stm32f1/application.c

826 lines
30 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** CuVoodoo USB cable tester firmware
* @file
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2016-2020
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // standard utilities
#include <string.h> // string utilities
#include <time.h> // date/time utilities
#include <ctype.h> // utilities to check chars
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/scb.h> // vector table definition
#include <libopencm3/cm3/nvic.h> // interrupt utilities
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/exti.h> // external interrupt utilities
#include <libopencm3/stm32/rtc.h> // real time clock utilities
#include <libopencm3/stm32/iwdg.h> // independent watchdog utilities
#include <libopencm3/stm32/dbgmcu.h> // debug utilities
#include <libopencm3/stm32/desig.h> // design utilities
#include <libopencm3/stm32/flash.h> // flash utilities
/* own libraries */
#include "global.h" // board definitions
#include "print.h" // printing utilities
#include "usb_cdcacm.h" // USB CDC ACM utilities
#include "terminal.h" // handle the terminal interface
#include "menu.h" // menu utilities
#include "usb_cables.h" // USB cables definition
/** watchdog period in ms */
#define WATCHDOG_PERIOD 10000
/** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime
* set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time
*/
#define RTC_DATE_TIME 0
/** number of RTC ticks per second
* @note use integer divider of oscillator to keep second precision
*/
#define RTC_TICKS_SECOND 4
/** RTC time when device is started */
static time_t time_start = 0;
/** @defgroup main_flags flag set in interrupts to be processed in main task
* @{
*/
volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */
/** @} */
size_t putc(char c)
{
size_t length = 0; // number of characters printed
static char last_c = 0; // to remember on which character we last sent
if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF
if ('\r' != last_c) { // CR has not already been sent
usb_cdcacm_putchar('\r'); // send CR over USB
length++; // remember we printed 1 character
}
}
usb_cdcacm_putchar(c); // send byte over USB
length++; // remember we printed 1 character
last_c = c; // remember last character
return length; // return number of characters printed
}
/** put all pins of all connectors to float */
static void usb_pins_float(void)
{
usb_cables_connectors_float(usb_connectors, LENGTH(usb_connectors)); // put every pin of every connector in floating mode
}
/** display available commands
* @param[in] argument no argument required
*/
static void command_help(void* argument);
/** show software and hardware version
* @param[in] argument no argument required
*/
static void command_version(void* argument);
/** show uptime
* @param[in] argument no argument required
*/
static void command_uptime(void* argument);
#if RTC_DATE_TIME
/** show date and time
* @param[in] argument date and time to set
*/
static void command_datetime(void* argument);
#endif
/** reset board
* @param[in] argument no argument required
*/
static void command_reset(void* argument);
/** switch to DFU bootloader
* @param[in] argument no argument required
*/
static void command_bootloader(void* argument);
/** test USB connectors intra-connections
* @param[in] argument no argument required
*/
static void command_intra(void* argument)
{
(void)argument; // we won't use the argument
usb_pins_float(); // start with all pins in safe floating state
printf("= intra-connector check =\n");
for (uint8_t connector = 0; connector < LENGTH(usb_connectors); connector++) { // test from every connector
printf("- %s -\n", usb_connectors[connector]->name);
usb_cables_check_intra(usb_connectors[connector], NULL);
}
usb_pins_float(); // put all pins back in safe floating state
}
/** test USB connectors inter-connections
* @param[in] argument no argument required
*/
static void command_inter(void* argument)
{
(void)argument; // we won't use the argument
usb_pins_float(); // start with all pins in safe floating state
// step 1: find which connectors are connected
printf("= inter-connector check =\n");
usb_cables_check_inter(usb_connectors, LENGTH(usb_connectors), NULL);
usb_pins_float(); // put all pins back in safe floating state
}
/** test USB cables
* @param[in] argument no argument required
*/
static void command_cables(void* argument)
{
(void)argument; // we won't use the argument
usb_pins_float(); // start with all pins in safe floating state
