code reformat

This commit is contained in:
hathach 2024-03-04 16:15:26 +07:00
parent 9b6f13716f
commit ff76eca311
No known key found for this signature in database
GPG Key ID: 26FAB84F615C3C52
2 changed files with 245 additions and 330 deletions

View File

@ -420,20 +420,18 @@ void tuh_task_ext(uint32_t timeout_ms, bool in_isr) {
(void) in_isr; // not implemented yet
// Skip if stack is not initialized
if ( !tuh_inited() ) return;
if (!tuh_inited()) return;
// Loop until there is no more events in the queue
while (1)
{
while (1) {
hcd_event_t event;
if ( !osal_queue_receive(_usbh_q, &event, timeout_ms) ) return;
if (!osal_queue_receive(_usbh_q, &event, timeout_ms)) return;
switch (event.event_id)
{
switch (event.event_id) {
case HCD_EVENT_DEVICE_ATTACH:
// due to the shared _usbh_ctrl_buf, we must complete enumerating one device before enumerating another one.
// TODO better to have an separated queue for newly attached devices
if ( _dev0.enumerating ) {
if (_dev0.enumerating) {
TU_LOG_USBH("[%u:] USBH Defer Attach until current enumeration complete\r\n", event.rhport);
bool is_empty = osal_queue_empty(_usbh_q);
@ -443,12 +441,12 @@ void tuh_task_ext(uint32_t timeout_ms, bool in_isr) {
// Exit if this is the only event in the queue, otherwise we may loop forever
return;
}
}else {
} else {
TU_LOG_USBH("[%u:] USBH DEVICE ATTACH\r\n", event.rhport);
_dev0.enumerating = 1;
enum_new_device(&event);
}
break;
break;
case HCD_EVENT_DEVICE_REMOVE:
TU_LOG_USBH("[%u:%u:%u] USBH DEVICE REMOVED\r\n", event.rhport, event.connection.hub_addr, event.connection.hub_port);
@ -456,37 +454,34 @@ void tuh_task_ext(uint32_t timeout_ms, bool in_isr) {
#if CFG_TUH_HUB
// TODO remove
if ( event.connection.hub_addr != 0 && event.connection.hub_port != 0) {
if (event.connection.hub_addr != 0 && event.connection.hub_port != 0) {
// done with hub, waiting for next data on status pipe
(void) hub_edpt_status_xfer( event.connection.hub_addr );
(void) hub_edpt_status_xfer(event.connection.hub_addr);
}
#endif
break;
break;
case HCD_EVENT_XFER_COMPLETE:
{
case HCD_EVENT_XFER_COMPLETE: {
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = (uint8_t) tu_edpt_dir(ep_addr);
TU_LOG_USBH("on EP %02X with %u bytes: %s\r\n", ep_addr, (unsigned int) event.xfer_complete.len,
tu_str_xfer_result[event.xfer_complete.result]);
TU_LOG_USBH("on EP %02X with %u bytes: %s\r\n", ep_addr, (unsigned int) event.xfer_complete.len, tu_str_xfer_result[event.xfer_complete.result]);
if (event.dev_addr == 0) {
// device 0 only has control endpoint
TU_ASSERT(epnum == 0, );
TU_ASSERT(epnum == 0,);
usbh_control_xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len);
} else {
usbh_device_t* dev = get_device(event.dev_addr);
TU_VERIFY(dev && dev->connected, );
TU_VERIFY(dev && dev->connected,);
dev->ep_status[epnum][ep_dir].busy = 0;
dev->ep_status[epnum][ep_dir].busy = 0;
dev->ep_status[epnum][ep_dir].claimed = 0;
if ( 0 == epnum ) {
usbh_control_xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result,
event.xfer_complete.len);
}else {
if (0 == epnum) {
usbh_control_xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len);
} else {
// Prefer application callback over built-in one if available. This occurs when tuh_edpt_xfer() is used
// with enabled driver e.g HID endpoint
#if CFG_TUH_API_EDPT_XFER
@ -503,35 +498,32 @@ void tuh_task_ext(uint32_t timeout_ms, bool in_isr) {
.complete_cb = complete_cb,
.user_data = dev->ep_callback[epnum][ep_dir].user_data
};
complete_cb(&xfer);
}else
#endif
{
uint8_t drv_id = dev->ep2drv[epnum][ep_dir];
usbh_class_driver_t const * driver = get_driver(drv_id);
if ( driver )
{
usbh_class_driver_t const* driver = get_driver(drv_id);
if (driver) {
TU_LOG_USBH("%s xfer callback\r\n", driver->name);
