BV UART: add generic UART mode functions

This commit is contained in:
King Kévin 2018-06-15 09:47:22 +02:00
parent 054b2c252b
commit 47a09a9e4a
2 changed files with 751 additions and 0 deletions

View File

@ -0,0 +1,685 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** BusVoodoo generic UART mode (code)
* @note this only contains the common UART methods and should be supplied with mode specific methods and information
* @file busvoodoo_uart_generic.c
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2018
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // standard utilities
#include <string.h> // string utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/usart.h> // USART utilities
/* own libraries */
#include "global.h" // board definitions
#include "print.h" // printing utilities
#include "menu.h" // menu definitions
#include "usart_enhanced.h" // utilities for USART enhancements
#include "busvoodoo_global.h" // BusVoodoo definitions
#include "busvoodoo_uart_generic.h" // own definitions
/** the USART mode specific information */
static const struct busvoodoo_uart_generic_specific_t* busvoodoo_uart_generic_specific = NULL;
/** mode setup stage */
static enum busvoodoo_uart_generic_setting_t {
BUSVOODOO_UART_SETTING_NONE,
BUSVOODOO_UART_SETTING_BAUDRATE,
BUSVOODOO_UART_SETTING_DATABITS,
BUSVOODOO_UART_SETTING_PARITY,
BUSVOODOO_UART_SETTING_STOPBITS,
BUSVOODOO_UART_SETTING_HWFLOWCTL,
BUSVOODOO_UART_SETTING_DRIVE,
BUSVOODOO_UART_SETTING_DONE,
} busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_NONE; /**< current mode setup stage */
/** UART baud rate (in bps) */
static uint32_t busvoodoo_uart_generic_baudrate = 115200;
/** UART data bits */
static uint8_t busvoodoo_uart_generic_databits = 8;
/** UART parity setting */
static enum usart_enhanced_parity_t busvoodoo_uart_generic_parity = USART_ENHANCED_PARITY_NONE;
/** UART stop bits setting */
static uint32_t busvoodoo_uart_generic_stopbits = USART_STOPBITS_1;
/** UART hardware flow control setting (true = with hardware flow control, false = without hardware flow control */
static bool busvoodoo_uart_generic_hwflowctl = false;
/** pin drive mode (true = push-pull, false = open-drain) */
static bool busvoodoo_uart_generic_drive = true;
/** if embedded pull-up resistors are used */
static bool busvoodoo_uart_generic_pullup = false;
bool busvoodoo_uart_generic_configure(const struct busvoodoo_uart_generic_specific_t* conf)
{
busvoodoo_uart_generic_specific = NULL; // reset specific information
if (NULL==conf) {
return false;
}
if (!conf->usart || !conf->usart_rcc || !conf->usart_rst) {
return false;
}
if (!conf->tx_rcc || !conf->rx_rcc) {
return false;
}
if (conf->hwflowctl && (!conf->rts_rcc || !conf->cts_rcc)) {
return false;
}
busvoodoo_uart_generic_specific = conf;
return true;
}
bool busvoodoo_uart_generic_setup(char** prefix, const char* line)
{
if (NULL==busvoodoo_uart_generic_specific) { // there is nothing to configure
return true;
}
bool complete = false; // is the setup complete
if (NULL==line) { // first call
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_NONE; // re-start configuration
}
switch (busvoodoo_uart_generic_setting) {
case BUSVOODOO_UART_SETTING_NONE:
snprintf(busvoodoo_global_string, LENGTH(busvoodoo_global_string), "baud rate in bps (1200-2000000) [%u]", busvoodoo_uart_generic_baudrate);
*prefix = busvoodoo_global_string; // ask for baud rate
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_BAUDRATE;
break;
case BUSVOODOO_UART_SETTING_BAUDRATE:
if (NULL==line || 0==strlen(line)) { // use default setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_DATABITS; // go to next setting
} else { // setting provided
uint32_t baudrate = atoi(line); // parse setting
if (baudrate>0 && baudrate<=2000000) { // check setting
busvoodoo_uart_generic_baudrate = baudrate; // remember setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_DATABITS; // go to next setting
}
}
