esp32-s2_dfu/src/portable/nxp/lpc_ip3511/dcd_lpc_ip3511.c

544 lines
17 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
/* Since 2012 starting with LPC11uxx, NXP start to use common USB Device Controller with code name LPC IP3511
* for almost their new MCUs. Currently supported and tested families are
* - LPC11U68, LPC11U37
* - LPC1347
* - LPC51U68
* - LPC54114
* - LPC55s69
*/
#if CFG_TUD_ENABLED && ( CFG_TUSB_MCU == OPT_MCU_LPC11UXX || \
CFG_TUSB_MCU == OPT_MCU_LPC13XX || \
CFG_TUSB_MCU == OPT_MCU_LPC15XX || \
CFG_TUSB_MCU == OPT_MCU_LPC51UXX || \
CFG_TUSB_MCU == OPT_MCU_LPC54XXX || \
CFG_TUSB_MCU == OPT_MCU_LPC55XX)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#if CFG_TUSB_MCU == OPT_MCU_LPC11UXX || CFG_TUSB_MCU == OPT_MCU_LPC13XX || CFG_TUSB_MCU == OPT_MCU_LPC15XX
// LPCOpen
#include "chip.h"
#else
// SDK
#include "fsl_device_registers.h"
#define INCLUDE_FSL_DEVICE_REGISTERS
#endif
#include "device/dcd.h"
//--------------------------------------------------------------------+
// IP3511 Registers
//--------------------------------------------------------------------+
typedef struct {
__IO uint32_t DEVCMDSTAT; // Device Command/Status register, offset: 0x0
__I uint32_t INFO; // Info register, offset: 0x4
__IO uint32_t EPLISTSTART; // EP Command/Status List start address, offset: 0x8
__IO uint32_t DATABUFSTART; // Data buffer start address, offset: 0xC
__IO uint32_t LPM; // Link Power Management register, offset: 0x10
__IO uint32_t EPSKIP; // Endpoint skip, offset: 0x14
__IO uint32_t EPINUSE; // Endpoint Buffer in use, offset: 0x18
__IO uint32_t EPBUFCFG; // Endpoint Buffer Configuration register, offset: 0x1C
__IO uint32_t INTSTAT; // interrupt status register, offset: 0x20
__IO uint32_t INTEN; // interrupt enable register, offset: 0x24
__IO uint32_t INTSETSTAT; // set interrupt status register, offset: 0x28
uint8_t RESERVED_0[8];
__I uint32_t EPTOGGLE; // Endpoint toggle register, offset: 0x34
} dcd_registers_t;
// Max nbytes for each control/bulk/interrupt transfer
enum {
NBYTES_CBI_FULLSPEED_MAX = 64,
NBYTES_CBI_HIGHSPEED_MAX = 32767 // can be up to all 15-bit, but only tested with 4096
};
enum {
INT_SOF_MASK = TU_BIT(30),
INT_DEVICE_STATUS_MASK = TU_BIT(31)
};
enum {
CMDSTAT_DEVICE_ADDR_MASK = TU_BIT(7 )-1,
CMDSTAT_DEVICE_ENABLE_MASK = TU_BIT(7 ),
CMDSTAT_SETUP_RECEIVED_MASK = TU_BIT(8 ),
CMDSTAT_DEVICE_CONNECT_MASK = TU_BIT(16), // reflect the soft-connect only, does not reflect the actual attached state
CMDSTAT_DEVICE_SUSPEND_MASK = TU_BIT(17),
// 23-22 is link speed (only available for HighSpeed port)
CMDSTAT_CONNECT_CHANGE_MASK = TU_BIT(24),
CMDSTAT_SUSPEND_CHANGE_MASK = TU_BIT(25),
CMDSTAT_RESET_CHANGE_MASK = TU_BIT(26),
CMDSTAT_VBUS_DEBOUNCED_MASK = TU_BIT(28),
};
enum {
CMDSTAT_SPEED_SHIFT = 22
};
//--------------------------------------------------------------------+
// Endpoint Command/Status List
//--------------------------------------------------------------------+
// Endpoint Command/Status
typedef union TU_ATTR_PACKED
{
// Full and High speed has different bit layout for buffer_offset and nbytes
// Buffer (aligned 64) = DATABUFSTART [31:22] | buffer_offset [21:6]
volatile struct {
uint32_t offset : 16;
uint32_t nbytes : 10;
uint32_t TU_RESERVED : 6;
} buffer_fs;
// Buffer (aligned 64) = USB_RAM [31:17] | buffer_offset [16:6]
volatile struct {
uint32_t offset : 11 ;
uint32_t nbytes : 15 ;
uint32_t TU_RESERVED : 6 ;
} buffer_hs;
volatile struct {
uint32_t TU_RESERVED : 26;