driver->xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result,
event.xfer_complete.len);
}
else
{
} else {
// no driver/callback responsible for this transfer
TU_ASSERT(false,);
}
}
}
}
break;
}
break;
case USBH_EVENT_FUNC_CALL:
if ( event.func_call.func ) event.func_call.func(event.func_call.param);
break;
if (event.func_call.func) event.func_call.func(event.func_call.param);
break;
default: break;
default:
break;
}
#if CFG_TUSB_OS != OPT_OS_NONE && CFG_TUSB_OS != OPT_OS_PICO
@ -708,7 +700,6 @@ bool tuh_edpt_xfer(tuh_xfer_t* xfer) {
uint8_t const ep_addr = xfer->ep_addr;
TU_VERIFY(daddr && ep_addr);
TU_VERIFY(usbh_edpt_claim(daddr, ep_addr));
if (!usbh_edpt_xfer_with_callback(daddr, ep_addr, xfer->buffer, (uint16_t) xfer->buflen,
@ -783,14 +774,13 @@ void usbh_defer_func(osal_task_func_t func, void *param, bool in_isr) {
//--------------------------------------------------------------------+
// Claim an endpoint for transfer
bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr)
{
bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr) {
// Note: addr0 only use tuh_control_xfer
usbh_device_t* dev = get_device(dev_addr);
TU_ASSERT(dev && dev->connected);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_VERIFY(tu_edpt_claim(&dev->ep_status[epnum][dir], _usbh_mutex));
TU_LOG_USBH("[%u] Claimed EP 0x%02x\r\n", dev_addr, ep_addr);
@ -799,14 +789,13 @@ bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr)
}
// Release an claimed endpoint due to failed transfer attempt
bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr)
{
bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr) {
// Note: addr0 only use tuh_control_xfer
usbh_device_t* dev = get_device(dev_addr);
TU_VERIFY(dev && dev->connected);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_VERIFY(tu_edpt_release(&dev->ep_status[epnum][dir], _usbh_mutex));
TU_LOG_USBH("[%u] Released EP 0x%02x\r\n", dev_addr, ep_addr);
@ -816,9 +805,8 @@ bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr)
// Submit an transfer
// TODO call usbh_edpt_release if failed
bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
(void) complete_cb;
(void) user_data;
@ -826,7 +814,7 @@ bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t * b
TU_VERIFY(dev);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
tu_edpt_state_t* ep_state = &dev->ep_status[epnum][dir];
TU_LOG_USBH(" Queue EP %02X with %u bytes ... \r\n", ep_addr, total_bytes);
@ -843,14 +831,12 @@ bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t * b
dev->ep_callback[epnum][dir].user_data = user_data;
#endif
if ( hcd_edpt_xfer(dev->rhport, dev_addr, ep_addr, buffer, total_bytes) )
{
if (hcd_edpt_xfer(dev->rhport, dev_addr, ep_addr, buffer, total_bytes)) {
TU_LOG_USBH("OK\r\n");
return true;
}else
{
} else {
// HCD error, mark endpoint as ready to allow next transfer
ep_state->busy = 0;
ep_state->busy = 0;
ep_state->claimed = 0;
TU_LOG1("Failed\r\n");
// TU_BREAKPOINT();
@ -858,12 +844,9 @@ bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t * b
}
}
static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size)
{
static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size) {
TU_LOG_USBH("[%u:%u] Open EP0 with Size = %u\r\n", usbh_get_rhport(dev_addr), dev_addr, max_packet_size);
tusb_desc_endpoint_t ep0_desc =
{
tusb_desc_endpoint_t ep0_desc = {
.bLength = sizeof(tusb_desc_endpoint_t),
.bDescriptorType = TUSB_DESC_ENDPOINT,
.bEndpointAddress = 0,
@ -875,10 +858,8 @@ static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size)
return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, &ep0_desc);
}
bool tuh_edpt_open(uint8_t dev_addr, tusb_desc_endpoint_t const * desc_ep)
{
TU_ASSERT( tu_edpt_validate(desc_ep, tuh_speed_get(dev_addr)) );
