passkey_fw/hw/bsp/imxrt/family.c

262 lines
7.3 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "bsp/board_api.h"
#include "board.h"
// Suppress warning caused by mcu driver
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
#include "fsl_device_registers.h"
#include "fsl_gpio.h"
#include "fsl_iomuxc.h"
#include "fsl_clock.h"
#include "fsl_lpuart.h"
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#include "clock_config.h"
#if defined(BOARD_TUD_RHPORT) && CFG_TUD_ENABLED
#define PORT_SUPPORT_DEVICE(_n) (BOARD_TUD_RHPORT == _n)
#else
#define PORT_SUPPORT_DEVICE(_n) 0
#endif
#if defined(BOARD_TUH_RHPORT) && CFG_TUH_ENABLED
#define PORT_SUPPORT_HOST(_n) (BOARD_TUH_RHPORT == _n)
#else
#define PORT_SUPPORT_HOST(_n) 0
#endif
// needed by fsl_flexspi_nor_boot
TU_ATTR_USED
const uint8_t dcd_data[] = { 0x00 };
//--------------------------------------------------------------------+
//
//--------------------------------------------------------------------+
static void init_usb_phy(USBPHY_Type* usb_phy) {
// Enable PHY support for Low speed device + LS via FS Hub
usb_phy->CTRL |= USBPHY_CTRL_SET_ENUTMILEVEL2_MASK | USBPHY_CTRL_SET_ENUTMILEVEL3_MASK;
// Enable all power for normal operation
// TODO may not be needed since it is called within CLOCK_EnableUsbhs0PhyPllClock()
usb_phy->PWD = 0;
// TX Timing
uint32_t phytx = usb_phy->TX;
phytx &= ~(USBPHY_TX_D_CAL_MASK | USBPHY_TX_TXCAL45DM_MASK | USBPHY_TX_TXCAL45DP_MASK);
phytx |= USBPHY_TX_D_CAL(0x0C) | USBPHY_TX_TXCAL45DP(0x06) | USBPHY_TX_TXCAL45DM(0x06);
usb_phy->TX = phytx;
}
void board_init(void)
{
// make sure the dcache is on.
#if defined(__DCACHE_PRESENT) && __DCACHE_PRESENT
if (SCB_CCR_DC_Msk != (SCB_CCR_DC_Msk & SCB->CCR)) SCB_EnableDCache();
#endif
// Init clock
BOARD_BootClockRUN();
SystemCoreClockUpdate();
#ifdef TRACE_ETM
// RT1011 ETM pins
// IOMUXC_SetPinMux(IOMUXC_GPIO_11_ARM_TRACE3, 0U);
// IOMUXC_SetPinMux(IOMUXC_GPIO_12_ARM_TRACE2, 0U);
// IOMUXC_SetPinMux(IOMUXC_GPIO_13_ARM_TRACE1, 0U);
// IOMUXC_SetPinMux(IOMUXC_GPIO_AD_00_ARM_TRACE0, 0U);
// IOMUXC_SetPinMux(IOMUXC_GPIO_AD_02_ARM_TRACE_CLK, 0U);
// CLOCK_EnableClock(kCLOCK_Trace);
#endif
// Enable IOCON clock
CLOCK_EnableClock(kCLOCK_Iomuxc);
#if CFG_TUSB_OS == OPT_OS_NONE
// 1ms tick timer
SysTick_Config(SystemCoreClock / 1000);
#elif CFG_TUSB_OS == OPT_OS_FREERTOS
// If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher )
NVIC_SetPriority(USB_OTG1_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY);
#ifdef USBPHY2
NVIC_SetPriority(USB_OTG2_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY);
#endif
#endif
// LED
IOMUXC_SetPinMux( LED_PINMUX, 0U);
IOMUXC_SetPinConfig( LED_PINMUX, 0x10B0U);
gpio_pin_config_t led_config = { kGPIO_DigitalOutput, 0, kGPIO_NoIntmode };
GPIO_PinInit(LED_PORT, LED_PIN, &led_config);
board_led_write(true);
// Button
IOMUXC_SetPinMux( BUTTON_PINMUX, 0U);
IOMUXC_SetPinConfig(BUTTON_PINMUX, 0x01B0A0U);
gpio_pin_config_t button_config = { kGPIO_DigitalInput, 0, kGPIO_IntRisingEdge, };
