR msp,%0" : :"r"(*(uint32_t*)address)); // set stack pointer to address provided in the beginning of the application (loaded into a register first)
|
|
(*(void(**)(void))((uint32_t)address + 4))(); // start system memory (by jumping to the reset function which address is stored as second entry of the vector table)
|
|
while (true); // this should not be reached
|
|
}
|
|
|
|
/** process user command
|
|
* @param[in] str user command string (\0 ended)
|
|
*/
|
|
static void process_command(char* str)
|
|
{
|
|
// ensure actions are available
|
|
if (NULL == menu_commands || 0 == LENGTH(menu_commands)) {
|
|
return;
|
|
}
|
|
// don't handle empty lines
|
|
if (!str || 0 == strlen(str)) {
|
|
return;
|
|
}
|
|
bool command_handled = false;
|
|
if (!command_handled) {
|
|
command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command
|
|
}
|
|
if (!command_handled) {
|
|
printf("command not recognized. enter help to list commands\n");
|
|
}
|
|
}
|
|
|
|
/** program entry point
|
|
* this is the firmware function started by the micro-controller
|
|
*/
|
|
void main(void);
|
|
void main(void)
|
|
{
|
|
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
|
|
|
|
#if DEBUG
|
|
// enable functionalities for easier debug
|
|
DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted
|
|
DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted
|
|
DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered)
|
|
DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered)
|
|
DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered)
|
|
#else
|
|
// setup watchdog to reset in case we get stuck (i.e. when an error occurred)
|
|
iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period
|
|
iwdg_start(); // start independent watchdog
|
|
#endif
|
|
|
|
board_setup(); // setup board
|
|
#if !defined(STLINKV2)
|
|
uart_setup(); // setup USART (for printing)
|
|
#endif
|
|
usb_cdcacm_setup(); // setup USB CDC ACM (for printing)
|
|
puts("\nwelcome to the dachboden door panel\n"); // print welcome message
|
|
|
|
#if DEBUG
|
|
// show reset cause
|
|
if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) {
|
|
puts("reset cause(s):");
|
|
if (RCC_CSR & RCC_CSR_LPWRRSTF) {
|
|
puts(" low-power");
|
|
}
|
|
if (RCC_CSR & RCC_CSR_WWDGRSTF) {
|
|
puts(" window-watchdog");
|
|
}
|
|
if (RCC_CSR & RCC_CSR_IWDGRSTF) {
|
|
puts(" independent-watchdog");
|
|
}
|
|
if (RCC_CSR & RCC_CSR_SFTRSTF) {
|
|
puts(" software");
|
|
}
|
|
if (RCC_CSR & RCC_CSR_PORRSTF) {
|
|
puts(" POR/PDR");
|
|
}
|
|
if (RCC_CSR & RCC_CSR_PINRSTF) {
|
|
puts(" pin");
|
|
}
|
|
putc('\n');
|
|
RCC_CSR |= RCC_CSR_RMVF; // clear reset flags
|
|
}
|
|
#endif
|
|
#if !(DEBUG)
|
|
// show watchdog information
|
|
printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0);
|
|
if (FLASH_OBR & FLASH_OBR_OPTERR) {
|
|
puts(" (option bytes not set in flash: software wachtdog used, not automatically started at reset)\n");
|
|
} else if (FLASH_OBR & FLASH_OBR_WDG_SW) {
|
|
puts(" (software watchdog used, not automatically started at reset)\n");
|
|
} else {
|
|
puts(" (hardware watchdog used, automatically started at reset)\n");
|
|
}
|
|
#endif
|
|
|
|
// setup RTC
|
|
puts("setup internal RTC: ");
|
|
