esp32-s2_dfu/demos/bsp/lpc43xx/startup_xpresso/cr_startup_lpc43xx.c

501 lines
17 KiB
C

//*****************************************************************************
// +--+
// | ++----+
// +-++ |
// | |
// +-+--+ |
// | +--+--+
// +----+ Copyright (c) 2011-12 Code Red Technologies Ltd.
//
// LPC43xx Microcontroller Startup code for use with Red Suite
//
// Version : 120430
//
// Software License Agreement
//
// The software is owned by Code Red Technologies and/or its suppliers, and is
// protected under applicable copyright laws. All rights are reserved. Any
// use in violation of the foregoing restrictions may subject the user to criminal
// sanctions under applicable laws, as well as to civil liability for the breach
// of the terms and conditions of this license.
//
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// USE OF THIS SOFTWARE FOR COMMERCIAL DEVELOPMENT AND/OR EDUCATION IS SUBJECT
// TO A CURRENT END USER LICENSE AGREEMENT (COMMERCIAL OR EDUCATIONAL) WITH
// CODE RED TECHNOLOGIES LTD.
//
//*****************************************************************************
#if defined (__cplusplus)
#ifdef __REDLIB__
#error Redlib does not support C++
#else
//*****************************************************************************
//
// The entry point for the C++ library startup
//
//*****************************************************************************
extern "C" {
extern void __libc_init_array(void);
}
#endif
#endif
#define WEAK __attribute__ ((weak))
#define ALIAS(f) __attribute__ ((weak, alias (#f)))
// Code Red - if CMSIS is being used, then SystemInit() routine
// will be called by startup code rather than in application's main()
#if defined (__USE_CMSIS)
#include "LPC43xx.h"
#endif
//*****************************************************************************
#if defined (__cplusplus)
extern "C" {
#endif
//*****************************************************************************
//
// Forward declaration of the default handlers. These are aliased.
// When the application defines a handler (with the same name), this will
// automatically take precedence over these weak definitions
//
//*****************************************************************************
void ResetISR(void);
WEAK void NMI_Handler(void);
WEAK void HardFault_Handler(void);
WEAK void MemManage_Handler(void);
WEAK void BusFault_Handler(void);
WEAK void UsageFault_Handler(void);
WEAK void SVC_Handler(void);
WEAK void DebugMon_Handler(void);
WEAK void PendSV_Handler(void);
WEAK void SysTick_Handler(void);
WEAK void IntDefaultHandler(void);
//*****************************************************************************
//
// Forward declaration of the specific IRQ handlers. These are aliased
// to the IntDefaultHandler, which is a 'forever' loop. When the application
// defines a handler (with the same name), this will automatically take
// precedence over these weak definitions
//
//*****************************************************************************
void DAC_IRQHandler(void) ALIAS(IntDefaultHandler);
void M0CORE_IRQHandler(void) ALIAS(IntDefaultHandler);
void DMA_IRQHandler(void) ALIAS(IntDefaultHandler);
void EZH_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLASH_EEPROM_IRQHandler(void) ALIAS(IntDefaultHandler);
void ETH_IRQHandler(void) ALIAS(IntDefaultHandler);
void SDIO_IRQHandler(void) ALIAS(IntDefaultHandler);
void LCD_IRQHandler(void) ALIAS(IntDefaultHandler);
void USB0_IRQHandler(void) ALIAS(IntDefaultHandler);
void USB1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SCT_IRQHandler(void) ALIAS(IntDefaultHandler);
void RIT_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER0_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER1_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER2_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER3_IRQHandler(void) ALIAS(IntDefaultHandler);
void MCPWM_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC0_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C0_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPI_IRQHandler (void) ALIAS(IntDefaultHandler);
void I2C1_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP0_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART0_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART2_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART3_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2S0_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2S1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPIFI_IRQHandler(void) ALIAS(IntDefaultHandler);
void SGPIO_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO0_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO1_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO2_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO3_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO4_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO5_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO6_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO7_IRQHandler(void) ALIAS(IntDefaultHandler);
void GINT0_IRQHandler(void) ALIAS(IntDefaultHandler);
void GINT1_IRQHandler(void) ALIAS(IntDefaultHandler);
void EVRT_IRQHandler(void) ALIAS(IntDefaultHandler);
void CAN1_IRQHandler(void) ALIAS(IntDefaultHandler);
void VADC_IRQHandler(void) ALIAS(IntDefaultHandler);
void ATIMER_IRQHandler(void) ALIAS(IntDefaultHandler);
void RTC_IRQHandler(void) ALIAS(IntDefaultHandler);
void WDT_IRQHandler(void) ALIAS(IntDefaultHandler);
void M0s_IRQHandler(void) ALIAS(IntDefaultHandler);
void CAN0_IRQHandler(void) ALIAS(IntDefaultHandler);
void QEI_IRQHandler(void) ALIAS(IntDefaultHandler);
//*****************************************************************************
//
// The entry point for the application.