if (BUSVOODOO_UART_SETTING_DATABITS==busvoodoo_uart_generic_setting) { // if next setting
snprintf(busvoodoo_global_string, LENGTH(busvoodoo_global_string), "data bits (5-8) [%u]", busvoodoo_uart_generic_databits); // prepare next setting
*prefix = busvoodoo_global_string; // display next setting
}
break;
case BUSVOODOO_UART_SETTING_DATABITS:
if (NULL==line || 0==strlen(line)) { // use default setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_PARITY; // go to next setting
} else if (1==strlen(line)) { // setting provided
uint8_t databits = atoi(line); // parse setting
if (databits>=5 && databits<=8) { // check setting
busvoodoo_uart_generic_databits = databits; // remember setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_PARITY; // go to next setting
}
}
if (BUSVOODOO_UART_SETTING_PARITY==busvoodoo_uart_generic_setting) { // if next setting
printf("1) none\n");
printf("2) even\n");
printf("3) odd\n");
printf("4) mark\n");
printf("5) space\n");
snprintf(busvoodoo_global_string, LENGTH(busvoodoo_global_string), "parity (1,2,3,4,5) [%u]", busvoodoo_uart_generic_parity+1); // prepare next setting
*prefix = busvoodoo_global_string; // display next setting
}
break;
case BUSVOODOO_UART_SETTING_PARITY:
if (NULL==line || 0==strlen(line)) { // use default setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_STOPBITS; // go to next setting
} else if (1==strlen(line)) { // setting provided
uint8_t parity = atoi(line); // parse setting
if (parity>0 && parity<6) { // check settin
busvoodoo_uart_generic_parity = parity-1;
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_STOPBITS; // go to next setting
}
}
if (BUSVOODOO_UART_SETTING_STOPBITS==busvoodoo_uart_generic_setting) { // if next setting
printf("1) 0.5\n");
printf("2) 1\n");
printf("3) 1.5\n");
printf("4) 2\n");
snprintf(busvoodoo_global_string, LENGTH(busvoodoo_global_string), "stop bits (1,2,3,4) [%c]", USART_STOPBITS_0_5==busvoodoo_uart_generic_stopbits ? '1' : (USART_STOPBITS_1==busvoodoo_uart_generic_stopbits ? '2' : (USART_STOPBITS_1_5==busvoodoo_uart_generic_stopbits ? '3' : '4'))); // prepare next setting
*prefix = busvoodoo_global_string; // display next setting
}
break;
case BUSVOODOO_UART_SETTING_STOPBITS:
if (NULL==line || 0==strlen(line)) { // use default setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_HWFLOWCTL; // go to next setting
} else if (1==strlen(line)) { // setting provided
if ('1'==line[0]) { // 0.5 stop bits
busvoodoo_uart_generic_stopbits = USART_STOPBITS_0_5; // remember setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_HWFLOWCTL; // go to next setting
} else if ('2'==line[0]) { // 1 stop bits
busvoodoo_uart_generic_stopbits = USART_STOPBITS_1; // remember setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_HWFLOWCTL; // go to next setting
} else if ('3'==line[0]) { // 1.5 stop bits
busvoodoo_uart_generic_stopbits = USART_STOPBITS_1_5; // remember setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_HWFLOWCTL; // go to next setting
} else if ('4'==line[0]) { // 2 stop bits
busvoodoo_uart_generic_stopbits = USART_STOPBITS_2; // remember setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_HWFLOWCTL; // go to next setting
}
}
if (BUSVOODOO_UART_SETTING_HWFLOWCTL==busvoodoo_uart_generic_setting) { // if next setting
if (!busvoodoo_uart_generic_specific->hwflowctl) { // hardware flow control is not supported
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_DRIVE; // go to next setting
goto setting_drive; // actually go to next setting
}
printf("1) no flow control\n");
printf("2) RTS/CTS hardware flow control\n");
snprintf(busvoodoo_global_string, LENGTH(busvoodoo_global_string), "flow control (1,2) [%c]", busvoodoo_uart_generic_hwflowctl ? '2' : '1'); // prepare next setting
*prefix = busvoodoo_global_string; // display next setting
}
break;
case BUSVOODOO_UART_SETTING_HWFLOWCTL:
if (NULL==line || 0==strlen(line)) { // use default setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_DRIVE; // go to next setting
} else if (1==strlen(line)) { // setting provided
if ('1'==line[0] || '2'==line[0]) { // setting provided
busvoodoo_uart_generic_hwflowctl = ('2'==line[0]); // remember setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_DRIVE; // go to next setting
}
}
setting_drive:
if (BUSVOODOO_UART_SETTING_DRIVE==busvoodoo_uart_generic_setting) { // if next setting
if (!busvoodoo_uart_generic_specific->multidrive) {
busvoodoo_uart_generic_drive = true; // only push-pull driving mode is supported
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_DONE; // go to next setting
goto setting_done; // actually go to next setting
}
printf("1) push-pull (3.3V)\n");
printf("2) open-drain, with embedded pull-up resistors (2kO)\n");
printf("3) open-drain, with external pull-up resistors\n");
snprintf(busvoodoo_global_string, LENGTH(busvoodoo_global_string), "drive mode (1,2,3) [%c]", busvoodoo_uart_generic_drive ? '1' : (busvoodoo_uart_generic_pullup ? '2' : '3')); // show drive mode
*prefix = busvoodoo_global_string; // display next setting
}
break;
case BUSVOODOO_UART_SETTING_DRIVE:
if (NULL==line || 0==strlen(line)) { // use default setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_DONE; // go to next setting
} else if (1==strlen(line)) { // setting provided
uint8_t drive = atoi(line); // parse setting
if (1==drive || 2==drive || 3==drive) { // check setting
busvoodoo_uart_generic_drive = (1==drive); // remember setting
busvoodoo_uart_generic_pullup = (2==drive); // remember setting
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_DONE; // go to next setting
}
}
setting_done:
if (BUSVOODOO_UART_SETTING_DONE==busvoodoo_uart_generic_setting) { // we have all settings, configure UART
rcc_periph_clock_enable(RCC_AFIO); // enable clock for USART alternate function
rcc_periph_clock_enable(busvoodoo_uart_generic_specific->usart_rcc); // enable clock for USART peripheral
rcc_periph_reset_pulse(busvoodoo_uart_generic_specific->usart_rst); // reset USART peripheral
usart_set_baudrate(busvoodoo_uart_generic_specific->usart, busvoodoo_uart_generic_baudrate); // set baud rate
usart_enhanced_config(busvoodoo_uart_generic_specific->usart, busvoodoo_uart_generic_databits, busvoodoo_uart_generic_parity); // use enhanced USART to configure the USART peripherals, supporting more data-bits and parity configurations
usart_set_stopbits(busvoodoo_uart_generic_specific->usart, busvoodoo_uart_generic_stopbits); // set stop bits
if (busvoodoo_uart_generic_specific->hwflowctl && busvoodoo_uart_generic_hwflowctl) {
usart_set_flow_control(busvoodoo_uart_generic_specific->usart, USART_FLOWCONTROL_RTS_CTS); // set RTS/CTS flow control
} else {
usart_set_flow_control(busvoodoo_uart_generic_specific->usart, USART_FLOWCONTROL_NONE); // set no flow control
}
usart_set_mode(busvoodoo_uart_generic_specific->usart, USART_MODE_TX_RX); // full-duplex communication
rcc_periph_clock_enable(busvoodoo_uart_generic_specific->tx_rcc); // enable clock for USART GPIO peripheral
rcc_periph_clock_enable(busvoodoo_uart_generic_specific->rx_rcc); // enable clock for USART GPIO peripheral
if (busvoodoo_uart_generic_specific->hwflowctl && busvoodoo_uart_generic_hwflowctl) {
rcc_periph_clock_enable(busvoodoo_uart_generic_specific->rts_rcc); // enable clock for USART GPIO peripheral
rcc_periph_clock_enable(busvoodoo_uart_generic_specific->cts_rcc); // enable clock for USART GPIO peripheral
}
if (busvoodoo_uart_generic_drive) { // use push-pull drive mode
gpio_set_mode(busvoodoo_uart_generic_specific->tx_port, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, busvoodoo_uart_generic_specific->tx_pin); // setup GPIO pin USART transmit
gpio_set(busvoodoo_uart_generic_specific->rx_port, busvoodoo_uart_generic_specific->rx_pin); // pull up to avoid noise when not connected
gpio_set_mode(busvoodoo_uart_generic_specific->rx_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_uart_generic_specific->rx_pin); // setup GPIO pin USART receive
