passkey_fw/src/portable/renesas/rusb2/dcd_rusb2.c

1056 lines
28 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Koji Kitayama
* Portions copyrighted (c) 2021 Roland Winistoerfer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && defined(TUP_USBIP_RUSB2)
// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#define USE_SOF 0
#include "device/dcd.h"
#include "rusb2_type.h"
#if TU_CHECK_MCU(OPT_MCU_RX63X, OPT_MCU_RX65X, OPT_MCU_RX72N)
#include "rusb2_rx.h"
#elif TU_CHECK_MCU(OPT_MCU_RAXXX)
#include "rusb2_ra.h"
#if defined(RENESAS_CORTEX_M23)
#define D0FIFO CFIFO
#define D0FIFOSEL CFIFOSEL
#define D0FIFOSEL_b CFIFOSEL_b
#define D1FIFOSEL CFIFOSEL
#define D1FIFOSEL_b CFIFOSEL_b
#define D0FIFOCTR CFIFOCTR
#define D0FIFOCTR_b CFIFOCTR_b
#endif
#else
#error "Unsupported MCU"
#endif
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
/* Start of definition of packed structs (used by the CCRX toolchain) */
TU_ATTR_PACKED_BEGIN
TU_ATTR_BIT_FIELD_ORDER_BEGIN
typedef struct TU_ATTR_PACKED
{
void *buf; /* the start address of a transfer data buffer */
uint16_t length; /* the number of bytes in the buffer */
uint16_t remaining; /* the number of bytes remaining in the buffer */
struct {
uint32_t ep : 8; /* an assigned endpoint address */
uint32_t ff : 1; /* `buf` is TU_FUFO or POD */
uint32_t : 0;
};
} pipe_state_t;
TU_ATTR_PACKED_END // End of definition of packed structs (used by the CCRX toolchain)
TU_ATTR_BIT_FIELD_ORDER_END
typedef struct
{
pipe_state_t pipe[10];
uint8_t ep[2][16]; /* a lookup table for a pipe index from an endpoint address */
} dcd_data_t;
static dcd_data_t _dcd;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// Transfer conditions specifiable for each pipe:
// - Pipe 0: Control transfer with 64-byte single buffer
// - Pipes 1 and 2: Bulk isochronous transfer continuous transfer mode with programmable buffer size up
// to 2 KB and optional double buffer
// - Pipes 3 to 5: Bulk transfer continuous transfer mode with programmable buffer size up to 2 KB and
// optional double buffer
// - Pipes 6 to 9: Interrupt transfer with 64-byte single buffer
enum {
PIPE_1ST_BULK = 3,
PIPE_1ST_INTERRUPT = 6,
PIPE_COUNT = 10,
};
static unsigned find_pipe(unsigned xfer)
{
switch (xfer) {
case TUSB_XFER_ISOCHRONOUS:
for (int i = 1; i < PIPE_1ST_BULK; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
break;
case TUSB_XFER_BULK:
for (int i = PIPE_1ST_BULK; i < PIPE_1ST_INTERRUPT; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
for (int i = 1; i < PIPE_1ST_BULK; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
break;
case TUSB_XFER_INTERRUPT:
for (int i = PIPE_1ST_INTERRUPT; i < PIPE_COUNT; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
break;
default:
/* No support for control transfer */
break;
}
return 0;
}
static volatile uint16_t* get_pipectr(rusb2_reg_t *rusb, unsigned num)
{
if (num) {
return (volatile uint16_t*)&(rusb->PIPE_CTR[num - 1]);
} else {
return (volatile uint16_t*)&(rusb->DCPCTR);
}
}