// step 2: check for known cable configuration
printf("= cable check =\n");
for (uint8_t cable = 0; cable < LENGTH(usb_cables); cable++) { // test every cable
uint8_t pair_defined, pair_undefined, pair_disconnected, pair_error;
bool result = usb_cables_check_cable(&usb_cables[cable], &pair_defined, &pair_undefined, &pair_disconnected, &pair_error);
printf("%s: %s (defined=%u, undefined=%u, disconnected=%u, error=%u)\n", result ? "OK" : "KO", usb_cables[cable].name, pair_defined, pair_undefined, pair_disconnected, pair_error);
}
usb_pins_float(); // put all pins back in safe floating state
}
/** find out which USB cable is connected
* @param[in] argument no argument required
*/
static void command_find(void* argument)
{
(void)argument; // we won't use the argument
printf("= cable finder =\n");
usb_pins_float(); // start with all pins in safe floating state
// figure out which connectors are used
bool connected[LENGTH(usb_connectors)];
usb_cables_check_inter(usb_connectors, LENGTH(usb_connectors), connected);
uint8_t connected_nb = 0;
printf("connectors:\n");
for (uint8_t i = 0; i < LENGTH(connected); i++) {
if (connected[i]) {
printf("- %s (%s)\n", usb_connectors[i]->name, usb_connectors[i]->host ? "host" : "device");
connected_nb++;
}
}
// find matching cable
uint8_t matches = 0; // number of matching cables
printf("matching cables:\n");
for (uint8_t cable = 0; cable < LENGTH(usb_cables); cable++) {
// ensure we have the same number of connections as the cable
if (usb_cables[cable].connectors_nb != connected_nb) {
continue;
}
// ensure all the connectors we have are also in the cable
bool match = true;
for (uint8_t i = 0; i < LENGTH(usb_connectors) && match; i++) {
if (!connected[i]) {
continue;
}
bool found = false;
for (uint8_t j = 0; j < usb_cables[cable].connectors_nb; j++) {
if (usb_connectors[i] == usb_cables[cable].connectors[j]) {
found = true;
}
}
if (!found) {
match = false;
}
}
// ensure we also have all the connectors which are in the cable
for (uint8_t i = 0; i < usb_cables[cable].connectors_nb && match; i++) {
bool found = false;
for (uint8_t j = 0; j < LENGTH(usb_connectors); j++) {
if (!connected[j]) {
continue;
}
if (usb_connectors[j] == usb_cables[cable].connectors[i]) {
found = true;
}
}
if (!found) {
match = false;
}
}
if (!match) {
continue;
}
// the connector match
uint8_t pair_defined, pair_undefined, pair_disconnected, pair_error;
match = usb_cables_check_cable(&usb_cables[cable], &pair_defined, &pair_undefined, &pair_disconnected, &pair_error);
if (match) {
matches++;
printf("- %s\n", usb_cables[cable].name);
}
}
printf("%u matching cable(s) found\n", matches++);
usb_pins_float(); // put all pins back in safe floating state
}
/** set or show pin value
* @param[in] argument pin number and level
*/
static void command_pin(void* argument)
{
char* pin_str = NULL; // to parse the pin number
char* pin_level = NULL; // to parse the pin level
const char* delimiter = " "; // words are separated by spaces
uint8_t pin_nb = 0; // parsed pin number
if (argument) { // pin number and level might have been provided
pin_str = strtok((char*)argument, delimiter); // get pin number string
if (pin_str) {
pin_nb = strtoul(pin_str, NULL, 10); // parse pin number
pin_level = strtok(NULL, delimiter); // get pin level
}
}
// print header
if (!pin_level) {
printf("pin set and state (H: out high, L: out low, h in high, l in low, x in floating):\n");
} else {
printf("setting pin\n");
}
uint8_t pin_i = 0; // current pin
for (uint8_t connector = 0; connector < LENGTH(usb_connectors); connector++) { // test every connector
bool connector_print = (!pin_str || (pin_str && pin_nb >= pin_i && pin_nb < pin_i + usb_connectors[connector]->pins_nb)); // if a pin information will be printed for this connector
if (connector_print) {
printf("%s (%s):\n", usb_connectors[connector]->name, usb_connectors[connector]->host ? "host" : "device"); // print connector name
}
for (uint8_t pin = 0; pin < usb_connectors[connector]->pins_nb; pin++) { // test every pin
uint32_t pin_port = usb_connectors[connector]->pins[pin].port; // GPIO port corresponding to USB pin
uint16_t pin_pin = usb_connectors[connector]->pins[pin].pin; // GPIO pin corresponding to USB pin
if (!pin_str || (!pin_level && pin_nb == pin_i)) { // show pin state
printf("%03u %s: ", pin_i, usb_connectors[connector]->pins[pin].name); // print USB pin number
uint8_t pin_pos = __builtin_ctz(pin_pin); // get the pin number (position of the 1 in the 16-bit)