uint32_t is_iso : 1 ;
uint32_t toggle_mode : 1 ;
uint32_t toggle_reset : 1 ;
uint32_t stall : 1 ;
uint32_t disable : 1 ;
uint32_t active : 1 ;
};
}ep_cmd_sts_t;
TU_VERIFY_STATIC( sizeof(ep_cmd_sts_t) == 4, "size is not correct" );
// Software transfer management
typedef struct
{
uint16_t total_bytes;
uint16_t xferred_bytes;
uint16_t nbytes;
// prevent unaligned access on Highspeed port on USB_SRAM
uint16_t TU_RESERVED;
}xfer_dma_t;
// Absolute max of endpoints pairs for all port
// - 11 13 15 51 54 has 5x2 endpoints
// - 55 usb0 (FS) has 5x2 endpoints, usb1 (HS) has 6x2 endpoints
#define MAX_EP_PAIRS 6
// NOTE data will be transferred as soon as dcd get request by dcd_pipe(_queue)_xfer using double buffering.
// current_td is used to keep track of number of remaining & xferred bytes of the current request.
typedef struct
{
// 256 byte aligned, 2 for double buffer (not used)
// Each cmd_sts can only transfer up to DMA_NBYTES_MAX bytes each
ep_cmd_sts_t ep[2*MAX_EP_PAIRS][2];
xfer_dma_t dma[2*MAX_EP_PAIRS];
TU_ATTR_ALIGNED(64) uint8_t setup_packet[8];
}dcd_data_t;
// EP list must be 256-byte aligned
// Some MCU controller may require this variable to be placed in specific SRAM region.
// For example: LPC55s69 port1 Highspeed must be USB_RAM (0x40100000)
// Use CFG_TUSB_MEM_SECTION to place it accordingly.
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(256) static dcd_data_t _dcd;
//--------------------------------------------------------------------+
// Multiple Controllers
//--------------------------------------------------------------------+
typedef struct
{
dcd_registers_t* regs; // registers
const tusb_speed_t max_speed; // max link speed
const IRQn_Type irqnum; // IRQ number
const uint8_t ep_pairs; // Max bi-directional Endpoints
}dcd_controller_t;
#ifdef INCLUDE_FSL_DEVICE_REGISTERS
static const dcd_controller_t _dcd_controller[] =
{
{ .regs = (dcd_registers_t*) USB0_BASE , .max_speed = TUSB_SPEED_FULL, .irqnum = USB0_IRQn, .ep_pairs = FSL_FEATURE_USB_EP_NUM },
#if defined(FSL_FEATURE_SOC_USBHSD_COUNT) && FSL_FEATURE_SOC_USBHSD_COUNT
{ .regs = (dcd_registers_t*) USBHSD_BASE, .max_speed = TUSB_SPEED_HIGH, .irqnum = USB1_IRQn, .ep_pairs = FSL_FEATURE_USBHSD_EP_NUM }
#endif
};
#else
static const dcd_controller_t _dcd_controller[] =
{
{ .regs = (dcd_registers_t*) LPC_USB0_BASE, .max_speed = TUSB_SPEED_FULL, .irqnum = USB0_IRQn, .ep_pairs = 5 },
};
#endif
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static inline uint16_t get_buf_offset(void const * buffer)
{
uint32_t addr = (uint32_t) buffer;
TU_ASSERT( (addr & 0x3f) == 0, 0 );
return ( (addr >> 6) & 0xFFFFUL ) ;
}
static inline uint8_t ep_addr2id(uint8_t ep_addr)
{
return 2*(ep_addr & 0x0F) + ((ep_addr & TUSB_DIR_IN_MASK) ? 1 : 0);
}
//--------------------------------------------------------------------+
// CONTROLLER API
//--------------------------------------------------------------------+
void dcd_init(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->EPLISTSTART = (uint32_t) _dcd.ep;
dcd_reg->DATABUFSTART = tu_align((uint32_t) &_dcd, TU_BIT(22)); // 22-bit alignment
dcd_reg->INTSTAT |= dcd_reg->INTSTAT; // clear all pending interrupt
dcd_reg->INTEN = INT_DEVICE_STATUS_MASK;
dcd_reg->DEVCMDSTAT |= CMDSTAT_DEVICE_ENABLE_MASK | CMDSTAT_DEVICE_CONNECT_MASK |
CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK;
NVIC_ClearPendingIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_int_enable(uint8_t rhport)
{