if (busvoodoo_uart_generic_specific->hwflowctl && busvoodoo_uart_generic_hwflowctl) { // use open drain drive mode
gpio_set_mode(busvoodoo_uart_generic_specific->rts_port, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, busvoodoo_uart_generic_specific->rts_pin); // setup GPIO pin USART transmit
gpio_set(busvoodoo_uart_generic_specific->cts_port, busvoodoo_uart_generic_specific->cts_pin); // pull up to block transmission unless requested
gpio_set_mode(busvoodoo_uart_generic_specific->cts_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, busvoodoo_uart_generic_specific->cts_pin); // setup GPIO pin USART receive
}
} else {
gpio_set_mode(busvoodoo_uart_generic_specific->tx_port, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, busvoodoo_uart_generic_specific->tx_pin); // setup GPIO pin USART transmit
gpio_set_mode(busvoodoo_uart_generic_specific->rx_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, busvoodoo_uart_generic_specific->rx_pin); // setup GPIO pin USART receive
if (busvoodoo_uart_generic_specific->hwflowctl && busvoodoo_uart_generic_hwflowctl) {
gpio_set_mode(busvoodoo_uart_generic_specific->rts_port, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, busvoodoo_uart_generic_specific->rts_pin); // setup GPIO pin USART transmit
gpio_set_mode(busvoodoo_uart_generic_specific->cts_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, busvoodoo_uart_generic_specific->cts_pin); // setup GPIO pin USART receive
}
}
if (!busvoodoo_uart_generic_drive && busvoodoo_uart_generic_pullup) { // enable embedded pull-ups if used
busvoodoo_embedded_pullup(true); // set embedded pull-ups
printf("use LV to set pull-up voltage\n");
}
usart_enable(busvoodoo_uart_generic_specific->usart); // enable USART
busvoodoo_led_blue_off(); // disable blue LED because there is no activity
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_NONE; // restart settings next time
complete = true; // configuration is complete
}
break;
default: // unknown case
busvoodoo_uart_generic_setting = BUSVOODOO_UART_SETTING_NONE; // restart settings next time
break;
}
return complete;
}
void busvoodoo_uart_generic_exit(void)
{
if (NULL==busvoodoo_uart_generic_specific) {
return;
}
usart_disable(busvoodoo_uart_generic_specific->usart); // disable USART
rcc_periph_clock_disable(busvoodoo_uart_generic_specific->usart_rcc); // disable domain clock
gpio_set_mode(busvoodoo_uart_generic_specific->tx_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, busvoodoo_uart_generic_specific->tx_pin); // set pin back to floating input
gpio_set_mode(busvoodoo_uart_generic_specific->rx_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, busvoodoo_uart_generic_specific->rx_pin); // set pin back to floating input
if (busvoodoo_uart_generic_specific->hwflowctl) {
gpio_set_mode(busvoodoo_uart_generic_specific->rts_port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, busvoodoo_uart_generic_specific->rts_pin); // set pin back to floating input
gpio_set_mode(busvoodoo_uart_generic_specific->cts_pin, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, busvoodoo_uart_generic_specific->cts_pin); // set pin back to floating input
}
if (busvoodoo_uart_generic_specific->multidrive) {
busvoodoo_embedded_pullup(false); // disable embedded pull-ups
}
busvoodoo_uart_generic_specific = NULL; // remove specific information
}
/** write to UART
* @param[in] value value to write
*/
static void busvoodoo_uart_generic_write(uint8_t value)
{
if (NULL==busvoodoo_uart_generic_specific) {
return;
}
if (busvoodoo_uart_generic_specific->tx_pre) {
(*busvoodoo_uart_generic_specific->tx_pre)();
}
while ((0==((USART_SR(busvoodoo_uart_generic_specific->usart)) & USART_SR_TXE) && !user_input_available)); // wait for transmit buffer to be empty (or user to interrupt)
if ((USART_SR(busvoodoo_uart_generic_specific->usart)) & USART_SR_TXE) { // we can send data
