passkey_fw/test/unit-test/test/test_fifo.c

379 lines
9.4 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include <string.h>
#include "unity.h"
#include "osal/osal.h"
#include "tusb_fifo.h"
#define FIFO_SIZE 64
uint8_t tu_ff_buf[FIFO_SIZE * sizeof(uint8_t)];
tu_fifo_t tu_ff = TU_FIFO_INIT(tu_ff_buf, FIFO_SIZE, uint8_t, false);
tu_fifo_t* ff = &tu_ff;
tu_fifo_buffer_info_t info;
uint8_t test_data[4096];
uint8_t rd_buf[FIFO_SIZE];
void setUp(void)
{
tu_fifo_clear(ff);
memset(&info, 0, sizeof(tu_fifo_buffer_info_t));
for(int i=0; i<sizeof(test_data); i++) test_data[i] = i;
memset(rd_buf, 0, sizeof(rd_buf));
}
void tearDown(void)
{
}
//--------------------------------------------------------------------+
// Tests
//--------------------------------------------------------------------+
void test_normal(void)
{
for(uint8_t i=0; i < FIFO_SIZE; i++) tu_fifo_write(ff, &i);
for(uint8_t i=0; i < FIFO_SIZE; i++)
{
uint8_t c;
tu_fifo_read(ff, &c);
TEST_ASSERT_EQUAL(i, c);
}
}
void test_item_size(void)
{
uint8_t ff4_buf[FIFO_SIZE * sizeof(uint32_t)];
tu_fifo_t ff4 = TU_FIFO_INIT(ff4_buf, FIFO_SIZE, uint32_t, false);
uint32_t data4[2*FIFO_SIZE];
for(uint32_t i=0; i<sizeof(data4)/4; i++) data4[i] = i;
// fill up fifo
tu_fifo_write_n(&ff4, data4, FIFO_SIZE);
uint32_t rd_buf4[FIFO_SIZE];
uint16_t rd_count;
// read 0 -> 4
rd_count = tu_fifo_read_n(&ff4, rd_buf4, 5);
TEST_ASSERT_EQUAL( 5, rd_count );
TEST_ASSERT_EQUAL_UINT32_ARRAY( data4, rd_buf4, rd_count ); // 0 -> 4
tu_fifo_write_n(&ff4, data4+FIFO_SIZE, 5);
// read all 5 -> 68
rd_count = tu_fifo_read_n(&ff4, rd_buf4, FIFO_SIZE);
TEST_ASSERT_EQUAL( FIFO_SIZE, rd_count );
TEST_ASSERT_EQUAL_UINT32_ARRAY( data4+5, rd_buf4, rd_count ); // 5 -> 68
}
void test_read_n(void)
{
uint16_t rd_count;
// fill up fifo
for(uint8_t i=0; i < FIFO_SIZE; i++) tu_fifo_write(ff, test_data+i);
// case 1: Read index + count < depth
// read 0 -> 4
rd_count = tu_fifo_read_n(ff, rd_buf, 5);
TEST_ASSERT_EQUAL( 5, rd_count );
TEST_ASSERT_EQUAL_MEMORY( test_data, rd_buf, rd_count ); // 0 -> 4
// case 2: Read index + count > depth
// write 10, 11, 12
tu_fifo_write(ff, test_data+FIFO_SIZE);
tu_fifo_write(ff, test_data+FIFO_SIZE+1);
tu_fifo_write(ff, test_data+FIFO_SIZE+2);
rd_count = tu_fifo_read_n(ff, rd_buf, 7);
TEST_ASSERT_EQUAL( 7, rd_count );
TEST_ASSERT_EQUAL_MEMORY( test_data+5, rd_buf, rd_count ); // 5 -> 11
// Should only read until empty
TEST_ASSERT_EQUAL( FIFO_SIZE-5+3-7, tu_fifo_read_n(ff, rd_buf, 100) );
}
void test_write_n(void)
{
// case 1: wr + count < depth
tu_fifo_write_n(ff, test_data, 32); // wr = 32, count = 32
uint16_t rd_count;
rd_count = tu_fifo_read_n(ff, rd_buf, 16); // wr = 32, count = 16
TEST_ASSERT_EQUAL( 16, rd_count );
TEST_ASSERT_EQUAL_MEMORY( test_data, rd_buf, rd_count );
// case 2: wr + count > depth
tu_fifo_write_n(ff, test_data+32, 40); // wr = 72 -> 8, count = 56
tu_fifo_read_n(ff, rd_buf, 32); // count = 24
TEST_ASSERT_EQUAL_MEMORY( test_data+16, rd_buf, rd_count);
TEST_ASSERT_EQUAL(24, tu_fifo_count(ff));
}
void test_write_double_overflowed(void)
{
tu_fifo_set_overwritable(ff, true);
uint8_t rd_buf[FIFO_SIZE] = { 0 };
uint8_t* buf = test_data;
// full
buf += tu_fifo_write_n(ff, buf, FIFO_SIZE);
TEST_ASSERT_EQUAL(FIFO_SIZE, tu_fifo_count(ff));
// write more, should still full
buf += tu_fifo_write_n(ff, buf, FIFO_SIZE-8);
TEST_ASSERT_EQUAL(FIFO_SIZE, tu_fifo_count(ff));
// double overflowed: in total, write more than > 2*FIFO_SIZE
buf += tu_fifo_write_n(ff, buf, 16);
TEST_ASSERT_EQUAL(FIFO_SIZE, tu_fifo_count(ff));
// reading back should give back data from last FIFO_SIZE write
tu_fifo_read_n(ff, rd_buf, FIFO_SIZE);
TEST_ASSERT_EQUAL_MEMORY(buf-16, rd_buf+FIFO_SIZE-16, 16);
// TODO whole buffer should match, but we deliberately not implement it
// TEST_ASSERT_EQUAL_MEMORY(buf-FIFO_SIZE, rd_buf, FIFO_SIZE);
}
static uint16_t help_write(uint16_t total, uint16_t n)
{
tu_fifo_write_n(ff, test_data, n);
total = tu_min16(FIFO_SIZE, total + n);