NVIC_EnableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_int_disable(uint8_t rhport)
{
NVIC_DisableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
dcd_reg->DEVCMDSTAT &= ~CMDSTAT_DEVICE_ADDR_MASK;
dcd_reg->DEVCMDSTAT |= dev_addr;
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
void dcd_connect(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->DEVCMDSTAT |= CMDSTAT_DEVICE_CONNECT_MASK;
}
void dcd_disconnect(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->DEVCMDSTAT &= ~CMDSTAT_DEVICE_CONNECT_MASK;
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
// TODO cannot able to STALL Control OUT endpoint !!!!! FIXME try some walk-around
uint8_t const ep_id = ep_addr2id(ep_addr);
_dcd.ep[ep_id][0].stall = 1;
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const ep_id = ep_addr2id(ep_addr);
_dcd.ep[ep_id][0].stall = 0;
_dcd.ep[ep_id][0].toggle_reset = 1;
_dcd.ep[ep_id][0].toggle_mode = 0;
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void) rhport;
// TODO not support ISO yet
TU_VERIFY(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
//------------- Prepare Queue Head -------------//
uint8_t ep_id = ep_addr2id(p_endpoint_desc->bEndpointAddress);
// Check if endpoint is available
TU_ASSERT( _dcd.ep[ep_id][0].disable && _dcd.ep[ep_id][1].disable );
tu_memclr(_dcd.ep[ep_id], 2*sizeof(ep_cmd_sts_t));
_dcd.ep[ep_id][0].is_iso = (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS);
// Enable EP interrupt
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->INTEN |= TU_BIT(ep_id);
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
static void prepare_setup_packet(uint8_t rhport)
{
if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL )
{
_dcd.ep[0][1].buffer_fs.offset = get_buf_offset(_dcd.setup_packet);;
}else
{
_dcd.ep[0][1].buffer_hs.offset = get_buf_offset(_dcd.setup_packet);;
}
}
static void prepare_ep_xfer(uint8_t rhport, uint8_t ep_id, uint16_t buf_offset, uint16_t total_bytes)
{
uint16_t nbytes;
if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL )
{
// TODO ISO FullSpeed can have up to 1023 bytes
nbytes = tu_min16(total_bytes, NBYTES_CBI_FULLSPEED_MAX);
_dcd.ep[ep_id][0].buffer_fs.offset = buf_offset;
_dcd.ep[ep_id][0].buffer_fs.nbytes = nbytes;
}else
{
nbytes = tu_min16(total_bytes, NBYTES_CBI_HIGHSPEED_MAX);
_dcd.ep[ep_id][0].buffer_hs.offset = buf_offset;
_dcd.ep[ep_id][0].buffer_hs.nbytes = nbytes;
}
_dcd.dma[ep_id].nbytes = nbytes;
_dcd.ep[ep_id][0].active = 1;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const ep_id = ep_addr2id(ep_addr);
tu_memclr(&_dcd.dma[ep_id], sizeof(xfer_dma_t));
_dcd.dma[ep_id].total_bytes = total_bytes;
prepare_ep_xfer(rhport, ep_id, get_buf_offset(buffer), total_bytes);
return true;
}
//--------------------------------------------------------------------+
// IRQ
//--------------------------------------------------------------------+
static void bus_reset(uint8_t rhport)
{
tu_memclr(&_dcd, sizeof(dcd_data_t));
// disable all non-control endpoints on bus reset
for(uint8_t ep_id = 2; ep_id < 2*MAX_EP_PAIRS; ep_id++)
{
_dcd.ep[ep_id][0].disable = _dcd.ep[ep_id][1].disable = 1;
}
prepare_setup_packet(rhport);
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->EPINUSE = 0;
dcd_reg->EPBUFCFG = 0;
dcd_reg->EPSKIP = 0xFFFFFFFF;
dcd_reg->INTSTAT = dcd_reg->INTSTAT; // clear all pending interrupt
dcd_reg->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK; // clear setup received interrupt
