esp32-s2_dfu/examples/host/bare_api/src/main.c

420 lines
13 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
/* This example current worked and tested with following controller
* - Sony DualShock 4 [CUH-ZCT2x] VID = 0x054c, PID = 0x09cc
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "bsp/board.h"
#include "tusb.h"
// English
#define LANGUAGE_ID 0x0409
#define BUF_COUNT 4
tusb_desc_device_t desc_device;
uint8_t buf_pool[BUF_COUNT][64];
uint8_t buf_owner[BUF_COUNT] = { 0 }; // device address that owns buffer
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF PROTYPES
//--------------------------------------------------------------------+
void led_blinking_task(void);
static void print_utf16(uint16_t *temp_buf, size_t buf_len);
void print_device_descriptor(tuh_xfer_t* xfer);
void parse_config_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg);
uint8_t* get_hid_buf(uint8_t daddr);
void free_hid_buf(uint8_t daddr);
/*------------- MAIN -------------*/
int main(void)
{
board_init();
printf("TinyUSB Bare API Example\r\n");
// init host stack on configured roothub port
tuh_init(BOARD_TUH_RHPORT);
while (1)
{
// tinyusb host task
tuh_task();
led_blinking_task();
}
return 0;
}
/*------------- TinyUSB Callbacks -------------*/
// Invoked when device is mounted (configured)
void tuh_mount_cb (uint8_t daddr)
{
printf("Device attached, address = %d\r\n", daddr);
// Get Device Descriptor
// TODO: invoking control transfer now has issue with mounting hub with multiple devices attached, fix later
tuh_descriptor_get_device(daddr, &desc_device, 18, print_device_descriptor, 0);
}
/// Invoked when device is unmounted (bus reset/unplugged)
void tuh_umount_cb(uint8_t daddr)
{
printf("Device removed, address = %d\r\n", daddr);
free_hid_buf(daddr);
}
//--------------------------------------------------------------------+
// Device Descriptor
//--------------------------------------------------------------------+
void print_device_descriptor(tuh_xfer_t* xfer)
{
if ( XFER_RESULT_SUCCESS != xfer->result )
{
printf("Failed to get device descriptor\r\n");
return;
}
uint8_t const daddr = xfer->daddr;
printf("Device %u: ID %04x:%04x\r\n", daddr, desc_device.idVendor, desc_device.idProduct);
printf("Device Descriptor:\r\n");
printf(" bLength %u\r\n" , desc_device.bLength);
printf(" bDescriptorType %u\r\n" , desc_device.bDescriptorType);
printf(" bcdUSB %04x\r\n" , desc_device.bcdUSB);
printf(" bDeviceClass %u\r\n" , desc_device.bDeviceClass);
printf(" bDeviceSubClass %u\r\n" , desc_device.bDeviceSubClass);
printf(" bDeviceProtocol %u\r\n" , desc_device.bDeviceProtocol);
printf(" bMaxPacketSize0 %u\r\n" , desc_device.bMaxPacketSize0);
printf(" idVendor 0x%04x\r\n" , desc_device.idVendor);
printf(" idProduct 0x%04x\r\n" , desc_device.idProduct);
printf(" bcdDevice %04x\r\n" , desc_device.bcdDevice);
// Get String descriptor using Sync API
uint16_t temp_buf[128];
printf(" iManufacturer %u " , desc_device.iManufacturer);
if (XFER_RESULT_SUCCESS == tuh_descriptor_get_manufacturer_string_sync(daddr, LANGUAGE_ID, temp_buf, sizeof(temp_buf)) )
{
print_utf16(temp_buf, TU_ARRAY_SIZE(temp_buf));
}
printf("\r\n");
printf(" iProduct %u " , desc_device.iProduct);
if (XFER_RESULT_SUCCESS == tuh_descriptor_get_product_string_sync(daddr, LANGUAGE_ID, temp_buf, sizeof(temp_buf)))
{
print_utf16(temp_buf, TU_ARRAY_SIZE(temp_buf));
}
printf("\r\n");
printf(" iSerialNumber %u " , desc_device.iSerialNumber);
if (XFER_RESULT_SUCCESS == tuh_descriptor_get_serial_string_sync(daddr, LANGUAGE_ID, temp_buf, sizeof(temp_buf)))
{
print_utf16(temp_buf, TU_ARRAY_SIZE(temp_buf));
}
printf("\r\n");
printf(" bNumConfigurations %u\r\n" , desc_device.bNumConfigurations);
// Get configuration descriptor with sync API