// __main() is the entry point for Redlib based applications
// main() is the entry point for Newlib based applications
//
//*****************************************************************************
#if defined (__REDLIB__)
extern void __main(void);
#endif
extern int main(void);
//*****************************************************************************
//
// External declaration for the pointer to the stack top from the Linker Script
//
//*****************************************************************************
extern void _vStackTop(void);
//*****************************************************************************
#if defined (__cplusplus)
} // extern "C"
#endif
//*****************************************************************************
//
// The vector table.
// This relies on the linker script to place at correct location in memory.
//
//*****************************************************************************
extern void (* const g_pfnVectors[])(void);
__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) = {
// Core Level - CM4
&_vStackTop, // The initial stack pointer
ResetISR, // The reset handler
NMI_Handler, // The NMI handler
HardFault_Handler, // The hard fault handler
MemManage_Handler, // The MPU fault handler
BusFault_Handler, // The bus fault handler
UsageFault_Handler, // The usage fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
SVC_Handler, // SVCall handler
DebugMon_Handler, // Debug monitor handler
0, // Reserved
PendSV_Handler, // The PendSV handler
SysTick_Handler, // The SysTick handler
// Chip Level - LPC43
DAC_IRQHandler, // 16
M0CORE_IRQHandler, // 17
DMA_IRQHandler, // 18
EZH_IRQHandler, // 19
FLASH_EEPROM_IRQHandler, // 20
ETH_IRQHandler, // 21
SDIO_IRQHandler, // 22
LCD_IRQHandler, // 23
USB0_IRQHandler, // 24
USB1_IRQHandler, // 25
SCT_IRQHandler, // 26
RIT_IRQHandler, // 27
TIMER0_IRQHandler, // 28
TIMER1_IRQHandler, // 29
TIMER2_IRQHandler, // 30
TIMER3_IRQHandler, // 31
MCPWM_IRQHandler, // 32
ADC0_IRQHandler, // 33
I2C0_IRQHandler, // 34
I2C1_IRQHandler, // 35
SPI_IRQHandler, // 36
ADC1_IRQHandler, // 37
SSP0_IRQHandler, // 38
SSP1_IRQHandler, // 39
UART0_IRQHandler, // 40
UART1_IRQHandler, // 41
UART2_IRQHandler, // 42
UART3_IRQHandler, // 43
I2S0_IRQHandler, // 44
I2S1_IRQHandler, // 45
SPIFI_IRQHandler, // 46
SGPIO_IRQHandler, // 47
GPIO0_IRQHandler, // 48
GPIO1_IRQHandler, // 49
GPIO2_IRQHandler, // 50
GPIO3_IRQHandler, // 51
GPIO4_IRQHandler, // 52
GPIO5_IRQHandler, // 53
GPIO6_IRQHandler, // 54
GPIO7_IRQHandler, // 55
GINT0_IRQHandler, // 56
GINT1_IRQHandler, // 57
EVRT_IRQHandler, // 58
CAN1_IRQHandler, // 59
0, // 60
VADC_IRQHandler, // 61
ATIMER_IRQHandler, // 62
RTC_IRQHandler, // 63
0, // 64
WDT_IRQHandler, // 65
M0s_IRQHandler, // 66
CAN0_IRQHandler, // 67
QEI_IRQHandler, // 68
};
//*****************************************************************************
// Functions to carry out the initialization of RW and BSS data sections. These
// are written as separate functions rather than being inlined within the
// ResetISR() function in order to cope with MCUs with multiple banks of
// memory.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void data_init(unsigned int romstart, unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int *pulSrc = (unsigned int*) romstart;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4)
*pulDest++ = *pulSrc++;
}
__attribute__ ((section(".after_vectors")))
void bss_init(unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4)
*pulDest++ = 0;
}
//*****************************************************************************
// The following symbols are constructs generated by the linker, indicating
// the location of various points in the "Global Section Table". This table is
// created by the linker via the Code Red managed linker script mechanism. It
// contains the load address, execution address and length of each RW data
// section and the execution and length of each BSS (zero initialized) section.
//*****************************************************************************
extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table;
extern unsigned int __bss_section_table_end;
//*****************************************************************************
// Reset entry point for your code.
// Sets up a simple runtime environment and initializes the C/C++
// library.
//
//*****************************************************************************
void
ResetISR(void) {
// *************************************************************
// The following conditional block of code manually resets as
// much of the peripheral set of the LPC43 as possible. This is
// done because the LPC43 does not provide a means of triggering
// a full system reset under debugger control, which can cause
// problems in certain circumstances when debugging.
//
// You can prevent this code block being included if you require
// (for example when creating a final executable which you will
// not debug) by setting the define 'DONT_RESET_ON_RESTART'.