bool tuh_edpt_open(uint8_t dev_addr, tusb_desc_endpoint_t const* desc_ep) {
TU_ASSERT(tu_edpt_validate(desc_ep, tuh_speed_get(dev_addr)));
return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, desc_ep);
}
@ -887,7 +868,7 @@ bool usbh_edpt_busy(uint8_t dev_addr, uint8_t ep_addr) {
TU_VERIFY(dev);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return dev->ep_status[epnum][dir].busy;
}
@ -896,22 +877,18 @@ bool usbh_edpt_busy(uint8_t dev_addr, uint8_t ep_addr) {
// HCD Event Handler
//--------------------------------------------------------------------+
void hcd_devtree_get_info(uint8_t dev_addr, hcd_devtree_info_t* devtree_info)
{
void hcd_devtree_get_info(uint8_t dev_addr, hcd_devtree_info_t* devtree_info) {
usbh_device_t const* dev = get_device(dev_addr);
if (dev)
{
devtree_info->rhport = dev->rhport;
if (dev) {
devtree_info->rhport = dev->rhport;
devtree_info->hub_addr = dev->hub_addr;
devtree_info->hub_port = dev->hub_port;
devtree_info->speed = dev->speed;
}else
{
devtree_info->rhport = _dev0.rhport;
devtree_info->speed = dev->speed;
} else {
devtree_info->rhport = _dev0.rhport;
devtree_info->hub_addr = _dev0.hub_addr;
devtree_info->hub_port = _dev0.hub_port;
devtree_info->speed = _dev0.speed;
devtree_info->speed = _dev0.speed;
}
}
@ -941,12 +918,9 @@ TU_ATTR_FAST_FUNC void hcd_event_handler(hcd_event_t const* event, bool in_isr)
// generic helper to get a descriptor
// if blocking, user_data is pointed to xfer_result
static bool _get_descriptor(uint8_t daddr, uint8_t type, uint8_t index, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
@ -956,9 +930,7 @@ static bool _get_descriptor(uint8_t daddr, uint8_t type, uint8_t index, uint16_t
.wIndex = tu_htole16(language_id),
.wLength = tu_htole16(len)
};
tuh_xfer_t xfer =
{
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
@ -971,29 +943,25 @@ static bool _get_descriptor(uint8_t daddr, uint8_t type, uint8_t index, uint16_t
}
bool tuh_descriptor_get(uint8_t daddr, uint8_t type, uint8_t index, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return _get_descriptor(daddr, type, index, 0x0000, buffer, len, complete_cb, user_data);
}
bool tuh_descriptor_get_device(uint8_t daddr, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
len = tu_min16(len, sizeof(tusb_desc_device_t));
return tuh_descriptor_get(daddr, TUSB_DESC_DEVICE, 0, buffer, len, complete_cb, user_data);
}
bool tuh_descriptor_get_configuration(uint8_t daddr, uint8_t index, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return tuh_descriptor_get(daddr, TUSB_DESC_CONFIGURATION, index, buffer, len, complete_cb, user_data);
}
//------------- String Descriptor -------------//
bool tuh_descriptor_get_string(uint8_t daddr, uint8_t index, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return _get_descriptor(daddr, TUSB_DESC_STRING, index, language_id, buffer, len, complete_cb, user_data);
}
@ -1008,8 +976,7 @@ bool tuh_descriptor_get_manufacturer_string(uint8_t daddr, uint16_t language_id,
// Get product string descriptor
bool tuh_descriptor_get_product_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
usbh_device_t const* dev = get_device(daddr);
TU_VERIFY(dev && dev->i_product);
return tuh_descriptor_get_string(daddr, dev->i_product, language_id, buffer, len, complete_cb, user_data);
@ -1017,8 +984,7 @@ bool tuh_descriptor_get_product_string(uint8_t daddr, uint16_t language_id, void
// Get serial string descriptor
bool tuh_descriptor_get_serial_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
usbh_device_t const* dev = get_device(daddr);
TU_VERIFY(dev && dev->i_serial);
return tuh_descriptor_get_string(daddr, dev->i_serial, language_id, buffer, len, complete_cb, user_data);
@ -1027,95 +993,78 @@ bool tuh_descriptor_get_serial_string(uint8_t daddr, uint16_t language_id, void*