TEST_ASSERT_EQUAL(total, tu_fifo_count(ff));
TEST_ASSERT_EQUAL(FIFO_SIZE - total, tu_fifo_remaining(ff));
return total;
}
void test_write_overwritable2(void)
{
tu_fifo_set_overwritable(ff, true);
// based on actual crash tests detected by fuzzing
uint16_t total = 0;
total = help_write(total, 12);
total = help_write(total, 55);
total = help_write(total, 73);
total = help_write(total, 55);
total = help_write(total, 75);
total = help_write(total, 84);
total = help_write(total, 1);
total = help_write(total, 10);
total = help_write(total, 12);
total = help_write(total, 25);
total = help_write(total, 192);
}
void test_peek(void)
{
uint8_t temp;
temp = 10; tu_fifo_write(ff, &temp);
temp = 20; tu_fifo_write(ff, &temp);
temp = 30; tu_fifo_write(ff, &temp);
temp = 0;
tu_fifo_peek(ff, &temp);
TEST_ASSERT_EQUAL(10, temp);
tu_fifo_read(ff, &temp);
tu_fifo_read(ff, &temp);
tu_fifo_peek(ff, &temp);
TEST_ASSERT_EQUAL(30, temp);
}
void test_get_read_info_when_no_wrap()
{
uint8_t ch = 1;
// write 6 items
for(uint8_t i=0; i < 6; i++) tu_fifo_write(ff, &ch);
// read 2 items
tu_fifo_read(ff, &ch);
tu_fifo_read(ff, &ch);
tu_fifo_get_read_info(ff, &info);
TEST_ASSERT_EQUAL(4, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer+2, info.ptr_lin);
TEST_ASSERT_NULL(info.ptr_wrap);
}
void test_get_read_info_when_wrapped()
{
uint8_t ch = 1;
// make fifo full
for(uint8_t i=0; i < FIFO_SIZE; i++) tu_fifo_write(ff, &ch);
// read 6 items
for(uint8_t i=0; i < 6; i++) tu_fifo_read(ff, &ch);
// write 2 items
tu_fifo_write(ff, &ch);
tu_fifo_write(ff, &ch);
tu_fifo_get_read_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE-6, info.len_lin);
TEST_ASSERT_EQUAL(2, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer+6, info.ptr_lin);
TEST_ASSERT_EQUAL_PTR(ff->buffer, info.ptr_wrap);
}
void test_get_write_info_when_no_wrap()
{
uint8_t ch = 1;
// write 2 items
tu_fifo_write(ff, &ch);
tu_fifo_write(ff, &ch);
tu_fifo_get_write_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE-2, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer+2, info .ptr_lin);
// application should check len instead of ptr.
// TEST_ASSERT_NULL(info.ptr_wrap);
}
void test_get_write_info_when_wrapped()
{
uint8_t ch = 1;
// write 6 items
for(uint8_t i=0; i < 6; i++) tu_fifo_write(ff, &ch);
// read 2 items
tu_fifo_read(ff, &ch);
tu_fifo_read(ff, &ch);
tu_fifo_get_write_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE-6, info.len_lin);
TEST_ASSERT_EQUAL(2, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer+6, info .ptr_lin);
TEST_ASSERT_EQUAL_PTR(ff->buffer, info.ptr_wrap);
}
void test_empty(void)
{
uint8_t temp;
TEST_ASSERT_TRUE(tu_fifo_empty(ff));
// read info
tu_fifo_get_read_info(ff, &info);
TEST_ASSERT_EQUAL(0, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_NULL(info.ptr_lin);
TEST_ASSERT_NULL(info.ptr_wrap);
// write info
tu_fifo_get_write_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer, info .ptr_lin);
// application should check len instead of ptr.
// TEST_ASSERT_NULL(info.ptr_wrap);
// write 1 then re-check empty
tu_fifo_write(ff, &temp);
TEST_ASSERT_FALSE(tu_fifo_empty(ff));
}
void test_full(void)
{
TEST_ASSERT_FALSE(tu_fifo_full(ff));
for(uint8_t i=0; i < FIFO_SIZE; i++) tu_fifo_write(ff, &i);
TEST_ASSERT_TRUE(tu_fifo_full(ff));
// read info
tu_fifo_get_read_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer, info.ptr_lin);
// skip this, application must check len instead of buffer
// TEST_ASSERT_NULL(info.ptr_wrap);
// write info
}
void test_rd_idx_wrap()
{
tu_fifo_t ff10;
uint8_t buf[10];
uint8_t dst[10];
tu_fifo_config(&ff10, buf, 10, 1, 1);
uint16_t n;
ff10.wr_idx = 6;
ff10.rd_idx = 15;
n = tu_fifo_read_n(&ff10, dst, 4);
TEST_ASSERT_EQUAL(n, 4);
TEST_ASSERT_EQUAL(ff10.rd_idx, 0);
n = tu_fifo_read_n(&ff10, dst, 4);
TEST_ASSERT_EQUAL(n, 4);
TEST_ASSERT_EQUAL(ff10.rd_idx, 4);
n = tu_fifo_read_n(&ff10, dst, 4);
TEST_ASSERT_EQUAL(n, 2);
TEST_ASSERT_EQUAL(ff10.rd_idx, 6);
}