static volatile reg_pipetre_t* get_pipetre(rusb2_reg_t *rusb, unsigned num)
{
volatile reg_pipetre_t* tre = NULL;
if ((1 <= num) && (num <= 5)) {
tre = (volatile reg_pipetre_t*)&(rusb->PIPE_TR[num - 1].E);
}
return tre;
}
static volatile uint16_t* ep_addr_to_pipectr(uint8_t rhport, unsigned ep_addr)
{
rusb2_reg_t *rusb = RUSB2_REG(rhport);
const unsigned epn = tu_edpt_number(ep_addr);
if (epn) {
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
return get_pipectr(rusb, num);
} else {
return get_pipectr(rusb, 0);
}
}
static uint16_t edpt0_max_packet_size(rusb2_reg_t* rusb)
{
return rusb->DCPMAXP_b.MXPS;
}
static uint16_t edpt_max_packet_size(rusb2_reg_t *rusb, unsigned num)
{
rusb->PIPESEL = num;
return rusb->PIPEMAXP;
}
static inline void pipe_wait_for_ready(rusb2_reg_t * rusb, unsigned num)
{
while ( rusb->D0FIFOSEL_b.CURPIPE != num ) {}
while ( !rusb->D0FIFOCTR_b.FRDY ) {}
}
//--------------------------------------------------------------------+
// Pipe FIFO
//--------------------------------------------------------------------+
// Write data buffer --> hw fifo
static void pipe_write_packet(rusb2_reg_t * rusb, void *buf, volatile void *fifo, unsigned len)
{
(void) rusb;
volatile uint16_t *ff16;
volatile uint8_t *ff8;
// Highspeed FIFO is 32-bit
if ( rusb2_is_highspeed_reg(rusb) ) {
// TODO 32-bit access for better performance
ff16 = (volatile uint16_t*) ((uintptr_t) fifo+2);
ff8 = (volatile uint8_t *) ((uintptr_t) fifo+3);
}else {
ff16 = (volatile uint16_t*) fifo;
ff8 = ((volatile uint8_t*) fifo);
}
uint8_t const* buf8 = (uint8_t const*) buf;
while (len >= 2) {
*ff16 = tu_unaligned_read16(buf8);
buf8 += 2;
len -= 2;
}
if (len > 0) {
*ff8 = *buf8;
++buf8;
}
}
// Read data buffer <-- hw fifo
static void pipe_read_packet(rusb2_reg_t * rusb, void *buf, volatile void *fifo, unsigned len)
{
(void) rusb;
// TODO 16/32-bit access for better performance
uint8_t *p = (uint8_t*)buf;
volatile uint8_t *reg = (volatile uint8_t*)fifo; /* byte access is always at base register address */
while (len--) *p++ = *reg;
}
// Write data sw fifo --> hw fifo
static void pipe_write_packet_ff(rusb2_reg_t * rusb, tu_fifo_t *f, volatile void *fifo, uint16_t total_len) {
tu_fifo_buffer_info_t info;
tu_fifo_get_read_info(f, &info);
uint16_t count = tu_min16(total_len, info.len_lin);
pipe_write_packet(rusb, info.ptr_lin, fifo, count);
uint16_t rem = total_len - count;
if (rem) {
rem = tu_min16(rem, info.len_wrap);
pipe_write_packet(rusb, info.ptr_wrap, fifo, rem);
count += rem;
}
tu_fifo_advance_read_pointer(f, count);
}
// Read data sw fifo <-- hw fifo
static void pipe_read_packet_ff(rusb2_reg_t * rusb, tu_fifo_t *f, volatile void *fifo, uint16_t total_len) {
tu_fifo_buffer_info_t info;
tu_fifo_get_write_info(f, &info);
uint16_t count = tu_min16(total_len, info.len_lin);
pipe_read_packet(rusb, info.ptr_lin, fifo, count);
uint16_t rem = total_len - count;
if (rem) {
rem = tu_min16(rem, info.len_wrap);
pipe_read_packet(rusb, info.ptr_wrap, fifo, rem);