uint8_t offset = (pin_pos < 8) ? (pin_pos * 4) : ((pin_pos - 8) * 4); // get pin offset within port
uint8_t mode = (((pin_pos < 8) ? GPIO_CRL(pin_port) : GPIO_CRH(pin_port)) >> (offset + 0)) & 0x3; // get mode from pin for port
uint8_t conf = (((pin_pos < 8) ? GPIO_CRL(pin_port) : GPIO_CRH(pin_port)) >> (offset + 2)) & 0x3; // get configuration from pin for port
// show set value
if (0 == mode) { // pin configured as input
if (1 == conf) { // pin is in floating configuration
putc('x');
} else if (0 == (GPIO_ODR(pin_port) & pin_pin)) {
putc('l');
} else {
putc('h');
}
} else { // pin configured as output
if (0 == (GPIO_ODR(pin_port) & pin_pin)) {
putc('L');
} else {
putc('H');
}
}
// show actual value
if (0 == mode) { // pin is configured as input
bool high = (0 != gpio_get(pin_port, pin_pin)); // test if pin is high
bool low = !high; // will be used to test if pin is low
if (1 == conf) { // pin is in floating configuration
gpio_set_mode(pin_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, pin_pin); // we will test if the input is floating by checking against a pull up and down
gpio_set(pin_port, pin_pin); // pull up
sleep_us(10); // wait for GPIO/line to settle
high = (0 != gpio_get(pin_port, pin_pin)); // test if pin is high
gpio_clear(pin_port, pin_pin); // pull down
sleep_us(10); // wait for GPIO/line to settle
low = (0 == gpio_get(pin_port, pin_pin)); // test if pin is low
gpio_set_mode(pin_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, pin_pin); // put back to floating
}
// check and display result
if (high && !low) { // pull down did not work
putc('h'); // something is driving the pin high
} else if (!high && low) { // pull up did not work
putc('l'); // something is driving the pin low
} else if (high && low) { // pull up and down worked
putc('x'); // nothing is driving the pin
} else { // pull up and down did not work
putc('?'); // something is driving the pin randomly
}
} else { // pin is configured as output
// only show the actual measured output, not the one set
if (gpio_get(pin_port, pin_pin)) {
putc('H'); // pin is high
} else {
putc('L'); // pin is low
}
}
putc('\n');
}
if (pin_level && pin_nb == pin_i) { // set pin
printf("%03u %s: %s", pin_i, usb_connectors[connector]->pins[pin].name, pin_level);
switch (pin_level[0]) {
case 'h':
gpio_set(pin_port, pin_pin);
gpio_set_mode(pin_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, pin_pin);
break;
case 'H':
gpio_set(pin_port, pin_pin);
gpio_set_mode(pin_port, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, pin_pin);
break;
case 'l':
gpio_clear(pin_port, pin_pin);
gpio_set_mode(pin_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, pin_pin);
break;
case 'L':
gpio_clear(pin_port, pin_pin);
gpio_set_mode(pin_port, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, pin_pin);
break;
case 'x':
case 'X':
default:
gpio_set_mode(pin_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, pin_pin);
}
putc('\n');
}
pin_i++; // increase global pin number
} // pin
if (connector_print) {
putc('\n'); // separate connectors for readability
}
} // connector
}
/** run self test to test board connection to connectors
* @param[in] argument no argument required
*/
static void command_test(void* argument)
{
(void)argument; // we won't use the argument
usb_pins_float(); // start with all pins in safe floating state
printf("= test =\n");
printf("run test to check board connections\n");
printf("press any key to interrupt test\n\n");
// ensure all pins are floating
printf("remove all cables from connectors\n");
bool float_errors = true; // to test if all pins are floating
while (float_errors) {
float_errors = false; // restart test
for (uint8_t connector = 0; connector < LENGTH(usb_connectors); connector++) { // test every connector
for (uint8_t pin = 0; pin < usb_connectors[connector]->pins_nb; pin++) { // test every pin
uint32_t pin_port = usb_connectors[connector]->pins[pin].port; // GPIO port corresponding to USB pin
uint16_t pin_pin = usb_connectors[connector]->pins[pin].pin; // GPIO pin corresponding to USB pin
gpio_set_mode(pin_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, pin_pin); // we will test if the input is floating by checking against a pull up and down
gpio_set(pin_port, pin_pin); // pull up
sleep_us(10); // wait for GPIO/line to settle
bool high = (0 != gpio_get(pin_port, pin_pin)); // test if pin is high
gpio_clear(pin_port, pin_pin); // pull down
sleep_us(10); // wait for GPIO/line to settle
bool low = (0 == gpio_get(pin_port, pin_pin)); // test if pin is low