// note: the blue pill LSE oscillator is affected when toggling the onboard LED -> DON'T USE THE ONBOARD LED since we want to use the LSE
|
|
rtc_auto_awake(RCC_LSE, 32768 / RTC_TICKS_SECOND - 1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect)
|
|
rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds"
|
|
nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt
|
|
time_start = rtc_get_counter_val(); // get start time from internal RTC
|
|
puts("OK\n");
|
|
|
|
// setup relays
|
|
puts("setup relays: ");
|
|
rcc_periph_clock_enable(GPIO_RCC(RELAY_PANEL_PIN)); // enable clock for GPIO domain
|
|
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set low to leave per default
|
|
gpio_set_mode(GPIO_PORT(RELAY_PANEL_PIN), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(RELAY_PANEL_PIN)); // set as output to control the transistor controlling the relay
|
|
rcc_periph_clock_enable(GPIO_RCC(RELAY_BUTTON_PIN)); // enable clock for GPIO domain
|
|
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set low to leave per default
|
|
gpio_set_mode(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(RELAY_BUTTON_PIN)); // set as output to control the transistor controlling the relay
|
|
puts("OK\n");
|
|
|
|
// setup buttons
|
|
puts("setup buttons: ");
|
|
rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt
|
|
rcc_periph_clock_enable(GPIO_RCC(BUTTON1_PIN)); // enable clock for button
|
|
gpio_set(GPIO_PORT(BUTTON1_PIN), GPIO_PIN(BUTTON1_PIN)); // pull up to be able to detect button push (go low)
|
|
gpio_set_mode(GPIO_PORT(BUTTON1_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(BUTTON1_PIN)); // set button pin to input
|
|
exti_select_source(GPIO_EXTI(BUTTON1_PIN), GPIO_PORT(BUTTON1_PIN)); // mask external interrupt of this pin only for this port
|
|
exti_set_trigger(GPIO_EXTI(BUTTON1_PIN), EXTI_TRIGGER_FALLING); // trigger when button is pressed
|
|
exti_enable_request(GPIO_EXTI(BUTTON1_PIN)); // enable external interrupt
|
|
nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(BUTTON1_PIN)); // enable interrupt
|
|
rcc_periph_clock_enable(GPIO_RCC(BUTTON2_PIN)); // enable clock for button
|
|
gpio_set(GPIO_PORT(BUTTON2_PIN), GPIO_PIN(BUTTON2_PIN)); // pull up to be able to detect button push (go low)
|
|
gpio_set_mode(GPIO_PORT(BUTTON2_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(BUTTON2_PIN)); // set button pin to input
|
|
exti_select_source(GPIO_EXTI(BUTTON2_PIN), GPIO_PORT(BUTTON2_PIN)); // mask external interrupt of this pin only for this port
|
|
exti_set_trigger(GPIO_EXTI(BUTTON2_PIN), EXTI_TRIGGER_FALLING); // trigger when button is pressed
|
|
exti_enable_request(GPIO_EXTI(BUTTON2_PIN)); // enable external interrupt
|
|
nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(BUTTON2_PIN)); // enable interrupt
|
|
puts("OK\n");
|
|
|
|
// read opening settings from SRAM
|
|
puts("reading access settings: ");
|
|
RCC_APB1ENR |= (RCC_APB1ENR_PWREN | RCC_APB1ENR_BKPEN); // enable power
|
|
PWR_CR |= PWR_CR_DBP; // enable access
|
|
if (0x4223 == BKP_DR1) { // the magic header is present
|
|
opening_settings.days = BKP_DR2 & 0x7f;
|
|
opening_settings.start_time = BKP_DR3;
|
|
opening_settings.stop_time = BKP_DR4;
|
|
