spark_abacus/main.c

418 lines
15 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** STM32F1 example
* @file main.c
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2016
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdio.h> // standard I/O facilities
#include <stdlib.h> // standard utilities
#include <unistd.h> // standard streams
#include <string.h> // string utilities
#include <math.h> // mathematical utilities
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/scb.h> // vector table definition
#include <libopencm3/cm3/nvic.h> // interrupt utilities
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/exti.h> // external interrupt utilities
#include <libopencm3/stm32/rtc.h> // real time clock utilities
#include <libopencm3/stm32/iwdg.h> // independent watchdog utilities
#include <libopencm3/stm32/dbgmcu.h> // debug utilities
#include <libopencm3/stm32/flash.h> // flash utilities
/* own libraries */
#include "global.h" // board definitions
//#include "usart.h" // USART utilities
#include "usb_cdcacm.h" // USB CDC ACM utilities
#include "sensor_pzem.h" // PZEM electricity meter utilities
#include "sensor_sdm120.h" // SDM120 electricity meter utilities
#include "radio_esp8266.h" // ESP8266 WiFi SoC utilities
/** @defgroup main_flags flag set in interrupts to be processed in main task
* @{
*/
volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */
/** @} */
int _write(int file, char *ptr, int len)
{
int i; // how much data has been sent
static char newline = 0; // what newline has been sent
if (file == STDOUT_FILENO || file == STDERR_FILENO) {
for (i = 0; i < len; i++) {
if (ptr[i] == '\r' || ptr[i] == '\n') { // send CR+LF newline for most carriage return and line feed combination
if (newline==0 || (newline==ptr[i])) { // newline has already been detected
//usart_putchar_nonblocking('\r'); // send newline over USART
//usart_putchar_nonblocking('\n'); // send newline over USART
cdcacm_putchar('\r'); // send newline over USB
cdcacm_putchar('\n'); // send newline over USB
newline = ptr[i]; // remember the newline
}
if (ptr[i] == '\n') { // line feed are always considered to end a line (the LF+CR combination is not supported to better support the others)
newline = 0; // clear new line
}
} else { // non-newline character
//usart_putchar_nonblocking(ptr[i]); // send byte over USART
cdcacm_putchar(ptr[i]); // send byte over USB
newline = 0; // clear new line
}
}
return i;
}
return -1;
}
/** user input command */
static char command[32] = {0};
/** user input command index */
uint8_t command_i = 0;
/** process user command
* @param[in] str user command string (\0 ended)
*/
static void process_command(char* str)
{
// split command
const char* delimiter = " ";
char* word = strtok(str,delimiter);
if (!word) {
goto error;
}
// parse command
if (0==strcmp(word,"help")) {
printf("available commands:\n");
printf("led [on|off|toggle]\n");
printf("time [HH:MM:SS]\n");
} else if (0==strcmp(word,"led")) {
word = strtok(NULL,delimiter);
if (!word) {
goto error;
} else if (0==strcmp(word,"on")) {
led_on(); // switch LED on
printf("LED switched on\n"); // notify user
} else if (0==strcmp(word,"off")) {
led_off(); // switch LED off
printf("LED switched off\n"); // notify user
} else if (0==strcmp(word,"toggle")) {
led_toggle(); // toggle LED
printf("LED toggled\n"); // notify user
} else {
goto error;
}
} else if (0==strcmp(word,"time")) {
word = strtok(NULL,delimiter);
if (!word) {
printf("current time: %02lu:%02lu:%02lu\n", rtc_get_counter_val()/(60*60), (rtc_get_counter_val()%(60*60))/60, (rtc_get_counter_val()%60)); // get and print time from internal RTC
} else if (strlen(word)!=8 || word[0]<'0' || word[0]>'2' || word[1]<'0' || word[1]>'9' || word[3]<'0' || word[3]>'5' || word[4]<'0' || word[4]>'9' || word[6]<'0' || word[6]>'5' || word[7]<'0' || word[7]>'9') { // time format is incorrect
goto error;
} else {
rtc_set_counter_val(((word[0]-'0')*10+(word[1]-'0')*1)*(60*60)+((word[3]-'0')*10+(word[4]-'0')*1)*60+((word[6]-'0')*10+(word[7]-'0')*1)); // set time in internal RTC counter
printf("time set\n");
}
} else {
goto error;
}
return; // command successfully processed
error:
printf("command not recognized. enter help to list commands\n");
return;
}
/** send HTTP data
* @warning blocking until a response has been received
* @param[in] data data to be send
* @param[in] length number of bytes to be sent, set to 0 to use the string length
* @return if data has been sent
*/
static bool http_send(uint8_t* data, size_t length)
{
if (length==0) {
radio_esp8266_send(data, strlen((char*)data)); // send string data