count += rem;
}
tu_fifo_advance_write_pointer(f, count);
}
static bool wait_pipe_fifo_empty(rusb2_reg_t* rusb, uint8_t num) {
TU_ASSERT(num);
while( (rusb->PIPE_CTR[num-1] & RUSB2_PIPE_CTR_INBUFM_Msk) > 0 ) {}
return true;
}
//--------------------------------------------------------------------+
// Pipe Transfer
//--------------------------------------------------------------------+
static bool pipe0_xfer_in(rusb2_reg_t* rusb)
{
pipe_state_t *pipe = &_dcd.pipe[0];
const unsigned rem = pipe->remaining;
if (!rem) {
pipe->buf = NULL;
return true;
}
const uint16_t mps = edpt0_max_packet_size(rusb);
const uint16_t len = tu_min16(mps, rem);
void *buf = pipe->buf;
if (len) {
if (pipe->ff) {
pipe_write_packet_ff(rusb, (tu_fifo_t*)buf, (volatile void*)&rusb->CFIFO, len);
} else {
pipe_write_packet(rusb, buf, (volatile void*)&rusb->CFIFO, len);
pipe->buf = (uint8_t*)buf + len;
}
}
if (len < mps) {
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk;
}
pipe->remaining = rem - len;
return false;
}
static bool pipe0_xfer_out(rusb2_reg_t* rusb)
{
pipe_state_t *pipe = &_dcd.pipe[0];
const unsigned rem = pipe->remaining;
const uint16_t mps = edpt0_max_packet_size(rusb);
const uint16_t vld = rusb->CFIFOCTR_b.DTLN;
const uint16_t len = tu_min16(tu_min16(rem, mps), vld);
void *buf = pipe->buf;
if (len) {
if (pipe->ff) {
pipe_read_packet_ff(rusb, (tu_fifo_t*)buf, (volatile void*)&rusb->CFIFO, len);
} else {
pipe_read_packet(rusb, buf, (volatile void*)&rusb->CFIFO, len);
pipe->buf = (uint8_t*)buf + len;
}
}
if (len < mps) {
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk;
}
pipe->remaining = rem - len;
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return true;
}
return false;
}
static bool pipe_xfer_in(rusb2_reg_t* rusb, unsigned num)
{
pipe_state_t *pipe = &_dcd.pipe[num];
const unsigned rem = pipe->remaining;
if (!rem) {
wait_pipe_fifo_empty(rusb, num);
pipe->buf = NULL;
return true;
}
rusb->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0);
const uint16_t mps = edpt_max_packet_size(rusb, num);
pipe_wait_for_ready(rusb, num);
const uint16_t len = tu_min16(rem, mps);
void *buf = pipe->buf;
if (len) {
if (pipe->ff) {
pipe_write_packet_ff(rusb, (tu_fifo_t*)buf, (volatile void*)&rusb->D0FIFO, len);
} else {
pipe_write_packet(rusb, buf, (volatile void*)&rusb->D0FIFO, len);
pipe->buf = (uint8_t*)buf + len;
}
}
if (len < mps) {
rusb->D0FIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk;
}
rusb->D0FIFOSEL = 0;
while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */
pipe->remaining = rem - len;
return false;
}
static bool pipe_xfer_out(rusb2_reg_t* rusb, unsigned num)
{
pipe_state_t *pipe = &_dcd.pipe[num];
const uint16_t rem = pipe->remaining;
rusb->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_8BIT;
const uint16_t mps = edpt_max_packet_size(rusb, num);
pipe_wait_for_ready(rusb, num);
const uint16_t vld = rusb->D0FIFOCTR_b.DTLN;
const uint16_t len = tu_min16(tu_min16(rem, mps), vld);
void *buf = pipe->buf;