opening_settings.button_pattern[0] = BKP_DR5;
|
|
opening_settings.button_pattern[1] = BKP_DR6;
|
|
opening_settings.button_pattern[2] = BKP_DR7;
|
|
opening_settings.button_pattern[3] = BKP_DR8;
|
|
opening_settings.button_pattern[4] = BKP_DR9;
|
|
opening_settings.button_pattern[5] = BKP_DR10;
|
|
opening_settings.button_pattern[6] = BKP_DR11;
|
|
opening_settings.button_pattern[7] = BKP_DR12;
|
|
opening_settings.button_pattern[8] = BKP_DR13;
|
|
opening_settings.button_pattern[9] = BKP_DR14;
|
|
puts("loaded\n");
|
|
} else { // there are no settings saved
|
|
memset(&opening_settings, 0, sizeof(struct opening_settings_t)); // clear all values
|
|
puts("default\n");
|
|
}
|
|
// figure out how many button need to be pressed
|
|
for (pattern_length = 0; pattern_length < LENGTH(opening_settings.button_pattern) && opening_settings.button_pattern[pattern_length]; pattern_length++);
|
|
|
|
puts("setup bell LEDs: ");
|
|
uint8_t animation_progress = 0; // index of the current animation
|
|
led_ws2812b_setup();
|
|
for (uint8_t led = 0; led < LED_WS2812B_LEDS; led++) {
|
|
led_ws2812b_set_rgb(led, 0x10, 0x10 , 0x10);
|
|
}
|
|
puts("OK\n");
|
|
|
|
puts("setup animation timer: ");
|
|
// setup timer to wait for minimal time before next transmission (after previous transmission or reception)
|
|
rcc_periph_clock_enable(RCC_TIM(LED_ANIMATION_TIMER)); // enable clock for timer block
|
|
rcc_periph_reset_pulse(RST_TIM(LED_ANIMATION_TIMER)); // reset timer state
|
|
timer_set_mode(TIM(LED_ANIMATION_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock,edge alignment (simple count), and count up
|
|
timer_set_prescaler(TIM(LED_ANIMATION_TIMER), 1099 - 1); // set the prescaler so this 16 bits timer allows to wait for maximum 1s ( 1 / (72E6 / 1099 / (2**16)) = 1.0003s)
|
|
timer_set_period(TIM(LED_ANIMATION_TIMER), 0xffff / 16); // the timing is not defined in the specification. I tested until the communication was reliable (all requests get an response)
|
|
timer_clear_flag(TIM(LED_ANIMATION_TIMER), TIM_SR_UIF); // clear flag
|
|
timer_enable_irq(TIM(LED_ANIMATION_TIMER), TIM_DIER_UIE); // enable update interrupt for timer
|
|
nvic_enable_irq(NVIC_TIM_IRQ(LED_ANIMATION_TIMER)); // catch interrupt in service routine
|
|
puts("OK\n");
|
|
|
|
// setup terminal
|
|
terminal_prefix = ""; // set default prefix
|
|
terminal_process = &process_command; // set central function to process commands
|
|
terminal_setup(); // start terminal
|
|
|
|
// start main loop
|
|
bool action = false; // if an action has been performed don't go to sleep
|
|
button_flag = false; // reset button flag
|
|
uint32_t last_button_action = 0; // the last time a button has been pressed
|
|
uint8_t button_pattern[LENGTH(opening_settings.button_pattern)]; // to store the input button pattern
|
|
uint8_t button_input = 0; // how many buttons have been pressed
|
|
bool rust_animated = false; // if the rust animation started
|
|
bool strobe_animated = false; // if the strobe animation started
|
|
while (true) { // infinite loop
|
|
iwdg_reset(); // kick the dog
|
|
if (user_input_available) { // user input is available
|
|
action = true; // action has been performed
|
|
led_toggle(); // toggle LED
|
|
