add spi lock with interrupt enable/disable

This commit is contained in:
hathach 2023-08-25 12:12:44 +07:00
parent e6cf125e53
commit f5ebc1700f
No known key found for this signature in database
GPG Key ID: F5D50C6D51D17CBA
1 changed files with 91 additions and 85 deletions

View File

@ -180,7 +180,6 @@ typedef struct {
} hcd_ep_t;
typedef struct {
bool inited;
atomic_bool busy; // busy transferring
// cached register
@ -194,6 +193,8 @@ typedef struct {
volatile uint16_t frame_count;
hcd_ep_t ep[8][2];
OSAL_MUTEX_DEF(spi_mutex);
} max2341_data_t;
static max2341_data_t _hcd_data;
@ -210,86 +211,106 @@ void tuh_max3421e_int_api(uint8_t rhport, bool enabled);
//
//--------------------------------------------------------------------+
static void fifo_write(uint8_t reg, uint8_t const * buffer, uint16_t len) {
uint8_t const rhport = 0;
static void max3421_spi_lock(uint8_t rhport, bool in_isr) {
// disable interrupt and mutex lock (for pre-emptive RTOS) if not in_isr
if (!in_isr) {
tuh_max3421e_int_api(rhport, false);
}
// assert CS
tuh_max3421_spi_cs_api(rhport, true);
}
static void max3421_spi_unlock(uint8_t rhport, bool in_isr) {
// de-assert CS
tuh_max3421_spi_cs_api(rhport, false);
// mutex unlock and re-enable interrupt
if (!in_isr) {
tuh_max3421e_int_api(rhport, true);
}
}
static void fifo_write(uint8_t rhport, uint8_t reg, uint8_t const * buffer, uint16_t len, bool in_isr) {
uint8_t hirq;
reg |= CMDBYTE_WRITE;
tuh_max3421_spi_cs_api(rhport, true);
max3421_spi_lock(rhport, in_isr);
tuh_max3421_spi_xfer_api(rhport, &reg, 1, &hirq, 1);
_hcd_data.hirq = hirq;
tuh_max3421_spi_xfer_api(rhport, buffer, len, NULL, 0);
tuh_max3421_spi_cs_api(rhport, false);
max3421_spi_unlock(rhport, in_isr);
}
static void fifo_read(uint8_t * buffer, uint16_t len) {
uint8_t const rhport = 0;
static void fifo_read(uint8_t rhport, uint8_t * buffer, uint16_t len, bool in_isr) {
uint8_t hirq;
uint8_t const reg = RCVVFIFO_ADDR;
tuh_max3421_spi_cs_api(rhport, true);
max3421_spi_lock(rhport, in_isr);
tuh_max3421_spi_xfer_api(rhport, &reg, 1, &hirq, 0);
_hcd_data.hirq = hirq;
tuh_max3421_spi_xfer_api(rhport, NULL, 0, buffer, len);
tuh_max3421_spi_cs_api(rhport, false);
max3421_spi_unlock(rhport, in_isr);
}
static void reg_write(uint8_t reg, uint8_t data) {
uint8_t const rhport = 0;
static void reg_write(uint8_t rhport, uint8_t reg, uint8_t data, bool in_isr) {
uint8_t tx_buf[2] = {reg | CMDBYTE_WRITE, data};
uint8_t rx_buf[2] = {0, 0};
tuh_max3421_spi_cs_api(rhport, true);
max3421_spi_lock(rhport, in_isr);
tuh_max3421_spi_xfer_api(rhport, tx_buf, 2, rx_buf, 2);
tuh_max3421_spi_cs_api(rhport, false);
max3421_spi_unlock(rhport, in_isr);
// HIRQ register since we are in full-duplex mode
_hcd_data.hirq = rx_buf[0];
}
static uint8_t reg_read(uint8_t reg) {
uint8_t const rhport = 0;
static uint8_t reg_read(uint8_t rhport, uint8_t reg, bool in_isr) {
uint8_t tx_buf[2] = {reg, 0};
uint8_t rx_buf[2] = {0, 0};
tuh_max3421_spi_cs_api(rhport, true);
max3421_spi_lock(rhport, in_isr);
bool ret = tuh_max3421_spi_xfer_api(rhport, tx_buf, 2, rx_buf, 2);
tuh_max3421_spi_cs_api(rhport, false);
max3421_spi_unlock(rhport, in_isr);
_hcd_data.hirq = rx_buf[0];
return ret ? rx_buf[1] : 0;
}
static inline void hien_write(uint8_t data) {
static inline void hien_write(uint8_t rhport, uint8_t data, bool in_isr) {
_hcd_data.hien = data;
