sensor_sdm120: minor, put spaces around operators

This commit is contained in:
King Kévin 2020-02-17 14:17:18 +01:00
parent 011d12330c
commit 4a637504dd
1 changed files with 30 additions and 31 deletions

View File

@ -110,11 +110,11 @@ static const uint16_t register_holding[] = {
static uint16_t crc_modbus(uint8_t* buffer, uint8_t size)
{
uint16_t crc = 0xffff; // initial value (for ModBus)
for (uint8_t i=0; i<size; i++) { // go through every byte
for (uint8_t i = 0; i < size; i++) { // go through every byte
crc ^= (uint16_t)buffer[i]; // XOR byte
for (uint8_t b=0; b<8; b++) { // go through every bit
if (crc&0x0001) { // least significant bit is set (we are using the reverse way)
crc = (crc>>1)^0xA001; // // shift to the right (for the next bit) and XOR with (reverse) polynomial
for (uint8_t b = 0; b < 8; b++) { // go through every bit
if (crc & 0x0001) { // least significant bit is set (we are using the reverse way)
crc = (crc >> 1) ^ 0xA001; // // shift to the right (for the next bit) and XOR with (reverse) polynomial
} else {
crc >>= 1; // just shift right (for the next bit)
}
@ -155,10 +155,10 @@ void sensor_sdm120_setup(uint32_t baudrate)
rcc_periph_reset_pulse(RST_TIM(SENSOR_SDM120_TIMER)); // reset timer state
timer_set_mode(TIM(SENSOR_SDM120_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock,edge alignment (simple count), and count up
timer_one_shot_mode(TIM(SENSOR_SDM120_TIMER)); // stop counter after update event (we only need to count down once)
timer_set_prescaler(TIM(SENSOR_SDM120_TIMER), 66-1); // set the prescaler so this 16 bits timer allows to wait for 60 ms ( 1/(72E6/66/(2**16))=60.07ms )
timeout_times[TIMEOUT_BEGIN] = (rcc_ahb_frequency/(TIM_PSC(TIM(SENSOR_SDM120_TIMER))+1))/baudrate/8/2.5; // wait at least 2.5 characters before sending data
timeout_times[TIMEOUT_END] = (rcc_ahb_frequency/(TIM_PSC(TIM(SENSOR_SDM120_TIMER))+1))/baudrate/8/2.5; // wait at least 2.5 characters after sending data
timeout_times[TIMEOUT_BETWEEN] = 0.06*(rcc_ahb_frequency/(TIM_PSC(TIM(SENSOR_SDM120_TIMER))+1)); // wait at least 60 ms before sending the next message
timer_set_prescaler(TIM(SENSOR_SDM120_TIMER), 66 - 1); // set the prescaler so this 16 bits timer allows to wait for 60 ms ( 1/(72E6/66/(2**16))=60.07ms )
timeout_times[TIMEOUT_BEGIN] = (rcc_ahb_frequency / (TIM_PSC(TIM(SENSOR_SDM120_TIMER)) + 1)) / baudrate / 8 / 2.5; // wait at least 2.5 characters before sending data
timeout_times[TIMEOUT_END] = (rcc_ahb_frequency / (TIM_PSC(TIM(SENSOR_SDM120_TIMER)) + 1)) / baudrate / 8 / 2.5; // wait at least 2.5 characters after sending data
timeout_times[TIMEOUT_BETWEEN] = 0.06 * (rcc_ahb_frequency / (TIM_PSC(TIM(SENSOR_SDM120_TIMER)) + 1)); // wait at least 60 ms before sending the next message
timer_clear_flag(TIM(SENSOR_SDM120_TIMER), TIM_SR_UIF); // clear flag
timer_enable_irq(TIM(SENSOR_SDM120_TIMER), TIM_DIER_UIE); // enable update interrupt for timer
nvic_enable_irq(NVIC_TIM_IRQ(SENSOR_SDM120_TIMER)); // catch interrupt in service routine
@ -178,13 +178,13 @@ void sensor_sdm120_setup(uint32_t baudrate)
*/
static bool sensor_sdm120_transmit_request(uint8_t meter_id, uint8_t function, uint16_t address, float value)
{
if (meter_id==0) { // broadcast request are not supported
if (0 == meter_id) { // broadcast request are not supported
return false;
}
if (function!=0x03 && function!=0x04 && function!=0x10) { // function not supported
if (function != 0x03 && function != 0x04 && function != 0x10) { // function not supported
return false;
}
if (address%2) { // even register addresses are not supported by device
if (address % 2) { // even register addresses are not supported by device
return false;
}
while (tx_used) { // transmission is ongoing