// send data
busvoodoo_led_blue_pulse(BUSVOODOO_LED_PULSE); // pulse blue LED to show transmission
usart_enhanced_send(busvoodoo_uart_generic_specific->usart, value); // transmit data
// display data send
printf("write: '%c'/0x%02x\n", value, value);
}
if (busvoodoo_uart_generic_specific->tx_post) {
(*busvoodoo_uart_generic_specific->tx_post)();
}
}
/** read from UART
*/
static void busvoodoo_uart_generic_read(void)
{
if (NULL==busvoodoo_uart_generic_specific) {
return;
}
if (busvoodoo_uart_generic_specific->rx_pre) {
(*busvoodoo_uart_generic_specific->rx_pre)();
}
printf("read: ");
while (!(USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_RXNE) && !user_input_available); // wait for incoming data to be available (or user input to exit)
if ((USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_RXNE)) { // verify if data has been received
busvoodoo_led_blue_pulse(BUSVOODOO_LED_PULSE); // enable blue LED to show reception
// get the errors
bool error_noise = (0!=(USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_NE)); // read noise error flag
bool error_framing = (0!=(USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_FE)); // read frame error flag
uint8_t input = usart_enhanced_recv(busvoodoo_uart_generic_specific->usart); // read received character (also clears the error flags)
// display data
printf("'%c'/0x%02x", input, input);
// display errors
printf("(");
if (error_noise) {
printf("noise");
} else if (error_framing) {
printf("framing");
} else if (usart_enhanced_parity_error(busvoodoo_uart_generic_specific->usart)) {
printf("parity");
} else {
printf("no");
}
printf(" error)");
}
printf("\n");
if (busvoodoo_uart_generic_specific->rx_post) {
(*busvoodoo_uart_generic_specific->rx_post)();
}
}
/** perform UART action
* @param[in] action action to perform
* @param[in] repetition how many times to perform the action
* @param[in] perform the action (true) or just check it (false)
* @return true if the action has been performed, false if it is malformed
*/
static bool busvoodoo_uart_generic_action(const char* action, uint32_t repetition, bool perform)
{
uint32_t length = strlen(action); // remember length since it will be used a number of times
if (NULL==action || 0==length) { // there is nothing to do
return true;
}
if (1==length && 'r'==action[0]) { // read data
if (!perform) {
return true;
}
for (uint32_t i=0; i<repetition; i++) {
busvoodoo_uart_generic_read(); // read from UART
}
} else if (1==length && 'u'==action[0]) { // sleep us
if (!perform) {
return true;
}
printf("wait for %u us\n", repetition);
sleep_us(repetition); // sleep
} else if (1==length && 'm'==action[0]) { // sleep ms
if (!perform) {
return true;
}
printf("wait for %u ms\n", repetition);
sleep_ms(repetition); // sleep
} else if ('0'==action[0]) { // send digit
if (1==length) { // just send 0
if (!perform) {
return true;
}
for (uint32_t i=0; i<repetition; i++) {
busvoodoo_uart_generic_write(0); // write to UART
}
} else if ('x'==action[1] || 'b'==action[1]) { // send hex/binary
return busvoodoo_uart_generic_action(action+1, repetition, perform); // just retry without leading 0
} else if (action[1]>='0' && action[1]<='9') { // send decimal
return busvoodoo_uart_generic_action(action+1, repetition, perform); // just retry without leading 0
} else { // malformed action
return false;
}
} else if ('x'==action[0] && length>1) { // send hexadecimal value
for (uint32_t i=1; i<length; i++) { // check string
if (!((action[i]>='0' && action[i]<='9') || (action[i]>='a' && action[i]<='f') || (action[i]>='A' && action[i]<='F'))) { // check for hexadecimal character
return false; // not an hexadecimal string
}
}
if (!perform) {
return true;
}
uint32_t value = strtol(&action[1], NULL, 16); // get hex value
for (uint32_t i=0; i<repetition; i++) {
busvoodoo_uart_generic_write(value); // write to SPI
}
} else if ('b'==action[0] && length>1) { // send binary value