reg_write(HIEN_ADDR, data);
reg_write(rhport, HIEN_ADDR, data, in_isr);
}
static inline void mode_write(uint8_t data) {
static inline void mode_write(uint8_t rhport, uint8_t data, bool in_isr) {
_hcd_data.mode = data;
reg_write(MODE_ADDR, data);
reg_write(rhport, MODE_ADDR, data, in_isr);
}
static inline void peraddr_write(uint8_t data) {
static inline void peraddr_write(uint8_t rhport, uint8_t data, bool in_isr) {
if ( _hcd_data.peraddr == data ) return; // no need to change address
_hcd_data.peraddr = data;
reg_write(PERADDR_ADDR, data);
reg_write(rhport, PERADDR_ADDR, data, in_isr);
}
static inline void hxfr_write(uint8_t data) {
static inline void hxfr_write(uint8_t rhport, uint8_t data, bool in_isr) {
_hcd_data.hxfr = data;
reg_write(HXFR_ADDR, data);
reg_write(rhport, HXFR_ADDR, data, in_isr);
}
static inline void sndbc_write(uint8_t data) {
static inline void sndbc_write(uint8_t rhport, uint8_t data, bool in_isr) {
_hcd_data.sndbc = data;
reg_write(SNDBC_ADDR, data);
reg_write(rhport, SNDBC_ADDR, data, in_isr);
}
@ -307,9 +328,7 @@ bool hcd_configure(uint8_t rhport, uint32_t cfg_id, const void* cfg_param) {
}
tusb_speed_t handle_connect_irq(uint8_t rhport) {
(void) rhport;
uint8_t const hrsl = reg_read(HRSL_ADDR);
uint8_t const hrsl = reg_read(rhport, HRSL_ADDR, true);
uint8_t const jk = hrsl & (HRSL_JSTATUS | HRSL_KSTATUS);
tusb_speed_t speed;
@ -328,7 +347,7 @@ tusb_speed_t handle_connect_irq(uint8_t rhport) {
default: {
// Low speed if (LS = 1 and J-state) or (LS = 0 and K-State)
uint8_t const mode = reg_read(MODE_ADDR);
uint8_t const mode = reg_read(rhport, MODE_ADDR, true);
uint8_t const ls_bit = mode & MODE_LOWSPEED;
if ( (ls_bit && (jk == HRSL_JSTATUS)) || (!ls_bit && (jk == HRSL_KSTATUS)) ) {
@ -344,7 +363,7 @@ tusb_speed_t handle_connect_irq(uint8_t rhport) {
}
}
mode_write(new_mode);
mode_write(rhport, new_mode, true);
TU_LOG2_INT(speed);
return speed;
}
@ -358,32 +377,32 @@ bool hcd_init(uint8_t rhport) {
tu_memclr(&_hcd_data, sizeof(_hcd_data));
hcd_int_disable(rhport);
// full duplex, interrupt negative edge
reg_write(PINCTL_ADDR, PINCTL_FDUPSPI);
reg_write(rhport, PINCTL_ADDR, PINCTL_FDUPSPI, false);
// reset
reg_write(USBCTL_ADDR, USBCTL_CHIPRES);
reg_write(USBCTL_ADDR, 0);
while( !(reg_read(USBIRQ_ADDR) & USBIRQ_OSCOK_IRQ) ) {
reg_write(rhport, USBCTL_ADDR, USBCTL_CHIPRES, false);
reg_write(rhport, USBCTL_ADDR, 0, false);
while( !(reg_read(rhport, USBIRQ_ADDR, false) & USBIRQ_OSCOK_IRQ) ) {
// wait for oscillator to stabilize
}
// Mode: Host and DP/DM pull down
mode_write(MODE_DPPULLDN | MODE_DMPULLDN | MODE_HOST);
mode_write(rhport, MODE_DPPULLDN | MODE_DMPULLDN | MODE_HOST, false);
// frame reset & bus reset, this will trigger CONDET IRQ if device is already connected
reg_write(HCTL_ADDR, HCTL_BUSRST | HCTL_FRMRST);
reg_write(rhport, HCTL_ADDR, HCTL_BUSRST | HCTL_FRMRST, false);
// clear all previously pending IRQ
reg_write(HIRQ_ADDR, 0xff);
_hcd_data.inited = true;
reg_write(rhport, HIRQ_ADDR, 0xff, false);
// Enable IRQ
hien_write(DEFAULT_HIEN);
hien_write(rhport, DEFAULT_HIEN, false);
// Enable Interrupt pin
reg_write(CPUCTL_ADDR, CPUCTL_IE);
reg_write(rhport, CPUCTL_ADDR, CPUCTL_IE, false);
return true;
}
@ -417,22 +436,20 @@ bool hcd_port_connect_status(uint8_t rhport) {
// Reset USB bus on the port. Return immediately, bus reset sequence may not be complete.