@ -195,13 +195,13 @@ static bool sensor_sdm120_transmit_request(uint8_t meter_id, uint8_t function, u
uint8_t packet_size = 0; // ModBus message size (without error check)
packet[0] = meter_id; // set slave device address
packet[1] = function; // set function
packet[2] = address>>8; // set high register address
packet[2] = address >> 8; // set high register address
packet[3] = address; // set low register address
packet[4] = 0; // set high number of registers to read
packet[5] = 2; // set low number of register to read (the measurement are encoded using 32 bits IEE745 float, and register hold 16 bits, thus we want to read 2 registers
if (function==0x03 || function==0x04) { // read register
if (function == 0x03 || function == 0x04) { // read register
packet_size = 6; // set message size
} else if (function==0x10) { // write register
} else if (function == 0x10) { // write register
packet[6] = 4; // byte count (writing two 16 bits registers)
// store little endian encoded value in big endian encoded data
uint8_t* data = (uint8_t*)&value;
@ -212,12 +212,12 @@ static bool sensor_sdm120_transmit_request(uint8_t meter_id, uint8_t function, u
packet_size = 11; // set message size
}
uint16_t crc = crc_modbus(packet, packet_size); // compute error check
for (uint8_t i=0; i<packet_size; i++) {
tx_buffer[packet_size-i+1] = packet[i]; // copy packet to tx buffer in reverse order (this is how sending is implemented)
for (uint8_t i = 0; i < packet_size; i++) {
tx_buffer[packet_size-i + 1] = packet[i]; // copy packet to tx buffer in reverse order (this is how sending is implemented)
}
tx_buffer[1] = crc; // set low error check
tx_buffer[0] = crc>>8; // set high error check
tx_used = packet_size+2; // set request size
tx_buffer[0] = crc >> 8; // set high error check
tx_used = packet_size + 2; // set request size
rx_used = 0; // reset reset buffer
sensor_sdm120_measurement_received = false; // reset measurement flag
while (TIM_CR1(TIM(SENSOR_SDM120_TIMER))&TIM_CR1_CEN) { // timer is already used
@ -235,7 +235,7 @@ static bool sensor_sdm120_transmit_request(uint8_t meter_id, uint8_t function, u
bool sensor_sdm120_measurement_request(uint8_t meter_id, enum sensor_sdm120_measurement_type_t type)
{
if (type>=SENSOR_SDM120_MEASUREMENT_MAX) { // invalid type
if (type >= SENSOR_SDM120_MEASUREMENT_MAX) { // invalid type
return false;
}
return sensor_sdm120_transmit_request(meter_id, 0x04, register_input[type], 0);
@ -243,7 +243,7 @@ bool sensor_sdm120_measurement_request(uint8_t meter_id, enum sensor_sdm120_meas
bool sensor_sdm120_configuration_request(uint8_t meter_id, enum sensor_sdm120_configuration_type_t type)
{
if (type>=SENSOR_SDM120_CONFIGURATION_MAX) { // invalid type
if (type >= SENSOR_SDM120_CONFIGURATION_MAX) { // invalid type
return false;
}
return sensor_sdm120_transmit_request(meter_id, 0x03, register_holding[type], 0);
@ -251,7 +251,7 @@ bool sensor_sdm120_configuration_request(uint8_t meter_id, enum sensor_sdm120_co
bool sensor_sdm120_configuration_set(uint8_t meter_id, enum sensor_sdm120_configuration_type_t type, float value)
{
if (type>=SENSOR_SDM120_CONFIGURATION_MAX) { // invalid type
if (type >= SENSOR_SDM120_CONFIGURATION_MAX) { // invalid type
return false;
}
return sensor_sdm120_transmit_request(meter_id, 0x10, register_holding[type], value);
@ -265,19 +265,19 @@ float sensor_sdm120_measurement_decode(void)
} else {
sensor_sdm120_measurement_received = false; // reset flag
}
if (rx_used<5) { // not a complete response (minimum is address, function, size/error, error check low, error check high)
if (rx_used < 5) { // not a complete response (minimum is address, function, size/error, error check low, error check high)
return NAN;
}