gpio_set_mode(pin_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, pin_pin); // put back to floating
if (high && low) { // pull up and down worked
} else { // pull up or down did not work
printf("%s (%s) %s is not floating\n", usb_connectors[connector]->name, usb_connectors[connector]->host ? "host" : "device", usb_connectors[connector]->pins[pin].name); // print erroneous pin
float_errors = true; // remember there is an error
}
} // pin
} // connector
if (float_errors) {
if (user_input_available) { // user interruption
goto end;
}
sleep_ms(500); // wait a bit before retesting
if (user_input_available) { // user interruption
goto end;
}
}
} // float_errors
printf("all pins are floating\n\n");
// cables to test
const struct usb_cable_t test_cables[] = {
usb_cables[9], // A (host) - B 3.0 shielded cable
usb_cables[14], // A (device) - B 3.0 shielded cable
usb_cables[17], // A (host) - miniB 2.0 shielded cable
usb_cables[25], // A (host) - microB 3.0 shielded cable
usb_cables[31], // C (host) shunt
usb_cables[32], // C (device) shunt
};
for (uint8_t cable = 0; cable < LENGTH(test_cables); cable++) {
printf("connect %s cable to connectors:\n", test_cables[cable].name);
for (uint8_t connector = 0; connector < test_cables[cable].connectors_nb; connector++) {
printf("- %s (%s)\n", test_cables[cable].connectors[connector]->name, test_cables[cable].connectors[connector]->host ? "host" : "device");
}
bool cable_ok = false; // if the cable is connected
while (!cable_ok) { // wait until all pin pairs of cable are connected
uint8_t defined, undefined, disconnected, error; // pair counting variables
cable_ok = usb_cables_check_cable(&test_cables[cable], &defined, &undefined, &disconnected, &error); // test cable
if (!cable_ok && defined > 0) { // not all pairs are connected
printf("connection issues: defined=%u/%u, undefined=%u, disconnected=%u, error=%u\n", defined, test_cables[cable].pin_pairs_nb, undefined, disconnected, error); // show issue summary
}
if (!cable_ok) {
if (user_input_available) { // user interruption
goto end;
}
sleep_ms(500); // wait a bit before retesting
if (user_input_available) { // user interruption
goto end;
}
}
}
printf("cable connections are OK\n\n");
}
printf("all connectors are OK, the board is fine\n");
end:
usb_pins_float(); // put pins back to safe state
if (user_input_available) {
printf("test interrupted\n");
while (user_input_available) { // test has been interrupted
user_input_get(); // discard input
}
}
}
/** list of all supported commands */
static const struct menu_command_t menu_commands[] = {
{
.shortcut = 'h',
.name = "help",
.command_description = "display help",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_help,
},
{
.shortcut = 'V',
.name = "version",
.command_description = "show software and hardware version",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_version,
},
{
.shortcut = 'U',
.name = "uptime",
.command_description = "show uptime",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_uptime,
},
#if RTC_DATE_TIME
{
.shortcut = 'D',
.name = "date",
.command_description = "show/set date and time",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[YYYY-MM-DD HH:MM:SS]",
.command_handler = &command_datetime,
},
#endif
{
.shortcut = 'R',
.name = "reset",
.command_description = "reset board",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_reset,
},
{
.shortcut = 'B',
.name = "bootloader",
.command_description = "reboot into DFU bootloader",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_bootloader,
},
{
.shortcut = 'a',
.name = "intra",
.command_description = "test connector intra-connection",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_intra,
},
{
.shortcut = 'e',
.name = "inter",
.command_description = "test connector inter-connection",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_inter,
},
{
.shortcut = 'c',
.name = "cables",
.command_description = "test cables",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_cables,
},
{
.shortcut = 'f',
.name = "find",
.command_description = "find cable",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_find,
},
{
.shortcut = 'p',
.name = "pin",
.command_description = "set/show pin level",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[nb] [H/L/h/l/x]",
.command_handler = &command_pin,
},
{
.shortcut = 't',
.name = "test",
.command_description = "run board test",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &command_test,
},
};
static void command_help(void* argument)
{