if (len) {
if (pipe->ff) {
pipe_read_packet_ff(rusb, (tu_fifo_t*)buf, (volatile void*)&rusb->D0FIFO, len);
} else {
pipe_read_packet(rusb, buf, (volatile void*)&rusb->D0FIFO, len);
pipe->buf = (uint8_t*)buf + len;
}
}
if (len < mps) {
rusb->D0FIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk;
}
rusb->D0FIFOSEL = 0;
while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */
pipe->remaining = rem - len;
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return NULL != buf;
}
return false;
}
static void process_setup_packet(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
if (0 == (rusb->INTSTS0 & RUSB2_INTSTS0_VALID_Msk)) return;
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk;
uint16_t setup_packet[4] = {
tu_htole16(rusb->USBREQ),
tu_htole16(rusb->USBVAL),
tu_htole16(rusb->USBINDX),
tu_htole16(rusb->USBLENG)
};
rusb->INTSTS0 = ~((uint16_t) RUSB2_INTSTS0_VALID_Msk);
dcd_event_setup_received(rhport, (const uint8_t*)&setup_packet[0], true);
}
static void process_status_completion(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
uint8_t ep_addr;
/* Check the data stage direction */
if (rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) {
/* IN transfer. */
ep_addr = tu_edpt_addr(0, TUSB_DIR_IN);
} else {
/* OUT transfer. */
ep_addr = tu_edpt_addr(0, TUSB_DIR_OUT);
}
dcd_event_xfer_complete(rhport, ep_addr, 0, XFER_RESULT_SUCCESS, true);
}
static bool process_pipe0_xfer(rusb2_reg_t* rusb, int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes)
{
/* configure fifo direction and access unit settings */
if ( ep_addr ) {
/* IN, 2 bytes */
rusb->CFIFOSEL = RUSB2_CFIFOSEL_ISEL_WRITE | RUSB2_FIFOSEL_MBW_16BIT |
(TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0);
while ( !(rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) ) {}
} else {
/* OUT, a byte */
rusb->CFIFOSEL = RUSB2_FIFOSEL_MBW_8BIT;
while ( rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE ) {}
}
pipe_state_t *pipe = &_dcd.pipe[0];
pipe->ff = buffer_type;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
if ( total_bytes ) {
pipe->buf = buffer;
if ( ep_addr ) {
/* IN */
TU_ASSERT(rusb->DCPCTR_b.BSTS && (rusb->USBREQ & 0x80));
pipe0_xfer_in(rusb);
}
rusb->DCPCTR = RUSB2_PIPE_CTR_PID_BUF;
} else {
/* ZLP */
pipe->buf = NULL;
rusb->DCPCTR = RUSB2_DCPCTR_CCPL_Msk | RUSB2_PIPE_CTR_PID_BUF;
}
return true;
}
static bool process_pipe_xfer(rusb2_reg_t* rusb, int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes)
{
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
TU_ASSERT(num);
pipe_state_t *pipe = &_dcd.pipe[num];
pipe->ff = buffer_type;
pipe->buf = buffer;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
if (dir) {
/* IN */
if (total_bytes) {
pipe_xfer_in(rusb, num);
} else {
/* ZLP */
rusb->D0FIFOSEL = num;
pipe_wait_for_ready(rusb, num);
rusb->D0FIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk;
rusb->D0FIFOSEL = 0;
/* if CURPIPE bits changes, check written value */
while (rusb->D0FIFOSEL_b.CURPIPE) {}