// Get HID report descriptor
// if blocking, user_data is pointed to xfer_result
bool tuh_descriptor_get_hid_report(uint8_t daddr, uint8_t itf_num, uint8_t desc_type, uint8_t index, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_USBH("HID Get Report Descriptor\r\n");
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = tu_htole16(TU_U16(desc_type, index)),
.wIndex = tu_htole16((uint16_t) itf_num),
.wLength = len
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = tu_htole16(TU_U16(desc_type, index)),
.wIndex = tu_htole16((uint16_t) itf_num),
.wLength = len
};
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = buffer,
.complete_cb = complete_cb,
.user_data = user_data
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = buffer,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
bool tuh_configuration_set(uint8_t daddr, uint8_t config_num,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_USBH("Set Configuration = %d\r\n", config_num);
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_CONFIGURATION,
.wValue = tu_htole16(config_num),
.wIndex = 0,
.wLength = 0
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_CONFIGURATION,
.wValue = tu_htole16(config_num),
.wIndex = 0,
.wLength = 0
};
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
bool tuh_interface_set(uint8_t daddr, uint8_t itf_num, uint8_t itf_alt,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_USBH("Set Interface %u Alternate %u\r\n", itf_num, itf_alt);
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_INTERFACE,
.wValue = tu_htole16(itf_alt),
.wIndex = tu_htole16(itf_num),
.wLength = 0
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_INTERFACE,
.wValue = tu_htole16(itf_alt),
.wIndex = tu_htole16(itf_num),
.wLength = 0
};
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
@ -1174,9 +1123,7 @@ uint8_t tuh_descriptor_get_serial_string_sync(uint8_t daddr, uint16_t language_i
// Detaching
//--------------------------------------------------------------------+
TU_ATTR_ALWAYS_INLINE
static inline bool is_hub_addr(uint8_t daddr)
{
TU_ATTR_ALWAYS_INLINE static inline bool is_hub_addr(uint8_t daddr) {
return (CFG_TUH_HUB > 0) && (daddr > CFG_TUH_DEVICE_MAX);
}
@ -1201,8 +1148,7 @@ static inline bool is_hub_addr(uint8_t daddr)
//}
// a device unplugged from rhport:hub_addr:hub_port
static void process_removing_device(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port)
{
static void process_removing_device(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port) {
//------------- find the all devices (star-network) under port that is unplugged -------------//
// TODO mark as disconnected in ISR, also handle dev0
@ -1217,8 +1163,7 @@ static void process_removing_device(uint8_t rhport, uint8_t hub_addr, uint8_t hu
uint8_t nop_count = 0;
#endif
for (uint8_t dev_id = 0; dev_id < TOTAL_DEVICES; dev_id++)
{
for (uint8_t dev_id = 0; dev_id < TOTAL_DEVICES; dev_id++) {
usbh_device_t *dev = &_usbh_devices[dev_id];
uint8_t const daddr = dev_id + 1;
@ -1325,165 +1270,160 @@ static void process_enumeration(tuh_xfer_t* xfer) {
uint8_t const daddr = xfer->daddr;
uintptr_t const state = xfer->user_data;
switch(state)
{
#if CFG_TUH_HUB
switch (state) {
#if CFG_TUH_HUB
//case ENUM_HUB_GET_STATUS_1: break;
case ENUM_HUB_CLEAR_RESET_1:
{
case ENUM_HUB_CLEAR_RESET_1: {
hub_port_status_response_t port_status;
memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t));
if ( !port_status.status.connection )
{
if (!port_status.status.connection) {
// device unplugged while delaying, nothing else to do
enum_full_complete();
return;
}
_dev0.speed = (port_status.status.high_speed) ? TUSB_SPEED_HIGH :
(port_status.status.low_speed ) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL;