for (uint32_t i=1; i<length; i++) { // check string
if (action[i]<'0' || action[i]>'1') { // check for binary character
return false; // not a binary string
}
}
if (!perform) {
return true;
}
uint32_t value = strtol(&action[1], NULL, 2); // get binary value
for (uint32_t i=0; i<repetition; i++) {
busvoodoo_uart_generic_write(value); // write to SPI
}
} else if (action[0]>='1' && action[0]<='9') { // send decimal value
for (uint32_t i=1; i<length; i++) { // check string
if (action[i]<'0' || action[i]>'9') { // check for decimal character
return false; // not a decimal string
}
}
if (!perform) {
return true;
}
uint32_t value = strtol(&action[0], NULL, 10); // get decimal value
for (uint32_t i=0; i<repetition; i++) {
busvoodoo_uart_generic_write(value); // write to SPI
}
} else if (length>=2 && ('"'==action[0] || '\''==action[0]) && (action[length-1]==action[0])) { // send ASCII character
if (!perform) {
return true;
}
for (uint32_t r=0; r<repetition; r++) {
for (uint32_t i=1; i<length-1; i++) { // go through string
busvoodoo_uart_generic_write(action[i]); // write to SPI
}
}
} else { // malformed action
return false;
}
return true; // all went well
}
// command handlers
/** command to perform actions
* @param[in] argument actions to perform
*/
static void busvoodoo_uart_generic_command_actions(void* argument)
{
if (NULL==argument || 0==strlen(argument)) {
printf("available actions (separated by space or ,):\n");
printf("0\twrite decimal value\n");
printf("0x0\twrite hexadecimal value\n");
printf("0b0\twrite binary value\n");
printf("\"a\"/'a'\twrite ASCII characters\n");
printf("r\tread value\n");
printf("u/m\twait 1 us/ms\n");
printf(":n\trepeat action n times\n");
return;
}
// copy argument since it will be modified
char* copy = calloc(strlen(argument)+1, sizeof(char));
if (!copy) {
while (true);
}
strncpy(copy, argument, strlen(argument)+1);
// verify and perform actions
if (!busvoodoo_global_actions(copy, false, &busvoodoo_uart_generic_action)) { // verify actions
printf("malformed action(s)\n");
} else { // action are ok
printf("press any key to exit\n");
busvoodoo_global_actions(argument, true, &busvoodoo_uart_generic_action); // perform action
if (user_input_available) { // user interrupted flow
user_input_get(); // discard user input
}
}
free(copy); // release memory
}
/** command to transmit a string
* @param[in] argument string to transmit (CR+LF when none provided)
*/
static void busvoodoo_uart_generic_command_transmit(void* argument)
{
if (NULL==busvoodoo_uart_generic_specific) {
return;
}
if (busvoodoo_uart_generic_specific->tx_pre) {
(*busvoodoo_uart_generic_specific->tx_pre)();
}
if (NULL==argument || 0==strlen(argument)) { // nothing to transmit
argument = "\r\n"; // transmit CR+LF
}
printf("press any key to exit\n");
for (uint16_t i=0; ((char*)(argument))[i] && !user_input_available; i++) {
while ((0==(USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_TXE) && !user_input_available)); // wait for transmit buffer to be empty
if (USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_TXE) { // we can send a character
printf("%c", ((char*)(argument))[i]); // echo character to transmit
busvoodoo_led_blue_pulse(BUSVOODOO_LED_PULSE); // pulse blue LED to show transmission
usart_enhanced_send(busvoodoo_uart_generic_specific->usart, ((char*)(argument))[i]); // transmit character
}
}
if (user_input_available) { // user interrupted flow
user_input_get(); // discard user input
}
if (strcmp(argument, "\r\n")) {
printf("\n");
}
if (busvoodoo_uart_generic_specific->tx_post) {
(*busvoodoo_uart_generic_specific->tx_post)();
}
}
/** command to receive data
* @param[in] argument in which format to display
*/
static void busvoodoo_uart_generic_command_receive(void* argument)
{
bool display_hex = false; // display in hex
bool display_bin = false; // display in bin
if (NULL!=argument && strlen(argument)>0) {
if (0==strcmp(argument, "h") || 0==strcmp(argument, "hex")) { // user wants hexadecimal display