} else {
radio_esp8266_send(data, length); // send raw data
}
while (!radio_esp8266_activity) { // wait until response has been received
__WFI(); // wait until something happens
}
if (!radio_esp8266_success) {
fprintf(stderr,"could not send data\n");
return false;
}
return true;
}
/** end HTTP connection
* @warning blocking until a response has been received
* @return if connection has been closed
*/
static bool http_end(void)
{
radio_esp8266_close(); // close connection
while (!radio_esp8266_activity) { // wait until response has been received
__WFI(); // wait until something happens
}
return radio_esp8266_success;
}
/** open HTTP connection and send POST header
* @warning blocking until a response has been received
* @param[in] host host name or IP of HTTP server to connect to
* @param[in] port port number of HTTP server to connect to
* @param[in] length number of bytes to POST
* @return if HTTP POST succeeded
*/
static bool http_post_header(char* host, uint16_t port, size_t length)
{
char http_line[256] = {0}; // generated lines
radio_esp8266_tcp_open(host, port); // open connection
while (!radio_esp8266_activity) { // wait until response has been received
__WFI(); // wait until something happens
}
if (!radio_esp8266_success) {
fprintf(stderr,"TCP connection failed\n");
return false;
}
if (!http_send((uint8_t*)"POST /write?db=test HTTP/1.1\r\n", 0)) { // send data
return false;
}
if (snprintf(http_line, LENGTH(http_line), "Content-Length: %u\r\n", length)<0) { // set content length (for measurements)
fprintf(stderr,"could not create line\n");
return false;
}
if (!http_send((uint8_t*)http_line, 0)) { // send data
return false;
}
if (!http_send((uint8_t*)"Host: influx\r\n", 0)) { // send data
return false;
}
if (!http_send((uint8_t*)"\r\n", 0)) { // send data
return false;
}
return true;
}
/** program entry point
* this is the firmware function started by the micro-controller
*/
void main(void);
void main(void)
{
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
#if DEBUG
DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered)
DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered)
DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered)
#endif
// setup board
board_setup();
// setup USART and USB for user communication
//usart_setup(); // setup USART (for printing)
cdcacm_setup(); // setup USB CDC ACM (for printing)
setbuf(stdout, NULL); // set standard out buffer to NULL to immediately print
setbuf(stderr, NULL); // set standard error buffer to NULL to immediately print
// minimal setup ready
printf("welcome to the STM32F1 CuVoodoo example code\n"); // print welcome message
// setup RTC
printf("setup internal RTC: ");
rtc_auto_awake(RCC_LSE, 32768-1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect)
rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds"
nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt
printf("OK\n");
uint32_t ticks_time = rtc_get_counter_val(); // get time from internal RTC (since first start/power up)
printf("uptime: %02lu:%02lu:%02lu\n", ticks_time/(60*60), (ticks_time%(60*60))/60, (ticks_time%60)); // display time
// setup PZEM electricity meter
printf("setup PZEM-004 electricity meter: ");
sensor_pzem_setup(); // setup PZEM electricity meter
printf("OK\n");
// setup SDM120 electricity meter
printf("setup SDM120 electricity meter: ");
sensor_sdm120_setup(); // setup SDM120 electricity meter
printf("OK\n");
sensor_sdm120_measurement_request(2,SENSOR_SDM120_VOLTAGE);
//sensor_sdm120_configuration_request(1,SENSOR_SDM120_METER_ID);
//sensor_sdm120_configuration_request(1,SENSOR_SDM120_BAUD_RATE);
//sensor_sdm120_configuration_set(1,SENSOR_SDM120_METER_ID,2);
//sensor_sdm120_configuration_set(2,SENSOR_SDM120_BAUD_RATE,2);
//setup ESP8266 WiFi SoC
printf("setup ESP8266 WiFi SoC: ");
radio_esp8266_setup();
printf("OK\n");
#if !(DEBUG)
//setup watchdog to reset in case we get stuck (i.e. when an error occurred)
#define WATCHDOG_PERIOD 10000 /**< watchdog period in ms */
printf("setup watchdog (%.2fs): ",WATCHDOG_PERIOD/1000.0);
iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period
iwdg_start(); // start independent watchdog
printf("OK\n");
if (FLASH_OBR&FLASH_OBR_OPTERR) {
printf("option bytes not set in flash: software wachtdog used (not started at reset)\n");
} else if (FLASH_OBR&FLASH_OBR_WDG_SW) {
printf("software wachtdog used (not started at reset)\n");
} else {
printf("hardware wachtdog used (started at reset)\n");
}
#endif
// send HTTP POST request
printf("making HTTP request: ");
char line[256] = {0}; // measurement line to send