}
} else {
// OUT
volatile reg_pipetre_t *pt = get_pipetre(rusb, num);
if (pt) {
const uint16_t mps = edpt_max_packet_size(rusb, num);
volatile uint16_t *ctr = get_pipectr(rusb, num);
if (*ctr & 0x3) *ctr = RUSB2_PIPE_CTR_PID_NAK;
pt->TRE = TU_BIT(8);
pt->TRN = (total_bytes + mps - 1) / mps;
pt->TRENB = 1;
*ctr = RUSB2_PIPE_CTR_PID_BUF;
}
}
// TU_LOG2("X %x %d %d\r\n", ep_addr, total_bytes, buffer_type);
return true;
}
static bool process_edpt_xfer(rusb2_reg_t* rusb, int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes)
{
const unsigned epn = tu_edpt_number(ep_addr);
if (0 == epn) {
return process_pipe0_xfer(rusb, buffer_type, ep_addr, buffer, total_bytes);
} else {
return process_pipe_xfer(rusb, buffer_type, ep_addr, buffer, total_bytes);
}
}
static void process_pipe0_bemp(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
bool completed = pipe0_xfer_in(rusb);
if (completed) {
pipe_state_t *pipe = &_dcd.pipe[0];
dcd_event_xfer_complete(rhport, tu_edpt_addr(0, TUSB_DIR_IN),
pipe->length, XFER_RESULT_SUCCESS, true);
}
}
static void process_pipe_brdy(uint8_t rhport, unsigned num)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
pipe_state_t *pipe = &_dcd.pipe[num];
const unsigned dir = tu_edpt_dir(pipe->ep);
bool completed;
if (dir) {
/* IN */
completed = pipe_xfer_in(rusb, num);
} else {
// OUT
if (num) {
completed = pipe_xfer_out(rusb, num);
} else {
completed = pipe0_xfer_out(rusb);
}
}
if (completed) {
dcd_event_xfer_complete(rhport, pipe->ep,
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
// TU_LOG1("C %d %d\r\n", num, pipe->length - pipe->remaining);
}
}
static void process_bus_reset(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb->BEMPENB = 1;
rusb->BRDYENB = 1;
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk;
rusb->D0FIFOSEL = 0;
while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */
rusb->D1FIFOSEL = 0;
while (rusb->D1FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */
volatile uint16_t *ctr = (volatile uint16_t*)((uintptr_t) (&rusb->PIPE_CTR[0]));
volatile uint16_t *tre = (volatile uint16_t*)((uintptr_t) (&rusb->PIPE_TR[0].E));
for (int i = 1; i <= 5; ++i) {
rusb->PIPESEL = i;
rusb->PIPECFG = 0;
*ctr = RUSB2_PIPE_CTR_ACLRM_Msk;
*ctr = 0;
++ctr;
*tre = TU_BIT(8);
tre += 2;
}
for (int i = 6; i <= 9; ++i) {
rusb->PIPESEL = i;
rusb->PIPECFG = 0;
*ctr = RUSB2_PIPE_CTR_ACLRM_Msk;
*ctr = 0;
++ctr;
}
tu_varclr(&_dcd);
TU_LOG3("Bus reset, RHST = %u\r\n", rusb->DVSTCTR0_b.RHST);
tusb_speed_t speed;
switch(rusb->DVSTCTR0 & RUSB2_DVSTCTR0_RHST_Msk) {
case RUSB2_DVSTCTR0_RHST_LS:
speed = TUSB_SPEED_LOW;
break;
case RUSB2_DVSTCTR0_RHST_FS:
speed = TUSB_SPEED_FULL;
break;
case RUSB2_DVSTCTR0_RHST_HS:
speed = TUSB_SPEED_HIGH;
break;
default:
TU_ASSERT(false, );
}
dcd_event_bus_reset(rhport, speed, true);
}
static void process_set_address(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
const uint16_t addr = rusb->USBADDR_b.USBADDR;
if (!addr) return;
const tusb_control_request_t setup_packet = {