// Some port would require hcd_port_reset_end() to be invoked after 10ms to complete the reset sequence.
void hcd_port_reset(uint8_t rhport) {
(void) rhport;
// Bus reset will also trigger CONDET IRQ, disable it
uint8_t const hien = DEFAULT_HIEN & ~HIRQ_CONDET_IRQ;
hien_write(hien);
hien_write(rhport, hien, false);
reg_write(HCTL_ADDR, HCTL_BUSRST);
reg_write(rhport, HCTL_ADDR, HCTL_BUSRST, false);
}
// Complete bus reset sequence, may be required by some controllers
void hcd_port_reset_end(uint8_t rhport) {
(void) rhport;
reg_write(HCTL_ADDR, 0);
reg_write(rhport, HCTL_ADDR, 0, false);
// Bus reset will also trigger CONDET IRQ, clear and re-enable it after reset
reg_write(HIRQ_ADDR, HIRQ_CONDET_IRQ);
hien_write(DEFAULT_HIEN);
reg_write(rhport, HIRQ_ADDR, HIRQ_CONDET_IRQ, false);
hien_write(rhport, DEFAULT_HIEN, false);
}
// Get port link speed
@ -487,7 +504,7 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t daddr, uint8_t ep_addr, uint8_t * buf
ep->xfer_complete = 0;
ep->xfer_queued = 1;
peraddr_write(daddr);
peraddr_write(rhport, daddr, false);
uint8_t hctl = 0;
uint8_t hxfr = ep_num;
@ -500,7 +517,7 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t daddr, uint8_t ep_addr, uint8_t * buf
// ZLP for ACK stage, use HS
hxfr |= HXFR_HS;
hxfr |= (ep_dir ? 0 : HXFR_OUT_NIN);
hxfr_write(hxfr);
hxfr_write(rhport, hxfr, false);
return true;
}
}
@ -510,8 +527,8 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t daddr, uint8_t ep_addr, uint8_t * buf
TU_ASSERT(_hcd_data.hirq & HIRQ_SNDBAV_IRQ);
uint8_t const xact_len = (uint8_t) tu_min16(buflen, ep->packet_size);
fifo_write(SNDFIFO_ADDR, buffer, xact_len);
sndbc_write(xact_len);
fifo_write(rhport, SNDFIFO_ADDR, buffer, xact_len, false);
sndbc_write(rhport, xact_len, false);
hctl = (ep->data_toggle ? HCTL_SNDTOG1 : HCTL_SNDTOG0);
hxfr |= HXFR_OUT_NIN;
@ -520,8 +537,8 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t daddr, uint8_t ep_addr, uint8_t * buf
hctl = (ep->data_toggle ? HCTL_RCVTOG1 : HCTL_RCVTOG0);
}
reg_write(HCTL_ADDR, hctl);
hxfr_write(hxfr);
reg_write(rhport, HCTL_ADDR, hctl, false);
hxfr_write(rhport, hxfr, false);
return true;
}
@ -544,9 +561,9 @@ bool hcd_setup_send(uint8_t rhport, uint8_t daddr, uint8_t const setup_packet[8]
ep->total_len = 8;
ep->xferred_len = 0;
peraddr_write(daddr);
fifo_write(SUDFIFO_ADDR, setup_packet, 8);
hxfr_write(HXFR_SETUP);
peraddr_write(rhport, daddr, false);
fifo_write(rhport, SUDFIFO_ADDR, setup_packet, 8, false);
hxfr_write(rhport, HXFR_SETUP, false);
return true;
}
@ -561,9 +578,7 @@ bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
}
static void handle_xfer_done(uint8_t rhport) {
(void) rhport;
uint8_t const hrsl = reg_read(HRSL_ADDR);
uint8_t const hrsl = reg_read(rhport, HRSL_ADDR, true);
uint8_t const hresult = hrsl & HRSL_RESULT_MASK;