if (XFER_RESULT_SUCCESS == tuh_descriptor_get_configuration_sync(daddr, 0, temp_buf, sizeof(temp_buf)))
{
parse_config_descriptor(daddr, (tusb_desc_configuration_t*) temp_buf);
}
}
//--------------------------------------------------------------------+
// Configuration Descriptor
//--------------------------------------------------------------------+
// count total length of an interface
uint16_t count_interface_total_len(tusb_desc_interface_t const* desc_itf, uint8_t itf_count, uint16_t max_len);
void open_hid_interface(uint8_t daddr, tusb_desc_interface_t const *desc_itf, uint16_t max_len);
// simple configuration parser to open and listen to HID Endpoint IN
void parse_config_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg)
{
uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + tu_le16toh(desc_cfg->wTotalLength);
uint8_t const* p_desc = tu_desc_next(desc_cfg);
// parse each interfaces
while( p_desc < desc_end )
{
uint8_t assoc_itf_count = 1;
// Class will always starts with Interface Association (if any) and then Interface descriptor
if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) )
{
tusb_desc_interface_assoc_t const * desc_iad = (tusb_desc_interface_assoc_t const *) p_desc;
assoc_itf_count = desc_iad->bInterfaceCount;
p_desc = tu_desc_next(p_desc); // next to Interface
}
// must be interface from now
if( TUSB_DESC_INTERFACE != tu_desc_type(p_desc) ) return;
tusb_desc_interface_t const* desc_itf = (tusb_desc_interface_t const*) p_desc;
uint16_t const drv_len = count_interface_total_len(desc_itf, assoc_itf_count, (uint16_t) (desc_end-p_desc));
// probably corrupted descriptor
if(drv_len < sizeof(tusb_desc_interface_t)) return;
// only open and listen to HID endpoint IN
if (desc_itf->bInterfaceClass == TUSB_CLASS_HID)
{
open_hid_interface(dev_addr, desc_itf, drv_len);
}
// next Interface or IAD descriptor
p_desc += drv_len;
}
}
uint16_t count_interface_total_len(tusb_desc_interface_t const* desc_itf, uint8_t itf_count, uint16_t max_len)
{
uint8_t const* p_desc = (uint8_t const*) desc_itf;
uint16_t len = 0;
while (itf_count--)
{
// Next on interface desc
len += tu_desc_len(desc_itf);
p_desc = tu_desc_next(p_desc);
while (len < max_len)
{
// return on IAD regardless of itf count
if ( tu_desc_type(p_desc) == TUSB_DESC_INTERFACE_ASSOCIATION ) return len;
if ( (tu_desc_type(p_desc) == TUSB_DESC_INTERFACE) &&
((tusb_desc_interface_t const*) p_desc)->bAlternateSetting == 0 )
{
break;
}
len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
}
return len;
}
//--------------------------------------------------------------------+
// HID Interface
//--------------------------------------------------------------------+
void hid_report_received(tuh_xfer_t* xfer);
void open_hid_interface(uint8_t daddr, tusb_desc_interface_t const *desc_itf, uint16_t max_len)
{
// len = interface + hid + n*endpoints
uint16_t const drv_len = (uint16_t) (sizeof(tusb_desc_interface_t) + sizeof(tusb_hid_descriptor_hid_t) +
desc_itf->bNumEndpoints * sizeof(tusb_desc_endpoint_t));
// corrupted descriptor
if (max_len < drv_len) return;
uint8_t const *p_desc = (uint8_t const *) desc_itf;
// HID descriptor
p_desc = tu_desc_next(p_desc);
tusb_hid_descriptor_hid_t const *desc_hid = (tusb_hid_descriptor_hid_t const *) p_desc;
if(HID_DESC_TYPE_HID != desc_hid->bDescriptorType) return;
// Endpoint descriptor
p_desc = tu_desc_next(p_desc);
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) p_desc;
for(int i = 0; i < desc_itf->bNumEndpoints; i++)
{
if (TUSB_DESC_ENDPOINT != desc_ep->bDescriptorType) return;
if(tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN)
{
// skip if failed to open endpoint
if ( ! tuh_edpt_open(daddr, desc_ep) ) return;
uint8_t* buf = get_hid_buf(daddr);
if (!buf) return; // out of memory