#if defined(__CCRX__)
.bmRequestType = { 0 }, /* Note: CCRX needs the braces over this struct member */
#else
.bmRequestType = 0,
#endif
.bRequest = TUSB_REQ_SET_ADDRESS,
.wValue = addr,
.wIndex = 0,
.wLength = 0,
};
dcd_event_setup_received(rhport, (const uint8_t *) &setup_packet, true);
}
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
#if 0 // previously present in the rx driver before generalization
static uint32_t disable_interrupt(void)
{
uint32_t pswi;
#if defined(__CCRX__)
pswi = get_psw() & 0x010000;
clrpsw_i();
#else
pswi = __builtin_rx_mvfc(0) & 0x010000;
__builtin_rx_clrpsw('I');
#endif
return pswi;
}
static void enable_interrupt(uint32_t pswi)
{
#if defined(__CCRX__)
set_psw(get_psw() | pswi);
#else
__builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi);
#endif
}
#endif
void dcd_init(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb2_module_start(rhport, true);
#ifdef RUSB2_SUPPORT_HIGHSPEED
if ( rusb2_is_highspeed_rhport(rhport) ) {
rusb->SYSCFG_b.HSE = 1;
// leave CLKSEL as default (0x11) 24Mhz
// Power and reset UTMI Phy
uint16_t physet = (rusb->PHYSET | RUSB2_PHYSET_PLLRESET_Msk) & ~RUSB2_PHYSET_DIRPD_Msk;
rusb->PHYSET = physet;
R_BSP_SoftwareDelay((uint32_t) 1, BSP_DELAY_UNITS_MILLISECONDS);
rusb->PHYSET_b.PLLRESET = 0;
// set UTMI to operating mode and wait for PLL lock confirmation
rusb->LPSTS_b.SUSPENDM = 1;
while (!rusb->PLLSTA_b.PLLLOCK) {}
rusb->SYSCFG_b.DRPD = 0;
rusb->SYSCFG_b.USBE = 1;
// Set CPU bus wait time (fine tunne later)
// rusb2->BUSWAIT |= 0x0F00U;
rusb->PHYSET_b.REPSEL = 1;
} else
#endif
{
rusb->SYSCFG_b.SCKE = 1;
while (!rusb->SYSCFG_b.SCKE) {}
rusb->SYSCFG_b.DRPD = 0;
rusb->SYSCFG_b.DCFM = 0;
rusb->SYSCFG_b.USBE = 1;
// MCU specific PHY init
rusb2_phy_init();
rusb->PHYSLEW = 0x5;
rusb->DPUSR0R_FS_b.FIXPHY0 = 0u; /* USB_BASE Transceiver Output fixed */
}
/* Setup default control pipe */
rusb->DCPMAXP_b.MXPS = 64;
rusb->INTSTS0 = 0;
rusb->INTENB0 = RUSB2_INTSTS0_VBINT_Msk | RUSB2_INTSTS0_BRDY_Msk | RUSB2_INTSTS0_BEMP_Msk |
RUSB2_INTSTS0_DVST_Msk | RUSB2_INTSTS0_CTRT_Msk | (USE_SOF ? RUSB2_INTSTS0_SOFR_Msk : 0) |
RUSB2_INTSTS0_RESM_Msk;
rusb->BEMPENB = 1;
rusb->BRDYENB = 1;
// If VBUS (detect) pin is not used, application need to call tud_connect() manually after tud_init()
if (rusb->INTSTS0_b.VBSTS) {
dcd_connect(rhport);
}
}
void dcd_int_enable(uint8_t rhport) {
rusb2_int_enable(rhport);
}
void dcd_int_disable(uint8_t rhport) {
rusb2_int_disable(rhport);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
(void) rhport;
(void) dev_addr;
}
void dcd_remote_wakeup(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb->DVSTCTR0_b.WKUP = 1;
}
void dcd_connect(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
if ( rusb2_is_highspeed_rhport(rhport)) {
rusb->SYSCFG_b.CNEN = 1;
}
rusb->SYSCFG_b.DPRPU = 1;
}
void dcd_disconnect(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb->SYSCFG_b.DPRPU = 0;
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