uint8_t ep_num = _hcd_data.hxfr & HXFR_EPNUM_MASK;
@ -587,7 +602,7 @@ static void handle_xfer_done(uint8_t rhport) {
// NAK on control, retry immediately
//if (ep_num == 0)
{
hxfr_write(_hcd_data.hxfr);
hxfr_write(rhport, _hcd_data.hxfr, true);
}
return;
@ -615,11 +630,8 @@ static void handle_xfer_done(uint8_t rhport) {
ep->buf += xact_len;
if ( xact_len < ep->packet_size || ep->xferred_len >= ep->total_len ) {
if ( ep_num ) {
// save data toggle for non-control
ep->data_toggle = (hrsl & HRSL_SNDTOGRD) ? 1 : 0;
}
// save data toggle
ep->data_toggle = (hrsl & HRSL_SNDTOGRD) ? 1 : 0;
hcd_event_xfer_complete(_hcd_data.peraddr, ep_num, ep->xferred_len, xfer_result, true);
}else {
// more to transfer
@ -634,15 +646,12 @@ static void handle_xfer_done(uint8_t rhport) {
// short packet or all bytes transferred
if ( ep->xfer_complete ) {
if ( ep_num ) {
// save data toggle for non-control
ep->data_toggle = (hrsl & HRSL_RCVTOGRD) ? 1 : 0;
}
// save data toggle
ep->data_toggle = (hrsl & HRSL_RCVTOGRD) ? 1 : 0;
hcd_event_xfer_complete(_hcd_data.peraddr, TUSB_DIR_IN_MASK | ep_num, ep->xferred_len, xfer_result, true);
}else {
// more to transfer
hxfr_write(_hcd_data.hxfr);
hxfr_write(rhport, _hcd_data.hxfr, true);
}
}
}
@ -669,10 +678,7 @@ void print_hirq(uint8_t hirq) {
// Interrupt Handler
void hcd_int_handler(uint8_t rhport) {
// not initialized, do nothing
if ( !_hcd_data.inited ) return;
uint8_t hirq = reg_read(HIRQ_ADDR) & _hcd_data.hien;
uint8_t hirq = reg_read(rhport, HIRQ_ADDR, true) & _hcd_data.hien;
if (!hirq) return;
// print_hirq(hirq);
@ -701,17 +707,17 @@ void hcd_int_handler(uint8_t rhport) {
// RCVDAV_IRQ can trigger 2 times (dual buffered)
while ( hirq & HIRQ_RCVDAV_IRQ ) {
uint8_t rcvbc = reg_read(RCVBC_ADDR);
uint8_t rcvbc = reg_read(rhport, RCVBC_ADDR, true);
xact_len = (uint8_t) tu_min16(rcvbc, ep->total_len - ep->xferred_len);
if ( xact_len ) {
fifo_read(ep->buf, xact_len);
fifo_read(rhport, ep->buf, xact_len, true);
ep->buf += xact_len;
ep->xferred_len += xact_len;
}
// ack RCVDVAV IRQ
reg_write(HIRQ_ADDR, HIRQ_RCVDAV_IRQ);
hirq = reg_read(HIRQ_ADDR);
reg_write(rhport, HIRQ_ADDR, HIRQ_RCVDAV_IRQ, true);
hirq = reg_read(rhport, HIRQ_ADDR, true);
}
if ( xact_len < ep->packet_size || ep->xferred_len >= ep->total_len ) {
@ -720,17 +726,17 @@ void hcd_int_handler(uint8_t rhport) {
}
if ( hirq & HIRQ_HXFRDN_IRQ ) {
reg_write(HIRQ_ADDR, HIRQ_HXFRDN_IRQ);
reg_write(rhport, HIRQ_ADDR, HIRQ_HXFRDN_IRQ, true);
handle_xfer_done(rhport);
}
hirq = reg_read(HIRQ_ADDR);
hirq = reg_read(rhport, HIRQ_ADDR, true);
}
// clear all interrupt except SNDBAV_IRQ (never clear by us). Note RCVDAV_IRQ, HXFRDN_IRQ already clear while processing
hirq &= ~HIRQ_SNDBAV_IRQ;
if ( hirq ) {
reg_write(HIRQ_ADDR, hirq);
reg_write(rhport, HIRQ_ADDR, hirq, true);
}
}