// a complete message has been received
if (crc_modbus(rx_buffer,rx_used)) { // checksum error, error check failed
measurement = NAN;
} else if (rx_buffer[1]&0x80) { // error condition received
} else if (rx_buffer[1] & 0x80) { // error condition received
measurement = INFINITY; // indicate we received and error
} else {
switch (rx_buffer[1]) {
case 0x03: // read 4xxx holding register response received
case 0x04: // read 3xxxx input register response received
if (rx_buffer[2]==0x04 && rx_used>=(4+5)) { // 2 registers received, corresponds to implemented request
if (rx_buffer[2] == 0x04 && rx_used >= (4 + 5)) { // 2 registers received, corresponds to implemented request
// convert big endian received float value to little endian return value
uint8_t* convert = (uint8_t*)&measurement;
convert[0] = rx_buffer[6];
@ -287,7 +287,7 @@ float sensor_sdm120_measurement_decode(void)
}
break;
case 0x10: // write 4xxx holding register response received
measurement = (rx_buffer[4]<<8)+rx_buffer[5]; // number of registers written
measurement = (rx_buffer[4] << 8) + rx_buffer[5]; // number of registers written
break; // not supported currently
default: // unknown function response received
measurement = INFINITY;
@ -323,13 +323,13 @@ void USART_ISR(SENSOR_SDM120_USART)(void)
USART_SR(USART(SENSOR_SDM120_USART)) &= ~USART_SR_RXNE; // clear flag, ignore received data
} else if (rx_used<LENGTH(rx_buffer)) { // receiving response
rx_buffer[rx_used++] = usart_recv(USART(SENSOR_SDM120_USART)); // put received byte in buffer (clears flag)
if (rx_used==1 && rx_buffer[0]==0) { // this is wrong decoding because the signal is going low on idle, which is misinterpreted as start bit (and the 0 broadcast device address is not supported by this device)
if (rx_used == 1 && rx_buffer[0] == 0) { // this is wrong decoding because the signal is going low on idle, which is misinterpreted as start bit (and the 0 broadcast device address is not supported by this device)
rx_used = 0; // reset buffer
} else if (rx_used>=5 && (rx_buffer[1]&0x80)) { // error condition response received
} else if (rx_used >= 5 && (rx_buffer[1] & 0x80)) { // error condition response received
sensor_sdm120_measurement_received = true; // notify used response has been received
} else if (rx_used>=5 && (uint8_t)(rx_used-5)>=rx_buffer[2] && (rx_buffer[1]==0x04 || rx_buffer[1]==0x03)) { // read input or holding register response received
} else if (rx_used >= 5 && (uint8_t)(rx_used - 5) >= rx_buffer[2] && (rx_buffer[1] == 0x04 || rx_buffer[1] == 0x03)) { // read input or holding register response received
sensor_sdm120_measurement_received = true; // notify used response has been receive
} else if (rx_used>=8 && rx_buffer[1]==0x10) { // write holding register response received
} else if (rx_used >= 8 && rx_buffer[1] == 0x10) { // write holding register response received
sensor_sdm120_measurement_received = true; // notify used response has been receive
}
} else { // buffer full and unknown response received
@ -352,7 +352,7 @@ void TIM_ISR(SENSOR_SDM120_TIMER)(void)
case (TIMEOUT_BEGIN): // we can now send the data
USART_SR(USART(SENSOR_SDM120_USART)) &= USART_SR_TXE; // clear interrupt flag
usart_enable_tx_interrupt(USART(SENSOR_SDM120_USART)); // enable interrupt to send other bytes
usart_send(USART(SENSOR_SDM120_USART),tx_buffer[--tx_used]); // start transmission
usart_send(USART(SENSOR_SDM120_USART), tx_buffer[--tx_used]); // start transmission
break;
case (TIMEOUT_END): // we now have to wait before sending the next message
gpio_clear(GPIO_PORT(SENSOR_SDM120_REDE_PIN), GPIO_PIN(SENSOR_SDM120_REDE_PIN)); // disable driver output (and enable receive output)
@ -367,4 +367,3 @@ void TIM_ISR(SENSOR_SDM120_TIMER)(void)
}
}
}