//
#ifndef DONT_RESET_ON_RESTART
// Disable interrupts
__asm volatile ("cpsid i");
// equivalent to CMSIS '__disable_irq()' function
unsigned int *RESET_CONTROL = (unsigned int *) 0x40053100;
// LPC_RGU->RESET_CTRL0 @ 0x40053100
// LPC_RGU->RESET_CTRL1 @ 0x40053104
// Note that we do not use the CMSIS register access mechanism,
// as there is no guarantee that the project has been configured
// to use CMSIS.
// Write to LPC_RGU->RESET_CTRL0
*(RESET_CONTROL+0) = 0x10DF0000;
// GPIO_RST|AES_RST|ETHERNET_RST|SDIO_RST|DMA_RST|
// USB1_RST|USB0_RST|LCD_RST
// Write to LPC_RGU->RESET_CTRL1
*(RESET_CONTROL+1) = 0x01DFF7FF;
// M0APP_RST|CAN0_RST|CAN1_RST|I2S_RST|SSP1_RST|SSP0_RST|
// I2C1_RST|I2C0_RST|UART3_RST|UART1_RST|UART1_RST|UART0_RST|
// DAC_RST|ADC1_RST|ADC0_RST|QEI_RST|MOTOCONPWM_RST|SCT_RST|
// RITIMER_RST|TIMER3_RST|TIMER2_RST|TIMER1_RST|TIMER0_RST
// Clear all pending interrupts in the NVIC
volatile unsigned int *NVIC_ICPR = (unsigned int *) 0xE000E280;
unsigned int irqpendloop;
for (irqpendloop = 0; irqpendloop < 8; irqpendloop++) {
*(NVIC_ICPR+irqpendloop)= 0xFFFFFFFF;
}
// Reenable interrupts
__asm volatile ("cpsie i");
// equivalent to CMSIS '__enable_irq()' function
#endif // ifndef DONT_RESET_ON_RESTART
// *************************************************************
//
// Copy the data sections from flash to SRAM.
//
unsigned int LoadAddr, ExeAddr, SectionLen;
unsigned int *SectionTableAddr;
// Load base address of Global Section Table
SectionTableAddr = &__data_section_table;
// Copy the data sections from flash to SRAM.
while (SectionTableAddr < &__data_section_table_end) {
LoadAddr = *SectionTableAddr++;
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
data_init(LoadAddr, ExeAddr, SectionLen);
}
// At this point, SectionTableAddr = &__bss_section_table;
// Zero fill the bss segment
while (SectionTableAddr < &__bss_section_table_end) {
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
bss_init(ExeAddr, SectionLen);
}
#if defined (__VFP_FP__) && !defined (__SOFTFP__)
/*
* Code to enable the Cortex-M4 FPU only included
* if appropriate build options have been selected.
* Code taken from Section 7.1, Cortex-M4 TRM (DDI0439C)
*/
// CPACR is located at address 0xE000ED88
asm("LDR.W R0, =0xE000ED88");
// Read CPACR
asm("LDR R1, [R0]");
// Set bits 20-23 to enable CP10 and CP11 coprocessors
asm(" ORR R1, R1, #(0xF << 20)");
// Write back the modified value to the CPACR
asm("STR R1, [R0]");
#endif // (__VFP_FP__) && !(__SOFTFP__)
// ******************************
// Check to see if we are running the code from a non-zero
// address (eg RAM, external flash), in which case we need
// to modify the VTOR register to tell the CPU that the
// vector table is located at a non-0x0 address.
// Note that we do not use the CMSIS register access mechanism,
// as there is no guarantee that the project has been configured
// to use CMSIS.
unsigned int * pSCB_VTOR = (unsigned int *) 0xE000ED08;
if ((unsigned int *)g_pfnVectors!=(unsigned int *) 0x00000000) {
// CMSIS : SCB->VTOR = <address of vector table>
*pSCB_VTOR = (unsigned int)g_pfnVectors;
}
#ifdef __USE_CMSIS
SystemInit();
#endif
#if defined (__cplusplus)
//
// Call C++ library initialisation
//
__libc_init_array();
#endif
#if defined (__REDLIB__)
// Call the Redlib library, which in turn calls main()
__main() ;
#else
main();
#endif
//
// main() shouldn't return, but if it does, we'll just enter an infinite loop
//
while (1) {
;
}
}
//*****************************************************************************
// Default exception handlers. Override the ones here by defining your own
// handler routines in your application code.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void NMI_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void HardFault_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void MemManage_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void BusFault_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void UsageFault_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void SVC_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void DebugMon_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void PendSV_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void SysTick_Handler(void)
{
while(1)
{
}
}
//*****************************************************************************
//
// Processor ends up here if an unexpected interrupt occurs or a specific
// handler is not present in the application code.
//
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void IntDefaultHandler(void)
{
while(1)
{
}
}