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = desc_ep->bEndpointAddress,
.buflen = 64,
.buffer = buf,
.complete_cb = hid_report_received,
.user_data = (uintptr_t) buf, // since buffer is not available in callback, use user data to store the buffer
};
// submit transfer for this EP
tuh_edpt_xfer(&xfer);
printf("Listen to [dev %u: ep %02x]\r\n", daddr, desc_ep->bEndpointAddress);
}
p_desc = tu_desc_next(p_desc);
desc_ep = (tusb_desc_endpoint_t const *) p_desc;
}
}
void hid_report_received(tuh_xfer_t* xfer)
{
// Note: not all field in xfer is available for use (i.e filled by tinyusb stack) in callback to save sram
// For instance, xfer->buffer is NULL. We have used user_data to store buffer when submitted callback
uint8_t* buf = (uint8_t*) xfer->user_data;
if (xfer->result == XFER_RESULT_SUCCESS)
{
printf("[dev %u: ep %02x] HID Report:", xfer->daddr, xfer->ep_addr);
for(uint32_t i=0; i<xfer->actual_len; i++)
{
if (i%16 == 0) printf("\r\n ");
printf("%02X ", buf[i]);
}
printf("\r\n");
}
// continue to submit transfer, with updated buffer
// other field remain the same
xfer->buflen = 64;
xfer->buffer = buf;
tuh_edpt_xfer(xfer);
}
//--------------------------------------------------------------------+
// Buffer helper
//--------------------------------------------------------------------+
// get an buffer from pool
uint8_t* get_hid_buf(uint8_t daddr)
{
for(size_t i=0; i<BUF_COUNT; i++)
{
if (buf_owner[i] == 0)
{
buf_owner[i] = daddr;
return buf_pool[i];
}
}
// out of memory, increase BUF_COUNT
return NULL;
}
// free all buffer owned by device
void free_hid_buf(uint8_t daddr)
{
for(size_t i=0; i<BUF_COUNT; i++)
{
if (buf_owner[i] == daddr) buf_owner[i] = 0;
}
}
//--------------------------------------------------------------------+
// Blinking Task
//--------------------------------------------------------------------+
void led_blinking_task(void)
{
const uint32_t interval_ms = 1000;
static uint32_t start_ms = 0;
static bool led_state = false;
// Blink every interval ms
if ( board_millis() - start_ms < interval_ms) return; // not enough time
start_ms += interval_ms;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
}
//--------------------------------------------------------------------+
// String Descriptor Helper
//--------------------------------------------------------------------+
static void _convert_utf16le_to_utf8(const uint16_t *utf16, size_t utf16_len, uint8_t *utf8, size_t utf8_len) {
// TODO: Check for runover.
(void)utf8_len;
// Get the UTF-16 length out of the data itself.
for (size_t i = 0; i < utf16_len; i++) {
uint16_t chr = utf16[i];
if (chr < 0x80) {
*utf8++ = chr & 0xffu;
} else if (chr < 0x800) {
*utf8++ = (uint8_t)(0xC0 | (chr >> 6 & 0x1F));
*utf8++ = (uint8_t)(0x80 | (chr >> 0 & 0x3F));
} else {
// TODO: Verify surrogate.
*utf8++ = (uint8_t)(0xE0 | (chr >> 12 & 0x0F));
*utf8++ = (uint8_t)(0x80 | (chr >> 6 & 0x3F));
*utf8++ = (uint8_t)(0x80 | (chr >> 0 & 0x3F));
}
// TODO: Handle UTF-16 code points that take two entries.
}
}
// Count how many bytes a utf-16-le encoded string will take in utf-8.
static int _count_utf8_bytes(const uint16_t *buf, size_t len) {
size_t total_bytes = 0;
for (size_t i = 0; i < len; i++) {
uint16_t chr = buf[i];
if (chr < 0x80) {
total_bytes += 1;
} else if (chr < 0x800) {
total_bytes += 2;
} else {
total_bytes += 3;
}
// TODO: Handle UTF-16 code points that take two entries.
}
return (int) total_bytes;
}
static void print_utf16(uint16_t *temp_buf, size_t buf_len) {
size_t utf16_len = ((temp_buf[0] & 0xff) - 2) / sizeof(uint16_t);
size_t utf8_len = (size_t) _count_utf8_bytes(temp_buf + 1, utf16_len);
_convert_utf16le_to_utf8(temp_buf + 1, utf16_len, (uint8_t *) temp_buf, sizeof(uint16_t) * buf_len);
((uint8_t*) temp_buf)[utf8_len] = '\0';
printf((char*)temp_buf);
}