(void) rhport;
(void) en;
// TODO implement later
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void)rhport;
rusb2_reg_t * rusb = RUSB2_REG(rhport);
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned xfer = ep_desc->bmAttributes.xfer;
const unsigned mps = tu_edpt_packet_size(ep_desc);
if (xfer == TUSB_XFER_ISOCHRONOUS) {
// Fullspeed ISO is limit to 256 bytes
if ( !rusb2_is_highspeed_rhport(rhport) && mps > 256) {
return false;
}
}
const unsigned num = find_pipe(xfer);
TU_ASSERT(num);
_dcd.pipe[num].ep = ep_addr;
_dcd.ep[dir][epn] = num;
/* setup pipe */
dcd_int_disable(rhport);
if ( rusb2_is_highspeed_rhport(rhport) ) {
// FIXME shouldn't be after pipe selection and config, also the BUFNMB should be changed
// depending on the allocation scheme
rusb->PIPEBUF = 0x7C08;
}
rusb->PIPESEL = num;
rusb->PIPEMAXP = mps;
volatile uint16_t *ctr = get_pipectr(rusb, num);
*ctr = RUSB2_PIPE_CTR_ACLRM_Msk | RUSB2_PIPE_CTR_SQCLR_Msk;
*ctr = 0;
unsigned cfg = (dir << 4) | epn;
if (xfer == TUSB_XFER_BULK) {
cfg |= (RUSB2_PIPECFG_TYPE_BULK | RUSB2_PIPECFG_SHTNAK_Msk | RUSB2_PIPECFG_DBLB_Msk);
} else if (xfer == TUSB_XFER_INTERRUPT) {
cfg |= RUSB2_PIPECFG_TYPE_INT;
} else {
cfg |= (RUSB2_PIPECFG_TYPE_ISO | RUSB2_PIPECFG_DBLB_Msk);
}
rusb->PIPECFG = cfg;
rusb->BRDYSTS = 0x1FFu ^ TU_BIT(num);
rusb->BRDYENB |= TU_BIT(num);
if (dir || (xfer != TUSB_XFER_BULK)) {
*ctr = RUSB2_PIPE_CTR_PID_BUF;
}
// TU_LOG1("O %d %x %x\r\n", rusb->PIPESEL, rusb->PIPECFG, rusb->PIPEMAXP);
dcd_int_enable(rhport);
return true;
}
void dcd_edpt_close_all(uint8_t rhport)
{
unsigned i = TU_ARRAY_SIZE(_dcd.pipe);
dcd_int_disable(rhport);
while (--i) { /* Close all pipes except 0 */
const unsigned ep_addr = _dcd.pipe[i].ep;
if (!ep_addr) continue;
dcd_edpt_close(rhport, ep_addr);
}
dcd_int_enable(rhport);
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
rusb2_reg_t * rusb = RUSB2_REG(rhport);
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
rusb->BRDYENB &= ~TU_BIT(num);
volatile uint16_t *ctr = get_pipectr(rusb, num);
*ctr = 0;
rusb->PIPESEL = num;
rusb->PIPECFG = 0;
_dcd.pipe[num].ep = 0;
_dcd.ep[dir][epn] = 0;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
dcd_int_disable(rhport);
bool r = process_edpt_xfer(rusb, 0, ep_addr, buffer, total_bytes);
dcd_int_enable(rhport);
return r;
}
bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
// USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1
TU_ASSERT(ff->item_size == 1);
rusb2_reg_t* rusb = RUSB2_REG(rhport);
dcd_int_disable(rhport);
bool r = process_edpt_xfer(rusb, 1, ep_addr, ff, total_bytes);
dcd_int_enable(rhport);
return r;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr);
if (!ctr) return;
dcd_int_disable(rhport);
const uint32_t pid = *ctr & 0x3;
*ctr = pid | RUSB2_PIPE_CTR_PID_STALL;
*ctr = RUSB2_PIPE_CTR_PID_STALL;
dcd_int_enable(rhport);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
rusb2_reg_t * rusb = RUSB2_REG(rhport);
volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr);