char c = user_input_get(); // store receive character
|
|
terminal_send(c); // send received character to terminal
|
|
}
|
|
if (button_flag || button_pressed) { // user pressed button
|
|
action = true; // action has been performed
|
|
sleep_ms(200); // wait a bit to remove noise and double trigger
|
|
if (!gpio_get(GPIO_PORT(BUTTON1_PIN), GPIO_PIN(BUTTON1_PIN))) {
|
|
button_pressed = 1;
|
|
}
|
|
if (!gpio_get(GPIO_PORT(BUTTON2_PIN), GPIO_PIN(BUTTON2_PIN))) {
|
|
button_pressed = 2;
|
|
}
|
|
if (button_pressed) {
|
|
printf("button pressed: %u\n", button_pressed);
|
|
led_toggle(); // toggle LED
|
|
if (pattern_length > 0 && opening_apply) { // only check pattern if there is one to compare to
|
|
// switch off LEDs
|
|
for (uint8_t led = 0; led < LED_WS2812B_LEDS; led++) {
|
|
led_ws2812b_set_rgb(led, 0, 0, 0);
|
|
}
|
|
// start LED animation
|
|
if (1 == button_pressed) {
|
|
rust_animated = true; // remember rust animation started
|
|
led_ws2812b_set_rgb(3, rust_animation[0][1], rust_animation[0][2], rust_animation[0][3]); // start LED animation
|
|
led_ws2812b_set_rgb(4, rust_animation[0][1], rust_animation[0][2], rust_animation[0][3]); // start LED animation
|
|
led_ws2812b_set_rgb(5, rust_animation[0][1], rust_animation[0][2], rust_animation[0][3]); // start LED animation
|
|
strobe_animated = false; // stop strobe animation
|
|
led_ws2812b_set_rgb(0, 0, 0, 0); // switch LED off
|
|
led_ws2812b_set_rgb(1, 0, 0, 0); // switch LED off
|
|
led_ws2812b_set_rgb(2, 0, 0, 0); // switch LED off
|
|
} else if (2 == button_pressed) {
|
|
strobe_animated = true; // remember strobe animation started
|
|
led_ws2812b_set_rgb(0, strobe_animation[0][1], strobe_animation[0][2], strobe_animation[0][3]); // start LED animation
|
|
led_ws2812b_set_rgb(1, strobe_animation[0][1], strobe_animation[0][2], strobe_animation[0][3]); // start LED animation
|
|
led_ws2812b_set_rgb(2, strobe_animation[0][1], strobe_animation[0][2], strobe_animation[0][3]); // start LED animation
|
|
rust_animated = false; // stop rust animation
|
|
led_ws2812b_set_rgb(3, 0, 0, 0); // switch LED off
|
|
led_ws2812b_set_rgb(4, 0, 0, 0); // switch LED off
|
|
led_ws2812b_set_rgb(5, 0, 0, 0); // switch LED off
|
|
}
|
|
led_animation_ticks = 0; // reset timer counter
|
|
animation_progress = 0; // reset animation
|
|
timer_set_counter(TIM(LED_ANIMATION_TIMER), 0); // reset timer counter to get right duration
|
|
timer_enable_counter(TIM(LED_ANIMATION_TIMER)); // start timer
|
|
// store button
|
|
if (button_input < LENGTH(button_pattern)) {
|
|
button_pattern[button_input++] = button_pressed;
|
|
printf("button sequence: %u/%u\n", button_input, pattern_length);
|
|
last_button_action = rtc_get_counter_val(); // remember last button action
|
|
}
|
|
// compare pattern
|
|
if (button_input >= pattern_length) {
|
|
bool pattern_valid = true;
|
|
for (uint8_t i = 0; i < pattern_length; i++) {
|
|
if (button_pattern[i] != opening_settings.button_pattern[i]) {
|
|
pattern_valid = false;
|
|
break;
|
|
}
|
|
}
|
|
// if the correct pattern has been input, press button
|
|
if (pattern_valid) {
|
|
puts("button sequence valid\n");
|
|
gpio_set(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set high to activate relay an simulate button press