display_hex = true; // remember to display in hexadecimal
} else if (0==strcmp(argument, "b") || 0==strcmp(argument, "bin")) { // user wants binary display
display_bin = true; // remember to display in binary
} else {
printf("malformed argument\n");
return;
}
}
if (NULL==busvoodoo_uart_generic_specific) {
return;
}
if (busvoodoo_uart_generic_specific->rx_pre) {
(*busvoodoo_uart_generic_specific->rx_pre)();
}
printf("press any key to exit\n");
while (!user_input_available) { // check for user input to exit
if ((USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_RXNE)) { // verify if data has been received
uint8_t input = usart_enhanced_recv(busvoodoo_uart_generic_specific->usart); // receive character
busvoodoo_led_blue_pulse(BUSVOODOO_LED_PULSE); // enable blue LED to show reception
if (display_hex) { // display data in hex
printf("%02x ", input);
} else if (display_bin) { // display data in binary
printf("%08b ", input);
} else { // display in ASCII
printf("%c", input); // print received character
}
}
}
user_input_get(); // discard user input
printf("\n"); // get to next line
if (busvoodoo_uart_generic_specific->rx_post) {
(*busvoodoo_uart_generic_specific->rx_post)();
}
}
/** command to transmit and receive data
* @param[in] argument no argument required
*/
static void busvoodoo_uart_generic_command_transceive(void* argument)
{
(void)argument; // we won't use the argument
if (NULL==busvoodoo_uart_generic_specific) {
return;
}
if (busvoodoo_uart_generic_specific->rx_pre) {
(*busvoodoo_uart_generic_specific->rx_pre)();
}
printf("press 5 times escape to exit\n");
char last_c = 0; // last user character received
uint8_t esc_count = 0; // number of times escape has press received
while (true) { // check for escape sequence
if (user_input_available) { // check if user wants to transmit something
char c = user_input_get(); // get user input
if (0x1b==c) { // user pressed escape
if (0x1b!=last_c) { // this is the first escape press
esc_count = 0;
}
esc_count++; // increment escape count
}
last_c = c; // remember key press
if (esc_count<5) { // check for escape sequence
if (busvoodoo_uart_generic_specific->rx_post) {
(*busvoodoo_uart_generic_specific->rx_post)();
}
if (busvoodoo_uart_generic_specific->tx_pre) {
(*busvoodoo_uart_generic_specific->tx_pre)();
}
while ((0==(USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_TXE) && !user_input_available)); // wait for transmit buffer to be empty
if (USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_TXE) { // we can send a character
usart_enhanced_send(busvoodoo_uart_generic_specific->usart, c); // send user character
busvoodoo_led_blue_pulse(BUSVOODOO_LED_PULSE); // enable blue LED to show transmission
}
if (busvoodoo_uart_generic_specific->tx_post) {
(*busvoodoo_uart_generic_specific->tx_post)();
}
if (busvoodoo_uart_generic_specific->rx_pre) {
(*busvoodoo_uart_generic_specific->rx_pre)();
}
} else { // user wants to exit
break; // exit infinite loop
}
}
if ((USART_SR(busvoodoo_uart_generic_specific->usart) & USART_SR_RXNE)) { // verify if data has been received
char input = usart_enhanced_recv(busvoodoo_uart_generic_specific->usart); // receive character
busvoodoo_led_blue_pulse(BUSVOODOO_LED_PULSE); // enable blue LED to show reception
printf("%c", input); // print received character
}
}
printf("\n"); // get to next line
if (busvoodoo_uart_generic_specific->rx_post) {
(*busvoodoo_uart_generic_specific->rx_post)();
}
}
/** command to verify incoming transmission for error
* @param[in] argument argument not required
*/
static void busvoodoo_uart_generic_command_error(void* argument)
{
(void)argument; // argument not used
printf("press any key to exit\n");
while (!user_input_available) { // wait until user interrupt
busvoodoo_uart_generic_read(); // read incoming data (this also checks for errors
}
user_input_get(); // discard user input
}
const struct menu_command_t busvoodoo_uart_generic_commands[busvoodoo_uart_generic_commands_nb] = {