dcd_reg->INTEN = INT_DEVICE_STATUS_MASK | TU_BIT(0) | TU_BIT(1); // enable device status & control endpoints
}
static void process_xfer_isr(uint8_t rhport, uint32_t int_status)
{
uint8_t const max_ep = 2*_dcd_controller[rhport].ep_pairs;
for(uint8_t ep_id = 0; ep_id < max_ep; ep_id++ )
{
if ( tu_bit_test(int_status, ep_id) )
{
ep_cmd_sts_t * ep_cs = &_dcd.ep[ep_id][0];
xfer_dma_t* xfer_dma = &_dcd.dma[ep_id];
if ( ep_id == 0 || ep_id == 1)
{
// For control endpoint, we need to manually clear Active bit
ep_cs->active = 0;
}
uint16_t buf_offset;
uint16_t buf_nbytes;
if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL)
{
buf_offset = ep_cs->buffer_fs.offset;
buf_nbytes = ep_cs->buffer_fs.nbytes;
}else
{
buf_offset = ep_cs->buffer_hs.offset;
buf_nbytes = ep_cs->buffer_hs.nbytes;
}
xfer_dma->xferred_bytes += xfer_dma->nbytes - buf_nbytes;
if ( (buf_nbytes == 0) && (xfer_dma->total_bytes > xfer_dma->xferred_bytes) )
{
// There is more data to transfer
// buff_offset has been already increased by hw to correct value for next transfer
prepare_ep_xfer(rhport, ep_id, buf_offset, xfer_dma->total_bytes - xfer_dma->xferred_bytes);
}
else
{
// for detecting ZLP
xfer_dma->total_bytes = xfer_dma->xferred_bytes;
uint8_t const ep_addr = tu_edpt_addr(ep_id / 2, ep_id & 0x01);
// TODO no way determine if the transfer is failed or not
dcd_event_xfer_complete(rhport, ep_addr, xfer_dma->xferred_bytes, XFER_RESULT_SUCCESS, true);
}
}
}
}
void dcd_int_handler(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
uint32_t const cmd_stat = dcd_reg->DEVCMDSTAT;
uint32_t int_status = dcd_reg->INTSTAT & dcd_reg->INTEN;
dcd_reg->INTSTAT = int_status; // Acknowledge handled interrupt
if (int_status == 0) return;
//------------- Device Status -------------//
if ( int_status & INT_DEVICE_STATUS_MASK )
{
dcd_reg->DEVCMDSTAT |= CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK;
if ( cmd_stat & CMDSTAT_RESET_CHANGE_MASK) // bus reset
{
bus_reset(rhport);
tusb_speed_t speed = TUSB_SPEED_FULL;
if (_dcd_controller[rhport].max_speed == TUSB_SPEED_HIGH)
{
// 0 : reserved, 1 : full, 2 : high, 3: super
if ( 2 == ((cmd_stat >> CMDSTAT_SPEED_SHIFT) & 0x3UL) )
{
speed= TUSB_SPEED_HIGH;
}
}
dcd_event_bus_reset(rhport, speed, true);
}
if (cmd_stat & CMDSTAT_CONNECT_CHANGE_MASK)
{
// device disconnect
if (cmd_stat & CMDSTAT_DEVICE_ADDR_MASK)
{
// debouncing as this can be set when device is powering
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
}
// TODO support suspend & resume
if (cmd_stat & CMDSTAT_SUSPEND_CHANGE_MASK)
{
if (cmd_stat & CMDSTAT_DEVICE_SUSPEND_MASK)
{ // suspend signal, bus idle for more than 3ms
// Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration.
if (cmd_stat & CMDSTAT_DEVICE_ADDR_MASK)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
}
}
// else
// { // resume signal
// dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
// }
// }
}
// Setup Receive
if ( tu_bit_test(int_status, 0) && (cmd_stat & CMDSTAT_SETUP_RECEIVED_MASK) )
{
// Follow UM flowchart to clear Active & Stall on both Control IN/OUT endpoints
_dcd.ep[0][0].active = _dcd.ep[1][0].active = 0;
_dcd.ep[0][0].stall = _dcd.ep[1][0].stall = 0;
dcd_reg->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK;
dcd_event_setup_received(rhport, _dcd.setup_packet, true);
// keep waiting for next setup
prepare_setup_packet(rhport);
// clear bit0
int_status = tu_bit_clear(int_status, 0);
}
// Endpoint transfer complete interrupt
process_xfer_isr(rhport, int_status);
}
#endif