esp32-s2_dfu/hw/bsp/frdm_kl25z/frdm_kl25z.c

177 lines
5.5 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
* Copyright (c) 2020, Koji Kitayama
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "../board.h"
#include "fsl_device_registers.h"
#include "fsl_gpio.h"
#include "fsl_port.h"
#include "fsl_clock.h"
#include "fsl_lpsci.h"
#include "clock_config.h"
//--------------------------------------------------------------------+
// Forward USB interrupt events to TinyUSB IRQ Handler
//--------------------------------------------------------------------+
void USB0_IRQHandler(void)
{
#if CFG_TUH_ENABLED
tuh_int_handler(0);
#endif
#if CFG_TUD_ENABLED
tud_int_handler(0);
#endif
}
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
// LED
#define LED_PINMUX IOMUXC_GPIO_AD_B0_09_GPIO1_IO09
#define LED_PORT GPIOB
#define LED_PIN_CLOCK kCLOCK_PortB
#define LED_PIN_PORT PORTB
#define LED_PIN 19U
#define LED_PIN_FUNCTION kPORT_MuxAsGpio
#define LED_STATE_ON 0
// Button
#define BUTTON_PORT GPIOC
#define BUTTON_PIN_CLOCK kCLOCK_PortC
#define BUTTON_PIN_PORT PORTC
#define BUTTON_PIN 9U
#define BUTTON_PIN_FUNCTION kPORT_MuxAsGpio
#define BUTTON_STATE_ACTIVE 0
// UART
#define UART_PORT UART0
#define UART_PIN_CLOCK kCLOCK_PortA
#define UART_PIN_PORT PORTA
#define UART_PIN_RX 1u
#define UART_PIN_TX 2u
#define UART_PIN_FUNCTION kPORT_MuxAlt2
#define SOPT5_UART0RXSRC_UART_RX 0x00u /*!< UART0 receive data source select: UART0_RX pin */
#define SOPT5_UART0TXSRC_UART_TX 0x00u /*!< UART0 transmit data source select: UART0_TX pin */
const uint8_t dcd_data[] = { 0x00 };
void board_init(void)
{
BOARD_BootClockRUN();
SystemCoreClockUpdate();
#if CFG_TUSB_OS == OPT_OS_NONE
// 1ms tick timer
SysTick_Config(SystemCoreClock / 1000);
#elif CFG_TUSB_OS == OPT_OS_FREERTOS
// If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher )
NVIC_SetPriority(USB0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY );
#endif
// LED
CLOCK_EnableClock(LED_PIN_CLOCK);
PORT_SetPinMux(LED_PIN_PORT, LED_PIN, LED_PIN_FUNCTION);
gpio_pin_config_t led_config = { kGPIO_DigitalOutput, 0 };
GPIO_PinInit(LED_PORT, LED_PIN, &led_config);
board_led_write(false);
#if defined(BUTTON_PORT) && defined(BUTTON_PIN)
// Button
CLOCK_EnableClock(BUTTON_PIN_CLOCK);
port_pin_config_t button_port = {
.pullSelect = kPORT_PullUp,
.mux = BUTTON_PIN_FUNCTION,
};
PORT_SetPinConfig(BUTTON_PIN_PORT, BUTTON_PIN, &button_port);
gpio_pin_config_t button_config = { kGPIO_DigitalInput, 0 };
GPIO_PinInit(BUTTON_PORT, BUTTON_PIN, &button_config);
#endif
// UART
CLOCK_EnableClock(UART_PIN_CLOCK);
PORT_SetPinMux(UART_PIN_PORT, UART_PIN_RX, UART_PIN_FUNCTION);
PORT_SetPinMux(UART_PIN_PORT, UART_PIN_TX, UART_PIN_FUNCTION);
SIM->SOPT5 = ((SIM->SOPT5 &
(~(SIM_SOPT5_UART0TXSRC_MASK | SIM_SOPT5_UART0RXSRC_MASK)))
| SIM_SOPT5_UART0TXSRC(SOPT5_UART0TXSRC_UART_TX)
| SIM_SOPT5_UART0RXSRC(SOPT5_UART0RXSRC_UART_RX)
);
lpsci_config_t uart_config;
CLOCK_SetLpsci0Clock(1);
LPSCI_GetDefaultConfig(&uart_config);
uart_config.baudRate_Bps = CFG_BOARD_UART_BAUDRATE;
uart_config.enableTx = true;
uart_config.enableRx = true;
LPSCI_Init(UART_PORT, &uart_config, CLOCK_GetPllFllSelClkFreq());
// USB
CLOCK_EnableUsbfs0Clock(kCLOCK_UsbSrcPll0, CLOCK_GetFreq(kCLOCK_PllFllSelClk));
}
//--------------------------------------------------------------------+
// Board porting API
//--------------------------------------------------------------------+
void board_led_write(bool state)
{
GPIO_WritePinOutput(LED_PORT, LED_PIN, state ? LED_STATE_ON : (1-LED_STATE_ON));
}
uint32_t board_button_read(void)
{
#if defined(BUTTON_PORT) && defined(BUTTON_PIN)
return BUTTON_STATE_ACTIVE == GPIO_ReadPinInput(BUTTON_PORT, BUTTON_PIN);
#endif
return 0;
}
int board_uart_read(uint8_t* buf, int len)
{
LPSCI_ReadBlocking(UART_PORT, buf, len);
return len;
}
int board_uart_write(void const * buf, int len)
{
LPSCI_WriteBlocking(UART_PORT, (uint8_t const*) buf, len);
return len;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void SysTick_Handler(void)
{
system_ticks++;
}
uint32_t board_millis(void)
{
return system_ticks;
}
#endif