{
.shortcut = 'a',
.name = "action",
.command_description = "perform protocol actions",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[actions]",
.command_handler = &busvoodoo_uart_generic_command_actions,
},
{
.shortcut = 'r',
.name = "receive",
.command_description = "show incoming data [in hexadecimal or binary]",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[hex|bin]",
.command_handler = &busvoodoo_uart_generic_command_receive,
},
{
.shortcut = 't',
.name = "transmit",
.command_description = "transmit ASCII text (empty for CR+LF)",
.argument = MENU_ARGUMENT_STRING,
.argument_description = "[text]",
.command_handler = &busvoodoo_uart_generic_command_transmit,
},
{
.shortcut = 'x',
.name = "transceive",
.command_description = "transmit and receive data",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &busvoodoo_uart_generic_command_transceive,
},
{
.shortcut = 'e',
.name = "error",
.command_description = "verify incoming transmission for errors",
.argument = MENU_ARGUMENT_NONE,
.argument_description = NULL,
.command_handler = &busvoodoo_uart_generic_command_error,
},
};

View File

@ -0,0 +1,66 @@
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** BusVoodoo generic UART mode (API)
* @note this only contains the common UART methods and should be supplied with mode specific methods and information
* @file busvoodoo_uart_generic
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2018
*/
/** UART specific methods that will be called by the generic methods */
struct busvoodoo_uart_generic_specific_t {
uint32_t usart; /**< USART peripheral base address */
uint32_t usart_rcc; /**< USART RCC address */
uint32_t usart_rst; /**< USART RST address */
bool multidrive; /**< if multiple drive modes are supported (push-pull, open-drain with internal resistors, open-drain with external resistors), or just push-pull */
uint32_t tx_port; /**< GPIO port address of transmit pin */
uint32_t tx_pin; /**< GPIO pin address of transmit pin */
uint32_t tx_rcc; /**< GPIO RCC address of transmit pin */
void (*tx_pre)(void); /**< method to be called before transmitting data */
void (*tx_post)(void); /**< method to be called after transmitting data */
uint32_t rx_port; /**< GPIO port address of receive pin */
uint32_t rx_pin; /**< GPIO pin address of receive pin */
uint32_t rx_rcc; /**< GPIO RCC address of receive pin */
void (*rx_pre)(void); /**< method to be called before receiving data */
void (*rx_post)(void); /**< method to be called after receiving data */
bool hwflowctl; /**< if RTC/CTS hardware flow control is supported */
uint32_t rts_port; /**< GPIO port address of request to send pin */
uint32_t rts_pin; /**< GPIO pin address of request to send pin */
uint32_t rts_rcc; /**< GPIO RCC address of request to send pin */
uint32_t cts_port; /**< GPIO port address of clear to send pin */
uint32_t cts_pin; /**< GPIO pin address of clear to send pin */
uint32_t cts_rcc; /**< GPIO RCC address of clear to send pin */
};
/** provide the generic USART with mode specific information
* @param[in] conf USART mode specific information
* @return if configuration is valid
*/
bool busvoodoo_uart_generic_configure(const struct busvoodoo_uart_generic_specific_t* conf);
/** setup generic UART mode
* @param[out] prefix terminal prompt prefix
* @param[in] line terminal prompt line to configure mode
* @return if setup is complete
* @note run busvoodoo_uart_generic_configure before
*/
bool busvoodoo_uart_generic_setup(char** prefix, const char* line);
/** exit genetic UART mode */
void busvoodoo_uart_generic_exit(void);
/** number of commands supported by the generic UART mode
* @warning this variable must be constant, thus be adjusted by hand corresponding to the actual content
*/
#define busvoodoo_uart_generic_commands_nb 5
/** commands supported by the generic UART mode */
extern const struct menu_command_t busvoodoo_uart_generic_commands[];