(port_status.status.low_speed) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL;
// Acknowledge Port Reset Change
if (port_status.change.reset)
{
hub_port_clear_reset_change(_dev0.hub_addr, _dev0.hub_port, process_enumeration, ENUM_ADDR0_DEVICE_DESC);
if (port_status.change.reset) {
hub_port_clear_reset_change(_dev0.hub_addr, _dev0.hub_port,
process_enumeration, ENUM_ADDR0_DEVICE_DESC);
}
break;
}
break;
case ENUM_HUB_GET_STATUS_2:
osal_task_delay(ENUM_RESET_DELAY);
TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, process_enumeration, ENUM_HUB_CLEAR_RESET_2), );
break;
TU_ASSERT(hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf,
process_enumeration, ENUM_HUB_CLEAR_RESET_2),);
break;
case ENUM_HUB_CLEAR_RESET_2:
{
case ENUM_HUB_CLEAR_RESET_2: {
hub_port_status_response_t port_status;
memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t));
// Acknowledge Port Reset Change if Reset Successful
if (port_status.change.reset)
{
TU_ASSERT( hub_port_clear_reset_change(_dev0.hub_addr, _dev0.hub_port, process_enumeration, ENUM_SET_ADDR), );
if (port_status.change.reset) {
TU_ASSERT(hub_port_clear_reset_change(_dev0.hub_addr, _dev0.hub_port,
process_enumeration, ENUM_SET_ADDR),);
}
break;
}
break;
#endif
#endif
case ENUM_ADDR0_DEVICE_DESC:
{
case ENUM_ADDR0_DEVICE_DESC: {
// TODO probably doesn't need to open/close each enumeration
uint8_t const addr0 = 0;
TU_ASSERT( usbh_edpt_control_open(addr0, 8), );
TU_ASSERT(usbh_edpt_control_open(addr0, 8),);
// Get first 8 bytes of device descriptor for Control Endpoint size
TU_LOG_USBH("Get 8 byte of Device Descriptor\r\n");
TU_ASSERT(tuh_descriptor_get_device(addr0, _usbh_ctrl_buf, 8, process_enumeration, ENUM_SET_ADDR), );
TU_ASSERT(tuh_descriptor_get_device(addr0, _usbh_ctrl_buf, 8,
process_enumeration, ENUM_SET_ADDR),);
break;
}
break;
#if 0
case ENUM_RESET_2:
// TODO not used by now, but may be needed for some devices !?
// Reset device again before Set Address
TU_LOG_USBH("Port reset2 \r\n");
if (_dev0.hub_addr == 0)
{
// connected directly to roothub
hcd_port_reset( _dev0.rhport );
osal_task_delay(RESET_DELAY); // TODO may not work for no-OS on MCU that require reset_end() since
// sof of controller may not running while resetting
hcd_port_reset_end(_dev0.rhport);
// TODO: fall through to SET ADDRESS, refactor later
}
#if CFG_TUH_HUB
else
{
// after RESET_DELAY the hub_port_reset() already complete
TU_ASSERT( hub_port_reset(_dev0.hub_addr, _dev0.hub_port, process_enumeration, ENUM_HUB_GET_STATUS_2), );
break;
}
#endif
TU_ATTR_FALLTHROUGH;
case ENUM_RESET_2:
// TODO not used by now, but may be needed for some devices !?
// Reset device again before Set Address
TU_LOG_USBH("Port reset2 \r\n");
if (_dev0.hub_addr == 0) {
// connected directly to roothub
hcd_port_reset( _dev0.rhport );
osal_task_delay(RESET_DELAY); // TODO may not work for no-OS on MCU that require reset_end() since
// sof of controller may not running while resetting
hcd_port_reset_end(_dev0.rhport);
// TODO: fall through to SET ADDRESS, refactor later
}
#if CFG_TUH_HUB
else {
// after RESET_DELAY the hub_port_reset() already complete
TU_ASSERT( hub_port_reset(_dev0.hub_addr, _dev0.hub_port,
process_enumeration, ENUM_HUB_GET_STATUS_2), );
break;
}
#endif
TU_ATTR_FALLTHROUGH;
#endif
case ENUM_SET_ADDR:
enum_request_set_addr();
break;
break;
case ENUM_GET_DEVICE_DESC:
{
case ENUM_GET_DEVICE_DESC: {
uint8_t const new_addr = (uint8_t) tu_le16toh(xfer->setup->wValue);
usbh_device_t* new_dev = get_device(new_addr);
TU_ASSERT(new_dev, );
TU_ASSERT(new_dev,);
new_dev->addressed = 1;
// Close device 0
hcd_device_close(_dev0.rhport, 0);
// open control pipe for new address
TU_ASSERT( usbh_edpt_control_open(new_addr, new_dev->ep0_size), );
TU_ASSERT(usbh_edpt_control_open(new_addr, new_dev->ep0_size),);