GPIO_PinInit(BUTTON_PORT, BUTTON_PIN, &button_config);
// UART
IOMUXC_SetPinMux( UART_TX_PINMUX, 0U);
IOMUXC_SetPinMux( UART_RX_PINMUX, 0U);
IOMUXC_SetPinConfig( UART_TX_PINMUX, 0x10B0u);
IOMUXC_SetPinConfig( UART_RX_PINMUX, 0x10B0u);
lpuart_config_t uart_config;
LPUART_GetDefaultConfig(&uart_config);
uart_config.baudRate_Bps = CFG_BOARD_UART_BAUDRATE;
uart_config.enableTx = true;
uart_config.enableRx = true;
uint32_t freq;
if (CLOCK_GetMux(kCLOCK_UartMux) == 0) /* PLL3 div6 80M */
{
freq = (CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 6U) / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U);
}
else
{
freq = CLOCK_GetOscFreq() / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U);
}
if ( kStatus_Success != LPUART_Init(UART_PORT, &uart_config, freq) ) {
// failed to init uart, probably baudrate is not supported
// TU_BREAKPOINT();
}
//------------- USB -------------//
// Note: RT105x RT106x and later have dual USB controllers.
// Clock
CLOCK_EnableUsbhs0PhyPllClock(kCLOCK_Usbphy480M, 480000000U);
CLOCK_EnableUsbhs0Clock(kCLOCK_Usb480M, 480000000U);
#ifdef USBPHY1
init_usb_phy(USBPHY1);
#else
init_usb_phy(USBPHY);
#endif
#ifdef USBPHY2
// USB1
CLOCK_EnableUsbhs1PhyPllClock(kCLOCK_Usbphy480M, 480000000U);
CLOCK_EnableUsbhs1Clock(kCLOCK_Usb480M, 480000000U);
init_usb_phy(USBPHY2);
#endif
}
//--------------------------------------------------------------------+
// USB Interrupt Handler
//--------------------------------------------------------------------+
void USB_OTG1_IRQHandler(void)
{
#if PORT_SUPPORT_DEVICE(0)
tud_int_handler(0);
#endif
#if PORT_SUPPORT_HOST(0)
tuh_int_handler(0);
#endif
}
void USB_OTG2_IRQHandler(void)
{
#if PORT_SUPPORT_DEVICE(1)
tud_int_handler(1);
#endif
#if PORT_SUPPORT_HOST(1)
tuh_int_handler(1);
#endif
}
//--------------------------------------------------------------------+
// Board porting API
//--------------------------------------------------------------------+
void board_led_write(bool state)
{
GPIO_PinWrite(LED_PORT, LED_PIN, state ? LED_STATE_ON : (1-LED_STATE_ON));
}
uint32_t board_button_read(void)
{
// active low
return BUTTON_STATE_ACTIVE == GPIO_PinRead(BUTTON_PORT, BUTTON_PIN);
}
int board_uart_read(uint8_t* buf, int len)
{
int count = 0;
while( count < len )
{
uint8_t const rx_count = LPUART_GetRxFifoCount(UART_PORT);
if (!rx_count)
{
// clear all error flag if any
uint32_t status_flags = LPUART_GetStatusFlags(UART_PORT);
status_flags &= (kLPUART_RxOverrunFlag | kLPUART_ParityErrorFlag | kLPUART_FramingErrorFlag | kLPUART_NoiseErrorFlag);
LPUART_ClearStatusFlags(UART_PORT, status_flags);
break;
}
for(int i=0; i<rx_count; i++)
{
buf[count] = LPUART_ReadByte(UART_PORT);
count++;
}
}
return count;
}
int board_uart_write(void const * buf, int len) {
LPUART_WriteBlocking(UART_PORT, (uint8_t const*)buf, len);
return len;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void SysTick_Handler(void) {
system_ticks++;
}
uint32_t board_millis(void) {
return system_ticks;
}
#endif