if (!ctr) return;
dcd_int_disable(rhport);
*ctr = RUSB2_PIPE_CTR_SQCLR_Msk;
if (tu_edpt_dir(ep_addr)) { /* IN */
*ctr = RUSB2_PIPE_CTR_PID_BUF;
} else {
const unsigned num = _dcd.ep[0][tu_edpt_number(ep_addr)];
rusb->PIPESEL = num;
if (rusb->PIPECFG_b.TYPE != 1) {
*ctr = RUSB2_PIPE_CTR_PID_BUF;
}
}
dcd_int_enable(rhport);
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_int_handler(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
uint16_t is0 = rusb->INTSTS0;
/* clear active bits except VALID (don't write 0 to already cleared bits according to the HW manual) */
rusb->INTSTS0 = ~((RUSB2_INTSTS0_CTRT_Msk | RUSB2_INTSTS0_DVST_Msk | RUSB2_INTSTS0_SOFR_Msk |
RUSB2_INTSTS0_RESM_Msk | RUSB2_INTSTS0_VBINT_Msk) & is0) | RUSB2_INTSTS0_VALID_Msk;
// VBUS changes
if ( is0 & RUSB2_INTSTS0_VBINT_Msk ) {
if ( rusb->INTSTS0_b.VBSTS ) {
dcd_connect(rhport);
} else {
dcd_disconnect(rhport);
}
}
// Resumed
if ( is0 & RUSB2_INTSTS0_RESM_Msk ) {
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
#if (0 == USE_SOF)
rusb->INTENB0_b.SOFE = 0;
#endif
}
// SOF received
if ( (is0 & RUSB2_INTSTS0_SOFR_Msk) && rusb->INTENB0_b.SOFE ) {
// USBD will exit suspended mode when SOF event is received
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
#if (0 == USE_SOF)
rusb->INTENB0_b.SOFE = 0;
#endif
}
// Device state changes
if ( is0 & RUSB2_INTSTS0_DVST_Msk ) {
switch (is0 & RUSB2_INTSTS0_DVSQ_Msk) {
case RUSB2_INTSTS0_DVSQ_STATE_DEF:
process_bus_reset(rhport);
break;
case RUSB2_INTSTS0_DVSQ_STATE_ADDR:
process_set_address(rhport);
break;
case RUSB2_INTSTS0_DVSQ_STATE_SUSP0:
case RUSB2_INTSTS0_DVSQ_STATE_SUSP1:
case RUSB2_INTSTS0_DVSQ_STATE_SUSP2:
case RUSB2_INTSTS0_DVSQ_STATE_SUSP3:
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
#if (0 == USE_SOF)
rusb->INTENB0_b.SOFE = 1;
#endif
default: break;
}
}
// if ( is0 & RUSB2_INTSTS0_NRDY_Msk ) {
// rusb->NRDYSTS = 0;
// }
// Control transfer stage changes
if ( is0 & RUSB2_INTSTS0_CTRT_Msk ) {
if ( is0 & RUSB2_INTSTS0_CTSQ_CTRL_RDATA ) {
/* A setup packet has been received. */
process_setup_packet(rhport);
} else if ( 0 == (is0 & RUSB2_INTSTS0_CTSQ_Msk) ) {
/* A ZLP has been sent/received. */
process_status_completion(rhport);
}
}
// Buffer empty
if ( is0 & RUSB2_INTSTS0_BEMP_Msk ) {
const uint16_t s = rusb->BEMPSTS;
rusb->BEMPSTS = 0;
if ( s & 1 ) {
process_pipe0_bemp(rhport);
}
}
// Buffer ready
if ( is0 & RUSB2_INTSTS0_BRDY_Msk ) {
const unsigned m = rusb->BRDYENB;
unsigned s = rusb->BRDYSTS & m;
/* clear active bits (don't write 0 to already cleared bits according to the HW manual) */
rusb->BRDYSTS = ~s;
while (s) {
#if defined(__CCRX__)
static const int Mod37BitPosition[] = {
-1, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4,
7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5,
20, 8, 19, 18
};
const unsigned num = Mod37BitPosition[(-s & s) % 37];
#else
const unsigned num = __builtin_ctz(s);
#endif
process_pipe_brdy(rhport, num);
s &= ~TU_BIT(num);
}
}
}
#endif