(void)argument; // we won't use the argument
printf("available commands:\n");
menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands
}
static void command_version(void* argument)
{
(void)argument; // we won't use the argument
printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date
// get device identifier (DEV_ID)
// 0x412: low-density, 16-32 kB flash
// 0x410: medium-density, 64-128 kB flash
// 0x414: high-density, 256-512 kB flash
// 0x430: XL-density, 768-1024 kB flash
// 0x418: connectivity
puts("device family: ");
switch (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK) {
case 0: // this is a known issue document in STM32F10xxC/D/E Errata sheet, without workaround
puts("unreadable\n");
break;
case 0x412:
puts("low-density\n");
break;
case 0x410:
puts("medium-density\n");
break;
case 0x414:
puts("high-density\n");
break;
case 0x430:
puts("XL-density\n");
break;
case 0x418:
puts("connectivity\n");
break;
default:
puts("unknown\n");
break;
}
// show flash size
puts("flash size: ");
if (0xffff == DESIG_FLASH_SIZE) {
puts("unknown (probably a defective micro-controller\n");
} else {
printf("%u KB\n", DESIG_FLASH_SIZE);
}
// display device identity
printf("device id: %08x%08x%08x\n", DESIG_UNIQUE_ID0, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID2);
}
static void command_uptime(void* argument)
{
(void)argument; // we won't use the argument
uint32_t uptime = (rtc_get_counter_val() - time_start) / RTC_TICKS_SECOND; // get time from internal RTC
printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60);
}
#if RTC_DATE_TIME
static void command_datetime(void* argument)
{
char* datetime = (char*)argument; // argument is optional date time
if (NULL == argument) { // no date and time provided, just show the current day and time
time_t time_rtc = rtc_get_counter_val() / RTC_TICKS_SECOND; // get time from internal RTC
struct tm* time_tm = localtime(&time_rtc); // convert time
printf("date: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm->tm_year, time_tm->tm_mon, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec);
} else { // date and time provided, set it
const char* malformed = "date and time malformed, expecting YYYY-MM-DD HH:MM:SS\n";
struct tm time_tm; // to store the parsed date time
if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough
printf(malformed);
return;
}
if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && '-' == datetime[4] && isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && '-' == datetime[7] && isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && ' ' == datetime[10] && isdigit((int8_t)datetime[11]) && isdigit((int8_t)datetime[12]) && ':' == datetime[13] && isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && ':' == datetime[16] && isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]))) { // verify format (good enough to not fail parsing)
printf(malformed);
return;
}
time_tm.tm_year = strtol(&datetime[0], NULL, 10) - 1900; // parse year
time_tm.tm_mon = strtol(&datetime[5], NULL, 10); // parse month
time_tm.tm_mday = strtol(&datetime[8], NULL, 10); // parse day
time_tm.tm_hour = strtol(&datetime[11], NULL, 10); // parse hour
time_tm.tm_min = strtol(&datetime[14], NULL, 10); // parse minutes
time_tm.tm_sec = strtol(&datetime[17], NULL, 10); // parse seconds
time_t time_rtc = mktime(&time_tm); // get back seconds
time_start = time_rtc * RTC_TICKS_SECOND + (rtc_get_counter_val() - time_start); // update uptime with current date
rtc_set_counter_val(time_rtc * RTC_TICKS_SECOND); // save date/time to internal RTC
printf("date and time saved: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm.tm_year, time_tm.tm_mon, time_tm.tm_mday, time_tm.tm_hour, time_tm.tm_min, time_tm.tm_sec);
}
}
#endif
static void command_reset(void* argument)
{
(void)argument; // we won't use the argument
scb_reset_system(); // reset device
while (true); // wait for the reset to happen
}
static void command_bootloader(void* argument)
{
(void)argument; // we won't use the argument
// set DFU magic to specific RAM location
__dfu_magic[0] = 'D';
__dfu_magic[1] = 'F';
__dfu_magic[2] = 'U';
__dfu_magic[3] = '!';
scb_reset_system(); // reset system (core and peripherals)
while (true); // wait for the reset to happen
}
/** process user command
* @param[in] str user command string (\0 ended)
*/
static void process_command(char* str)
{
// ensure actions are available
if (NULL == menu_commands || 0 == LENGTH(menu_commands)) {
return;
}
// don't handle empty lines
if (!str || 0 == strlen(str)) {