// Get full device descriptor
TU_LOG_USBH("Get Device Descriptor\r\n");
TU_ASSERT(tuh_descriptor_get_device(new_addr, _usbh_ctrl_buf, sizeof(tusb_desc_device_t), process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC), );
TU_ASSERT(tuh_descriptor_get_device(new_addr, _usbh_ctrl_buf, sizeof(tusb_desc_device_t),
process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC),);
break;
}
break;
case ENUM_GET_9BYTE_CONFIG_DESC:
{
tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf;
case ENUM_GET_9BYTE_CONFIG_DESC: {
tusb_desc_device_t const* desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf;
usbh_device_t* dev = get_device(daddr);
TU_ASSERT(dev, );
TU_ASSERT(dev,);
dev->vid = desc_device->idVendor;
dev->pid = desc_device->idProduct;
dev->vid = desc_device->idVendor;
dev->pid = desc_device->idProduct;
dev->i_manufacturer = desc_device->iManufacturer;
dev->i_product = desc_device->iProduct;
dev->i_serial = desc_device->iSerialNumber;
dev->i_product = desc_device->iProduct;
dev->i_serial = desc_device->iSerialNumber;
// if (tuh_attach_cb) tuh_attach_cb((tusb_desc_device_t*) _usbh_ctrl_buf);
// if (tuh_attach_cb) tuh_attach_cb((tusb_desc_device_t*) _usbh_ctrl_buf);
// Get 9-byte for total length
uint8_t const config_idx = CONFIG_NUM - 1;
TU_LOG_USBH("Get Configuration[0] Descriptor (9 bytes)\r\n");
TU_ASSERT( tuh_descriptor_get_configuration(daddr, config_idx, _usbh_ctrl_buf, 9, process_enumeration, ENUM_GET_FULL_CONFIG_DESC), );
TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_ctrl_buf, 9,
process_enumeration, ENUM_GET_FULL_CONFIG_DESC),);
break;
}
break;
case ENUM_GET_FULL_CONFIG_DESC:
{
uint8_t const * desc_config = _usbh_ctrl_buf;
case ENUM_GET_FULL_CONFIG_DESC: {
uint8_t const* desc_config = _usbh_ctrl_buf;
// Use offsetof to avoid pointer to the odd/misaligned address
uint16_t const total_len = tu_le16toh( tu_unaligned_read16(desc_config + offsetof(tusb_desc_configuration_t, wTotalLength)) );
uint16_t const total_len = tu_le16toh(
tu_unaligned_read16(desc_config + offsetof(tusb_desc_configuration_t, wTotalLength)));
// TODO not enough buffer to hold configuration descriptor
TU_ASSERT(total_len <= CFG_TUH_ENUMERATION_BUFSIZE, );
TU_ASSERT(total_len <= CFG_TUH_ENUMERATION_BUFSIZE,);
// Get full configuration descriptor
uint8_t const config_idx = CONFIG_NUM - 1;
TU_LOG_USBH("Get Configuration[0] Descriptor\r\n");
TU_ASSERT( tuh_descriptor_get_configuration(daddr, config_idx, _usbh_ctrl_buf, total_len, process_enumeration, ENUM_SET_CONFIG), );
TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_ctrl_buf, total_len,
process_enumeration, ENUM_SET_CONFIG),);
break;
}
break;
case ENUM_SET_CONFIG:
// Parse configuration & set up drivers
// Driver open aren't allowed to make any usb transfer yet
TU_ASSERT( _parse_configuration_descriptor(daddr, (tusb_desc_configuration_t*) _usbh_ctrl_buf), );
TU_ASSERT(_parse_configuration_descriptor(daddr, (tusb_desc_configuration_t*) _usbh_ctrl_buf),);
TU_ASSERT(tuh_configuration_set(daddr, CONFIG_NUM, process_enumeration, ENUM_CONFIG_DRIVER),);
break;
TU_ASSERT( tuh_configuration_set(daddr, CONFIG_NUM, process_enumeration, ENUM_CONFIG_DRIVER), );
break;
case ENUM_CONFIG_DRIVER:
{
case ENUM_CONFIG_DRIVER: {
TU_LOG_USBH("Device configured\r\n");
usbh_device_t* dev = get_device(daddr);
TU_ASSERT(dev, );
TU_ASSERT(dev,);
dev->configured = 1;
@ -1492,60 +1432,58 @@ static void process_enumeration(tuh_xfer_t* xfer) {
// The process continue with next interface when class driver complete its sequence with usbh_driver_set_config_complete()
// TODO use separated API instead of using TUSB_INDEX_INVALID_8
usbh_driver_set_config_complete(daddr, TUSB_INDEX_INVALID_8);
break;
}
break;
default:
// stop enumeration if unknown state
enum_full_complete();
break;