if (snprintf(line, LENGTH(line), "cpu_load_short,host=server01,region=us-west value=0.64 1434055562000000000")<0) {
fprintf(stderr,"could not create line\n");
} else if (!http_post_header("192.168.42.3", 8086, strlen(line))) { // send header
fprintf(stderr,"could not sent HTTP POST header\n");
} else if (!http_send((uint8_t*)line, 0)) { // send data
fprintf(stderr,"could not send measurement\n");
} else {
http_end(); // end HTTP request (don't care about the result)
printf("OK\n");
}
// main loop
printf("command input: ready\n");
bool action = false; // if an action has been performed don't go to sleep
button_flag = false; // reset button flag
char c = ' '; // to store received character
bool char_flag = false; // a new character has been received
struct sensor_pzem_measurement_t pzem_measurements[3][4]; // PZEM-004T measurements
uint8_t pzem_measurement_i = 0; // PZEM-004T measurement index
sensor_pzem_measurement_request(0xc0a80100+pzem_measurement_i, SENSOR_PZEM_VOLTAGE); // start measurement
while (true) { // infinite loop
iwdg_reset(); // kick the dog
/*
while (usart_received) { // data received over UART
action = true; // action has been performed
led_toggle(); // toggle LED
c = usart_getchar(); // store receive character
char_flag = true; // notify character has been received
}
*/
while (cdcacm_received) { // data received over USB
action = true; // action has been performed
led_toggle(); // toggle LED
c = cdcacm_getchar(); // store receive character
char_flag = true; // notify character has been received
}
while (char_flag) { // user data received
char_flag = false; // reset flag
action = true; // action has been performed
printf("%c",c); // echo receive character
if (c=='\r' || c=='\n') { // end of command received
if (command_i>0) { // there is a command to process
command[command_i] = 0; // end string
command_i = 0; // prepare for next command
process_command(command); // process user command
}
} else { // user command input
command[command_i] = c; // save command input
if (command_i<LENGTH(command)-2) { // verify if there is place to save next character
command_i++; // save next character
}
}
}
while (sensor_pzem_measurement_received) { // measurement from electricity meter received
struct sensor_pzem_measurement_t measurement = sensor_pzem_measurement_decode(); // decode measurement
pzem_measurements[pzem_measurement_i][measurement.type] = measurement; // save measurement (the type matches the index)
(void)pzem_measurements[pzem_measurement_i][measurement.type];
if (measurement.valid) { // only show valid measurement
switch (measurement.type) {
case SENSOR_PZEM_VOLTAGE:
printf("voltage: %.01f V\n", measurement.value.voltage); // display measurement
break;
case SENSOR_PZEM_CURRENT:
printf("current: %.02f A\n", measurement.value.current);
break;
case SENSOR_PZEM_POWER:
printf("power: %.00f W\n", measurement.value.power);
break;
case SENSOR_PZEM_ENERGY:
printf("energy: %lu Wh\n", measurement.value.energy);
break;
case SENSOR_PZEM_ADDRESS:
printf("address set\n");
break;
case SENSOR_PZEM_ALARM:
printf("alarm threshold set\n");
break;
default:
break;
}
}
}
while (sensor_sdm120_measurement_received) { // measurement from electricity meter received
float measurement = sensor_sdm120_measurement_decode(); // decode measurement
if (isnan(measurement)) {
printf("error in response\n");
} else if (isinf(measurement)) {
printf("error message received\n");
} else {
printf("measurement: %.01f\n",measurement);
}
}
while (button_flag) { // user pressed button
action = true; // action has been performed
printf("button pressed\n");
led_toggle(); // toggle LED
for (uint32_t i=0; i<1000000; i++) { // wait a bit to remove noise and double trigger
__asm__("nop");
}
button_flag = false; // reset flag
}
while (rtc_internal_tick_flag) { // the internal RTC ticked
rtc_internal_tick_flag = false; // reset flag
led_toggle(); // toggle LED (good to indicate if main function is stuck)
ticks_time = rtc_get_counter_val(); // copy time from internal RTC for processing
action = true; // action has been performed
if ((ticks_time%(60))==0) { // one minute passed
printf("uptime: %02lu:%02lu:%02lu\n", ticks_time/(60*60), (ticks_time%(60*60))/60, (ticks_time%60)); // display external time
}
}
if (action) { // go to sleep if nothing had to be done, else recheck for activity
action = false;
} else {
__WFI(); // go to sleep
}
}
}
/** @brief interrupt service routine called when tick passed on RTC */
void rtc_isr(void)
{
rtc_clear_flag(RTC_SEC); // clear flag
rtc_internal_tick_flag = true; // notify to show new time
}