|
|
sleep_ms(1000); // hold button a bit
|
|
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set low to deactivate relay and release button
|
|
}
|
|
button_input = 0; // restart from scratch
|
|
last_button_action = 0; // restart sequence
|
|
}
|
|
} else { // ignore all button entry when not within the opening hours
|
|
button_input = 0;
|
|
last_button_action = 0;
|
|
}
|
|
// wait until both buttons are released
|
|
while (!gpio_get(GPIO_PORT(BUTTON1_PIN), GPIO_PIN(BUTTON1_PIN)) || !gpio_get(GPIO_PORT(BUTTON2_PIN), GPIO_PIN(BUTTON2_PIN))) {
|
|
//iwdg_reset(); // kick the dog
|
|
sleep_ms(100);
|
|
}
|
|
} // button_pressed
|
|
button_pressed = 0; // reset button pressed
|
|
button_flag = false; // reset flag
|
|
}
|
|
if (rtc_internal_tick_flag) { // the internal RTC ticked
|
|
rtc_internal_tick_flag = false; // reset flag
|
|
action = true; // action has been performed
|
|
if (0 == (rtc_get_counter_val() % RTC_TICKS_SECOND)) { // one second has passed
|
|
led_toggle(); // toggle LED (good to indicate if main function is stuck)
|
|
}
|
|
if (last_button_action && last_button_action + 5 * RTC_TICKS_SECOND <= rtc_get_counter_val()) { // pattern entry timeout
|
|
puts("button sequence entry timeout\n");
|
|
last_button_action = 0; // reset last button time
|
|
button_input = 0; // reset pattern input
|
|
}
|
|
// always enforce the right state
|
|
gpio_clear(GPIO_PORT(RELAY_BUTTON_PIN), GPIO_PIN(RELAY_BUTTON_PIN)); // set low to not simulate button press
|
|
// verify if day matches
|
|
const time_t time_rtc = rtc_get_counter_val() / RTC_TICKS_SECOND + rtc_offset; // get time from internal RTC
|
|
const struct tm* time_tm = localtime(&time_rtc); // convert time
|
|
const uint16_t current_time = time_tm->tm_hour * 60 + time_tm->tm_min; // get time of day in minutes
|
|
const uint8_t day = 6 - ((time_tm->tm_wday + 6) % 7); // get bit for the current day of week
|
|
if (opening_settings.stop_time > opening_settings.start_time) { // stop time is on same day
|
|
opening_apply = ((opening_settings.days & (1 << day)) && current_time > opening_settings.start_time && current_time < opening_settings.stop_time);
|
|
} else { // stop time is on next day
|
|
opening_apply = ((opening_settings.days & (1 << day)) && current_time > opening_settings.start_time) || (opening_settings.days & (1 << (day + 1 % 7)) && current_time < opening_settings.stop_time);
|
|
}
|
|
if (opening_apply) { // we are in the opening hours
|
|
//puts("apply\n");
|
|
gpio_set(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set high to activate relay and disconnect button
|
|
} else {
|
|
gpio_clear(GPIO_PORT(RELAY_PANEL_PIN), GPIO_PIN(RELAY_PANEL_PIN)); // set high to release relay and connect button
|
|
}
|
|
}
|
|
if (led_animation_ticks) { // an LED animation is running
|
|
if (rust_animated) {
|
|
if (animation_progress < LENGTH(rust_animation)) {
|
|
if (led_animation_ticks >= rust_animation[animation_progress][0]) {
|
|
animation_progress++; // got to next animation step
|
|
led_animation_ticks = 0; // reset time ticks
|
|
if (animation_progress < LENGTH(rust_animation)) { // next step of animation reached
|
|
led_ws2812b_set_rgb(3, rust_animation[animation_progress][1], rust_animation[animation_progress][2], rust_animation[animation_progress][3]);