break;
}
}
static bool enum_new_device(hcd_event_t* event)
{
_dev0.rhport = event->rhport;
static bool enum_new_device(hcd_event_t* event) {
_dev0.rhport = event->rhport;
_dev0.hub_addr = event->connection.hub_addr;
_dev0.hub_port = event->connection.hub_port;
if (_dev0.hub_addr == 0)
{
if (_dev0.hub_addr == 0) {
// connected/disconnected directly with roothub
hcd_port_reset(_dev0.rhport);
osal_task_delay(ENUM_RESET_DELAY); // TODO may not work for no-OS on MCU that require reset_end() since
// sof of controller may not running while resetting
hcd_port_reset_end( _dev0.rhport);
// sof of controller may not running while resetting
hcd_port_reset_end(_dev0.rhport);
// wait until device connection is stable TODO non blocking
osal_task_delay(ENUM_CONTACT_DEBOUNCING_DELAY);
// device unplugged while delaying
if ( !hcd_port_connect_status(_dev0.rhport) ) {
if (!hcd_port_connect_status(_dev0.rhport)) {
enum_full_complete();
return true;
}
_dev0.speed = hcd_port_speed_get(_dev0.rhport );
_dev0.speed = hcd_port_speed_get(_dev0.rhport);
TU_LOG_USBH("%s Speed\r\n", tu_str_speed[_dev0.speed]);
// fake transfer to kick-off the enumeration process
tuh_xfer_t xfer;
xfer.daddr = 0;
xfer.result = XFER_RESULT_SUCCESS;
xfer.daddr = 0;
xfer.result = XFER_RESULT_SUCCESS;
xfer.user_data = ENUM_ADDR0_DEVICE_DESC;
process_enumeration(&xfer);
}
#if CFG_TUH_HUB
else
{
else {
// connected/disconnected via external hub
// wait until device connection is stable TODO non blocking
osal_task_delay(ENUM_CONTACT_DEBOUNCING_DELAY);
// ENUM_HUB_GET_STATUS
//TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, enum_hub_get_status0_complete, 0) );
TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, process_enumeration, ENUM_HUB_CLEAR_RESET_1) );
TU_ASSERT(hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf,
process_enumeration, ENUM_HUB_CLEAR_RESET_1));
}
#endif // hub
@ -1571,58 +1509,48 @@ static uint8_t get_new_address(bool is_hub) {
return 0; // invalid address
}
static bool enum_request_set_addr(void)
{
tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf;
static bool enum_request_set_addr(void) {
tusb_desc_device_t const* desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf;
// Get new address
uint8_t const new_addr = get_new_address(desc_device->bDeviceClass == TUSB_CLASS_HUB);
TU_ASSERT(new_addr != 0);
TU_LOG_USBH("Set Address = %d\r\n", new_addr);
usbh_device_t* new_dev = get_device(new_addr);
new_dev->rhport = _dev0.rhport;
new_dev->hub_addr = _dev0.hub_addr;
new_dev->hub_port = _dev0.hub_port;
new_dev->speed = _dev0.speed;
new_dev->rhport = _dev0.rhport;
new_dev->hub_addr = _dev0.hub_addr;
new_dev->hub_port = _dev0.hub_port;
new_dev->speed = _dev0.speed;
new_dev->connected = 1;
new_dev->ep0_size = desc_device->bMaxPacketSize0;
new_dev->ep0_size = desc_device->bMaxPacketSize0;
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_ADDRESS,
.wValue = tu_htole16(new_addr),
.wIndex = 0,
.wLength = 0
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_ADDRESS,
.wValue = tu_htole16(new_addr),
.wIndex = 0,
.wLength = 0
};
tuh_xfer_t xfer = {
.daddr = 0, // dev0
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = process_enumeration,
.user_data = ENUM_GET_DEVICE_DESC
};
tuh_xfer_t xfer =
{
.daddr = 0, // dev0
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = process_enumeration,
.user_data = ENUM_GET_DEVICE_DESC
};
TU_ASSERT( tuh_control_xfer(&xfer) );
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg)
{
static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg) {
usbh_device_t* dev = get_device(dev_addr);
uint16_t const total_len = tu_le16toh(desc_cfg->wTotalLength);
uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + total_len;
uint8_t const* p_desc = tu_desc_next(desc_cfg);