return;
}
bool command_handled = false;
if (!command_handled) {
command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command
}
if (!command_handled) {
printf("command not recognized. enter help to list commands\n");
}
}
/** program entry point
* this is the firmware function started by the micro-controller
*/
void main(void);
void main(void)
{
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
#if DEBUG
// enable functionalities for easier debug
DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered)
DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered)
DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered)
#else
// setup watchdog to reset in case we get stuck (i.e. when an error occurred)
iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period
iwdg_start(); // start independent watchdog
#endif
board_setup(); // setup board
usb_cdcacm_setup(); // setup USB CDC ACM (for printing)
printf("\nwelcome to the CuVoodoo USB cable tester\n"); // print welcome message
#if DEBUG
// show reset cause
if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) {
puts("reset cause(s):");
if (RCC_CSR & RCC_CSR_LPWRRSTF) {
puts(" low-power");
}
if (RCC_CSR & RCC_CSR_WWDGRSTF) {
puts(" window-watchdog");
}
if (RCC_CSR & RCC_CSR_IWDGRSTF) {
puts(" independent-watchdog");
}
if (RCC_CSR & RCC_CSR_SFTRSTF) {
puts(" software");
}
if (RCC_CSR & RCC_CSR_PORRSTF) {
puts(" POR/PDR");
}
if (RCC_CSR & RCC_CSR_PINRSTF) {
puts(" pin");
}
putc('\n');
RCC_CSR |= RCC_CSR_RMVF; // clear reset flags
}
#endif
#if !(DEBUG)
// show watchdog information
printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0);
if (FLASH_OBR & FLASH_OBR_OPTERR) {
puts(" (option bytes not set in flash: software wachtdog used, not automatically started at reset)\n");
} else if (FLASH_OBR & FLASH_OBR_WDG_SW) {
puts(" (software watchdog used, not automatically started at reset)\n");
} else {
puts(" (hardware watchdog used, automatically started at reset)\n");
}
#endif
// setup RTC
rtc_auto_awake(RCC_HSE, 8000000 / 128 / RTC_TICKS_SECOND - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running)
rtc_auto_awake(RCC_HSE, 8000000 / 128 - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running)
rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds"
nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt
time_start = rtc_get_counter_val(); // get start time from internal RTC
// setup USB connectors
gpio_primary_remap(AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW_ON, 0); // only use SWD and reuse JTAG pins
rcc_periph_clock_enable(RCC_GPIOA); // enable clock to all GPIO port domains since we use them all
rcc_periph_clock_enable(RCC_GPIOB); // enable clock to all GPIO port domains since we use them all
rcc_periph_clock_enable(RCC_GPIOC); // enable clock to all GPIO port domains since we use them all
rcc_periph_clock_enable(RCC_GPIOD); // enable clock to all GPIO port domains since we use them all
rcc_periph_clock_enable(RCC_GPIOE); // enable clock to all GPIO port domains since we use them all
rcc_periph_clock_enable(RCC_GPIOF); // enable clock to all GPIO port domains since we use them all
rcc_periph_clock_enable(RCC_GPIOG); // enable clock to all GPIO port domains since we use them all
usb_pins_float(); // pull all pins to floating
// setup terminal
terminal_prefix = ""; // set default prefix
terminal_process = &process_command; // set central function to process commands
terminal_setup(); // start terminal
// start main loop
bool action = false; // if an action has been performed don't go to sleep
while (true) { // infinite loop
iwdg_reset(); // kick the dog
if (user_input_available) { // user input is available
action = true; // action has been performed
led_toggle(); // toggle LED
char c = user_input_get(); // store receive character
terminal_send(c); // send received character to terminal
}
if (rtc_internal_tick_flag) { // the internal RTC ticked
rtc_internal_tick_flag = false; // reset flag
action = true; // action has been performed
if (0 == (rtc_get_counter_val() % RTC_TICKS_SECOND)) { // one seond has passed
led_toggle(); // toggle LED (good to indicate if main function is stuck)
}
}
if (action) { // go to sleep if nothing had to be done, else recheck for activity
action = false;
} else {
__WFI(); // go to sleep
}
} // main loop
}
/** @brief interrupt service routine called when tick passed on RTC */
void rtc_isr(void)
{
rtc_clear_flag(RTC_SEC); // clear flag
rtc_internal_tick_flag = true; // notify to show new time
}