|
|
led_ws2812b_set_rgb(4, rust_animation[animation_progress][1], rust_animation[animation_progress][2], rust_animation[animation_progress][3]);
|
|
led_ws2812b_set_rgb(5, rust_animation[animation_progress][1], rust_animation[animation_progress][2], rust_animation[animation_progress][3]);
|
|
} else { // end of animation reached
|
|
timer_disable_counter(TIM(LED_ANIMATION_TIMER)); // stop timer
|
|
led_ws2812b_set_rgb(3, 0, 0, 0); // switch off LED
|
|
led_ws2812b_set_rgb(4, 0, 0, 0); // switch off LED
|
|
led_ws2812b_set_rgb(5, 0, 0, 0); // switch off LED
|
|
}
|
|
}
|
|
} else { // end of animation reached
|
|
led_animation_ticks = 0; // disable check
|
|
timer_disable_counter(TIM(LED_ANIMATION_TIMER)); // stop timer
|
|
}
|
|
}
|
|
if (strobe_animated) {
|
|
if (animation_progress < LENGTH(strobe_animation)) {
|
|
if (led_animation_ticks >= strobe_animation[animation_progress][0]) {
|
|
animation_progress++; // got to next animation step
|
|
led_animation_ticks = 0; // reset time ticks
|
|
if (animation_progress < LENGTH(strobe_animation)) { // next step of animation reached
|
|
led_ws2812b_set_rgb(0, strobe_animation[animation_progress][1], strobe_animation[animation_progress][2], strobe_animation[animation_progress][3]);
|
|
led_ws2812b_set_rgb(1, strobe_animation[animation_progress][1], strobe_animation[animation_progress][2], strobe_animation[animation_progress][3]);
|
|
led_ws2812b_set_rgb(2, strobe_animation[animation_progress][1], strobe_animation[animation_progress][2], strobe_animation[animation_progress][3]);
|
|
} else { // end of animation reached
|
|
timer_disable_counter(TIM(LED_ANIMATION_TIMER)); // stop timer
|
|
led_ws2812b_set_rgb(3, 0, 0, 0); // switch off LED
|
|
led_ws2812b_set_rgb(4, 0, 0, 0); // switch off LED
|
|
led_ws2812b_set_rgb(5, 0, 0, 0); // switch off LED
|
|
}
|
|
}
|
|
} else { // end of animation reached
|
|
led_animation_ticks = 0; // disable check
|
|
timer_disable_counter(TIM(LED_ANIMATION_TIMER)); // stop timer
|
|
}
|
|
}
|
|
}
|
|
if (action) { // go to sleep if nothing had to be done, else recheck for activity
|
|
action = false;
|
|
} else {
|
|
__WFI(); // go to sleep
|
|
}
|
|
} // main loop
|
|
}
|
|
|
|
/** @brief interrupt service routine called when tick passed on RTC */
|
|
void rtc_isr(void)
|
|
{
|
|
rtc_clear_flag(RTC_SEC); // clear flag
|
|
rtc_internal_tick_flag = true; // notify to show new time
|
|
}
|
|
|
|
void GPIO_EXTI_ISR(BUTTON1_PIN)(void) // it's the same at BUTTON2_PIN: EXT9_5
|
|
{
|
|
if (exti_get_flag_status(GPIO_EXTI(BUTTON1_PIN))) {
|
|
exti_reset_request(GPIO_EXTI(BUTTON1_PIN)); // reset interrupt
|
|
}
|
|
if (exti_get_flag_status(GPIO_EXTI(BUTTON2_PIN))) {
|
|
exti_reset_request(GPIO_EXTI(BUTTON2_PIN)); // reset interrupt
|
|
}
|
|
button_flag = true; // perform button action
|
|
}
|
|
|
|
/** interrupt service routine called on animation tick */
|
|
void TIM_ISR(LED_ANIMATION_TIMER)(void)
|
|
{
|
|
if (timer_get_flag(TIM(LED_ANIMATION_TIMER), TIM_SR_UIF)) { // update event happened
|
|
timer_clear_flag(TIM(LED_ANIMATION_TIMER), TIM_SR_UIF); // clear flag
|
|
led_animation_ticks++; // remember one tick passed
|
|
}
|
|
}
|