@ -1630,13 +1558,11 @@ static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configur
TU_LOG_USBH("Parsing Configuration descriptor (wTotalLength = %u)\r\n", total_len);
// parse each interfaces
while( p_desc < desc_end )
{
while( p_desc < desc_end ) {
uint8_t assoc_itf_count = 1;
// Class will always starts with Interface Association (if any) and then Interface descriptor
if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) )
{
if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) ) {
tusb_desc_interface_assoc_t const * desc_iad = (tusb_desc_interface_assoc_t const *) p_desc;
assoc_itf_count = desc_iad->bInterfaceCount;
@ -1656,8 +1582,7 @@ static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configur
if (1 == assoc_itf_count &&
TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol)
{
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol) {
assoc_itf_count = 2;
}
#endif
@ -1667,8 +1592,7 @@ static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configur
// manually force associated count = 2
if (1 == assoc_itf_count &&
TUSB_CLASS_CDC == desc_itf->bInterfaceClass &&
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == desc_itf->bInterfaceSubClass)
{
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == desc_itf->bInterfaceSubClass) {
assoc_itf_count = 2;
}
#endif
@ -1677,18 +1601,14 @@ static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configur
TU_ASSERT(drv_len >= sizeof(tusb_desc_interface_t));
// Find driver for this interface
for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++)
{
for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) {
usbh_class_driver_t const * driver = get_driver(drv_id);
if (driver && driver->open(dev->rhport, dev_addr, desc_itf, drv_len) )
{
if (driver && driver->open(dev->rhport, dev_addr, desc_itf, drv_len) ) {
// open successfully
TU_LOG_USBH(" %s opened\r\n", driver->name);
// bind (associated) interfaces to found driver
for(uint8_t i=0; i<assoc_itf_count; i++)
{
for(uint8_t i=0; i<assoc_itf_count; i++) {
uint8_t const itf_num = desc_itf->bInterfaceNumber+i;
// Interface number must not be used already
@ -1702,8 +1622,7 @@ static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configur
break; // exit driver find loop
}
if ( drv_id == TOTAL_DRIVER_COUNT - 1 )
{
if ( drv_id == TOTAL_DRIVER_COUNT - 1 ) {
TU_LOG_USBH("[%u:%u] Interface %u: class = %u subclass = %u protocol = %u is not supported\r\n",
dev->rhport, dev_addr, desc_itf->bInterfaceNumber, desc_itf->bInterfaceClass, desc_itf->bInterfaceSubClass, desc_itf->bInterfaceProtocol);
}

View File

@ -112,8 +112,7 @@ uint8_t const * tu_desc_find3(uint8_t const* desc, uint8_t const* end, uint8_t b
// Endpoint Helper for both Host and Device stack
//--------------------------------------------------------------------+
bool tu_edpt_claim(tu_edpt_state_t* ep_state, osal_mutex_t mutex)
{
bool tu_edpt_claim(tu_edpt_state_t* ep_state, osal_mutex_t mutex) {
(void) mutex;
// pre-check to help reducing mutex lock
@ -122,8 +121,7 @@ bool tu_edpt_claim(tu_edpt_state_t* ep_state, osal_mutex_t mutex)
// can only claim the endpoint if it is not busy and not claimed yet.
bool const available = (ep_state->busy == 0) && (ep_state->claimed == 0);
if (available)
{
if (available) {
ep_state->claimed = 1;
}
@ -132,16 +130,14 @@ bool tu_edpt_claim(tu_edpt_state_t* ep_state, osal_mutex_t mutex)
return available;
}
bool tu_edpt_release(tu_edpt_state_t* ep_state, osal_mutex_t mutex)
{
bool tu_edpt_release(tu_edpt_state_t* ep_state, osal_mutex_t mutex) {
(void) mutex;
(void) osal_mutex_lock(mutex, OSAL_TIMEOUT_WAIT_FOREVER);
// can only release the endpoint if it is claimed and not busy
bool const ret = (ep_state->claimed == 1) && (ep_state->busy == 0);
if (ret)
{
if (ret) {
ep_state->claimed = 0;
}